
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Table	of	Contents
Introduction

Legal	Notice

Working	with	the	Code

IDE	Integration

Building

Tests

Code	Formatting

Validating	releases

Notes	for	Maintainers

History

1



Apache	ActiveMQ	Artemis	Hacking
Guide
This	hacking	guide	outlines	how	developers	can	get	involved	in	contributing	to	the
Apache	ActiveMQ	Artemis	project.

Introduction

2



Legal	Notice
Licensed	to	the	Apache	Software	Foundation	(ASF)	under	one	or	more	contributor
license	agreements.	See	the	NOTICE	file	distributed	with	this	work	for	additional
information	regarding	copyright	ownership.	The	ASF	licenses	this	file	to	You	under	the
Apache	License,	Version	2.0	(the	"License");	you	may	not	use	this	file	except	in
compliance	with	the	License.	You	may	obtain	a	copy	of	the	License	at

http://www.apache.org/licenses/LICENSE-2.0

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software	distributed	under	the
License	is	distributed	on	an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR
CONDITIONS	OF	ANY	KIND,	either	express	or	implied.	See	the	License	for	the	specific
language	governing	permissions	and	limitations	under	the	License.

Legal	Notice

3

http://www.apache.org/licenses/LICENSE-2.0


Working	with	the	Code
While	the	canonical	Apache	ActiveMQ	Artemis	git	repository	is	hosted	on	Apache
hardware	at	https://git-wip-us.apache.org/repos/asf?p=activemq-artemis.git	contributors
are	encouraged	(but	not	required)	to	use	a	mirror	on	GitHub	for	collaboration	and	pull-
request	review	functionality.	Follow	the	steps	below	to	get	set	up	with	GitHub,	etc.

If	you	do	not	wish	to	use	GitHub	for	whatever	reason	you	can	follow	the	overall	process
outlined	in	the	"Typical	development	cycle"	section	below	but	instead	attach	a	patch	file
to	the	related	JIRA	or	an	email	to	the	dev	list.

Initial	Steps
1.	 Create	a	GitHub	account	if	you	don't	have	one	already

http://github.com

2.	 Fork	the	apache-artemis	repository	into	your	account

https://github.com/apache/activemq-artemis

3.	 Clone	your	newly	forked	copy	onto	your	local	workspace:

	$	git	clone	git@github.com:<your-user-name>/activemq-artemis.git

	Cloning	into	'activemq-artemis'...

	remote:	Counting	objects:	63800,	done.

	remote:	Compressing	objects:	100%	(722/722),	done.

	remote:	Total	63800	(delta	149),	reused	0	(delta	0),	pack-reused	62748

	Receiving	objects:	100%	(63800/63800),	18.28	MiB	|	3.16	MiB/s,	done.

	Resolving	deltas:	100%	(28800/28800),	done.

	Checking	connectivity...	done.

	$	cd	activemq-artemis

4.	 Add	a	remote	reference	to		upstream		for	pulling	future	updates

	$	git	remote	add	upstream	https://github.com/apache/activemq-artemis

5.	 Build	with	Maven

Working	with	the	Code

4

https://git-wip-us.apache.org/repos/asf?p=activemq-artemis.git
http://git-scm.com/docs/git-format-patch
http://activemq.apache.org/mailing-lists.html
http://github.com
https://github.com/apache/activemq-artemis


Typically	developers	will	want	to	build	using	the		dev		profile	which	disables	license
and	code	style	checks.	For	example:

	$	mvn	-Pdev	install

	...

	[INFO]	----------------------------------------------------------------------

--

	[INFO]	Reactor	Summary:

	[INFO]	

	[INFO]	ActiveMQ	Artemis	Parent	...........................	SUCCESS	[2.298s]

	[INFO]	ActiveMQ	Artemis	Commons	..........................	SUCCESS	[1.821s]

	[INFO]	ActiveMQ	Artemis	Selector	Implementation	..........	SUCCESS	[0.767s]

	[INFO]	ActiveMQ	Artemis	Native	POM	.......................	SUCCESS	[0.189s]

	[INFO]	ActiveMQ	Artemis	Journal	..........................	SUCCESS	[0.646s]

	[INFO]	ActiveMQ	Artemis	Core	Client	......................	SUCCESS	[5.969s]

	[INFO]	ActiveMQ	Artemis	JMS	Client	.......................	SUCCESS	[2.110s]

	[INFO]	ActiveMQ	Artemis	Server	...........................	SUCCESS	[11.540s]

	...

	[INFO]	ActiveMQ	Artemis	stress	Tests	.....................	SUCCESS	[0.332s]

	[INFO]	ActiveMQ	Artemis	performance	Tests	................	SUCCESS	[0.174s]

	[INFO]	----------------------------------------------------------------------

--

	[INFO]	BUILD	SUCCESS

	[INFO]	----------------------------------------------------------------------

--

Typical	development	cycle
1.	 Identify	a	task	(e.g.	a	bug	to	fix	or	feature	to	implement)

https://issues.apache.org/jira/browse/ARTEMIS

2.	 Create	a	topic	branch	in	your	local	git	repo	to	do	your	work

		$	git	checkout	-b	my_cool_feature

3.	 Make	the	changes	and	commit	one	or	more	times

		$	git	commit

When	you	commit	your	changes	you	will	need	to	supply	a	commit	message.	We
follow	the	50/72	git	commit	message	format.	An	ActiveMQ	Artemis	commit	message
should	be	formatted	in	the	following	manner:

Working	with	the	Code

5

https://issues.apache.org/jira/browse/ARTEMIS


i.	 Add	the	ARTEMIS	JIRA	(if	one	exists)	followed	by	a	brief	description	of	the
change	in	the	first	line.	This	line	should	be	limited	to	50	characters.

ii.	 Insert	a	single	blank	line	after	the	first	line.
iii.	 Provide	a	detailed	description	of	the	change	in	the	following	lines,	breaking

paragraphs	where	needed.	These	lines	should	be	wrapped	at	72	characters.
An	example	correctly	formatted	commit	message:

		ARTEMIS-123	Add	new	commit	msg	format	to	README

		Adds	a	description	of	the	new	commit	message	format	as	well	as	examples

		of	well	formatted	commit	messages	to	the	README.md.		This	is	required	

		to	enable	developers	to	quickly	identify	what	the	commit	is	intended	to	

		do	and	why	the	commit	was	added.

4.	 Occasionally	you'll	want	to	push	your	commit(s)	to	GitHub	for	safe-keeping	and/or
sharing	with	others.

		git	push	origin	my_cool_feature		

Note	that	git	push	references	the	branch	you	are	pushing	and	defaults	to		master	,
not	your	working	branch.

5.	 Discuss	your	planned	changes	(if	you	want	feedback)

On	mailing	list	-	http://activemq.apache.org/mailing-lists.html	On	IRC	-
irc://irc.freenode.org/apache-activemq	or	https://webchat.freenode.net/?
channels=apache-activemq

6.	 Once	you're	finished	coding	your	feature/fix	then	rebase	your	branch	against	the
latest	master	(applies	your	patches	on	top	of	master)

		git	fetch	upstream		

		git	rebase	-i	upstream/master		

		#	if	you	have	conflicts	fix	them	and	rerun	rebase		

		#	The	-f,	forces	the	push,	alters	history,	see	note	below		

		git	push	-f	origin	my_cool_feature

The		rebase	-i		triggers	an	interactive	update	which	also	allows	you	to	combine
commits,	alter	commit	messages	etc.	It's	a	good	idea	to	make	the	commit	log	very
nice	for	external	consumption	(e.g.	by	squashing	all	related	commits	into	a	single
commit.	Note	that	rebasing	and/or	using		push	-f		can	alter	history.	While	this	is
great	for	making	a	clean	patch,	it	is	unfriendly	to	anyone	who	has	forked	your

Working	with	the	Code

6

http://activemq.apache.org/mailing-lists.html
https://webchat.freenode.net/?channels=apache-activemq


branch.	Therefore	you'll	want	to	make	sure	that	you	either	work	in	a	branch	that	you
don't	share,	or	if	you	do	share	it,	tell	them	you	are	about	to	revise	the	branch	history
(and	thus,	they	will	then	need	to	rebase	on	top	of	your	branch	once	you	push	it	out).

7.	 Get	your	changes	merged	into	upstream

i.	 Send	a	GitHub	pull	request,	by	clicking	the	pull	request	link	while	in	your	repo's
fork.

ii.	 An	email	will	automatically	be	sent	to	the	ActiveMQ	developer	list.
iii.	 As	part	of	the	review	you	may	see	an	automated	test	run	comment	on	your

request.
iv.	 After	review	a	maintainer	will	merge	your	PR	into	the	canonical	git	repository	at

which	point	those	changes	will	be	synced	with	the	GitHub	mirror	repository	(i.e.
your		master	)	and	your	PR	will	be	closed	by	the		asfgit		bot.

Other	common	tasks
1.	 Pulling	updates	from	upstream

	$	git	pull	--rebase	upstream	master

(	--rebase		will	automatically	move	your	local	commits,	if	any,	on	top	of	the	latest
branch	you	pull	from;	you	can	leave	it	off	if	you	do	not	have	any	local	commits).

One	last	option,	which	some	prefer,	is	to	avoid	using	pull	altogether,	and	just	use
fetch	+	rebase	(this	is	of	course	more	typing).	For	example:

	$	git	fetch	upstream

	$	git	pull

2.	 Pushing	pulled	updates	(or	local	commits	if	you	aren't	using	topic	branches)	to	your
private	GitHub	repo	(origin)

Working	with	the	Code

7



	$	git	push		

	Counting	objects:	192,	done.		

	Delta	compression	using	up	to	4	threads.		

	Compressing	objects:	100%	(44/44),	done.		

	Writing	objects:	100%	(100/100),	10.67	KiB,	done.		

	Total	100	(delta	47),	reused	100	(delta	47)		

	To	git@github.com:<your-user-name>/apache-artemis.git		

				3382570..1fa25df		master	->	master

You	might	need	to	say	-f	to	force	the	changes.

Adding	New	Dependencies
Due	to	incompatibilities	between	some	open	source	licenses	and	the	Apache	v2.0
license	(that	this	project	is	licensed	under)	care	must	be	taken	when	adding	new
dependencies	to	the	project.	The	Apache	Software	Foundation	3rd	party	licensing	policy
has	more	information	here:	http://www.apache.org/legal/3party.html

To	keep	track	of	all	licenses	in	ActiveMQ	Artemis,	new	dependencies	must	be	added	in
either	the	top	level	pom.xml	or	in	test/pom.xml	(depending	on	whether	this	is	a	test	only
dependency	or	if	it	is	used	in	the	main	code	base).	The	dependency	should	be	added
under	the	dependency	management	section	with	version	and	labelled	with	a	comment
highlighting	the	license	for	the	dependency	version.	See	existing	dependencies	in	the
main	pom.xml	for	examples.	The	dependency	can	then	be	added	to	individual	ActiveMQ
Artemis	modules	without	the	version	specified	(the	version	is	implied	from	the
dependency	management	section	of	the	top	level	pom).	This	allows	ActiveMQ	Artemis
developers	to	keep	track	of	all	dependencies	and	licenses.

Working	with	the	Code

8

http://www.apache.org/legal/3party.html


IDE	Integration
There	a	few	files	useful	for	IDE	integration	under	./etc/ide-settings	on	a	checked	out
folder.	This	folder	is	not	part	of	the	source	distribution,	but	it	can	be	easily	obtained:

https://github.com/apache/activemq-artemis/tree/master/etc/ide-settings

IntelliJ	IDEA

Importing	the	Project

The	following	steps	show	how	to	import	ActiveMQ	Artemis	source	into	IntelliJ	IDEA	and
setup	the	correct	maven	profile	to	allow	running	of	JUnit	tests	from	within	the	IDE.	(Steps
are	based	on	version:	13.1.4)

File	-->	Import	Project	-->	Select	the	root	directory	of	the	ActiveMQ	Artemis	source
folder.	-->	Click	OK

This	should	open	the	import	project	wizard.	From	here:

Select	"Import	from	existing	model"	toggle	box,	then	select	Maven	from	the	list	box
below.	Click	Next.
Leave	the	defaults	set	on	this	page	and	click	next.
On	the	"Select	profiles	page",	select	the	checkbox	next	to	"dev"	and	click	next.
From	here	the	default	settings	should	suffice.	Continue	through	the	wizard,	clicking
next	until	the	wizard	is	complete.

Once	the	project	has	been	imported	and	IDEA	has	caught	up	importing	all	the	relevant
dependencies,	you	should	be	able	to	run	JUnit	tests	from	with	the	IDE.	Select	any	test
class	in	the	tests	->	integration	tests	folder.	Right	click	on	the	class	in	the	project	tab	and
click	"Run	".	If	the	"Run	"	option	is	present	then	you're	all	set	to	go.

Note	about	IBM	JDK	on	Idea

If	you	are	running	IBM	JDK	it	may	be	a	little	tricky	to	get	it	working.

After	you	add	the	JDK	to	the	IDE,	add	also	the	vm.jar	specific	to	your	platform	under	that
jdk.

IDE	Integration

9

https://github.com/apache/activemq-artemis/tree/master/etc/ide-settings


(e.g:	JAVA_HOME/jre/lib/amd64/default/jclSC180/vm.jar

There's	a	SOF	Question	about	this	that	could	be	useful	in	case	you	are	running	into	this
issue.

Style	Templates	and	Inspection	Settings	for	Idea

We	have	shared	the	style	templates	that	are	good	for	this	project.	If	you	want	to	apply
them	use	these	steps:

File->Import	Settings
Select	the	file	under	./artemis-cloned-folder/etc/ide-settings/idea/IDEA-style.jar
Select	both	Code	Style	Templates	and	File	templates	(it's	the	default	option)
Select	OK	and	restart	Idea

Alternatively	you	can	copy	artemis-codestyle.xml	under	your	home	settings	at
	IntelliJIdea15/codestyles	.

To	import	inspection	settings:

File->Settings->Editor->Inspections->Manage->Import
Select	the	file	./artemis-cloned-folder/etc/ide-settings/idea/artemis-inspections.xml
Select	OK

Issue:	My	JUnit	tests	are	not	runnable	with	in	the	IDE.

If	the	"Run	"	or	"Run	all	tests"	option	is	not	present.	It	is	likely	that	the	default	profile	has
not	been	imported	properly.	To	(re)import	the	"tests"	Maven	profile	in	an	existing	project.

Open	the	Maven	Projects	Tool	Window:	View	->	Tool	Windows	->	Maven	Projects
Select	the	"profiles"	drop	down
Unselect	then	reselect	the	checkbox	next	to	"tests".
Click	on	the	"Reimport	all	maven	projects"	button	in	the	top	left	hand	corner	of	the
window.	(It	looks	like	a	circular	blue	arrow.
Wait	for	IDEA	to	reload	and	try	running	a	JUnit	test	again.	The	option	to	run	should
now	be	present.

Eclipse

IDE	Integration

10

http://stackoverflow.com/questions/27906481/can-intellij-14-be-used-to-work-with-ibm-jdk-1-7/32852361#32852361


We	recommend	using	Eclipse	Kepler	(4.3),	due	to	the	built-in	support	for	Maven	and	Git.
Note	that	there	are	still	some	Maven	plugins	used	by	sub-projects	(e.g.	documentation)
which	are	not	supported	even	in	Eclipse	Kepler	(4.3).

Eclipse	m2e	is	already	included	in	"Eclipse	IDE	for	Java	Developers",	or	it	can	be
installed	from	Eclipse	Kepler	release	repository.

Git	setup

It	is	strongly	recommended	to	turn	off	the	auto-updating	of	.gitignore	files	by	the	Git
Team	extension.	Otherwise,	it	generates	new	.gitignore	files	in	many	directories	that	are
not	needed	due	to	the	top	level	.gitignore	file.	To	turn	it	off,	go	to	Preferences->Team-
>Git->Projects	and	deselect	the	"Automatically	ignore	derived	resources"	checkbox.

Schema	setup

For	proper	schema	validation	you	can	add	the	Artemis	schemas	to	your	Eclipse	XML
Catalog

Open:	Window	->	Preferences	->	XML	->	XML	Catalog
Select	Add	->	Workspace	->	Navigate	to	artemis-server	and	select
src/main/resources/schema/artemis-server.xsd	->	click	OK
Repeat	the	above	steps	and	add	src/main/resources/schema/artemis-
configuration.xsd

Checkstyle	setup

You	can	import	the	Artemis	Checkstyle	template	into	eclipse	to	do	Checkstyle	validation.
As	a	prerequisite	you	need	to	make	sure	the	Checkstyle	plugin	is	installed	into	Eclipse
which	you	can	get	form	the	Eclipse	Marketplace.	You	also	will	need	to	configure	Sevntu-
Checkstyle.	See	http://sevntu-checkstyle.github.io/sevntu.checkstyle/	for	instructions.
Then	to	configure	the	template:

Open:	Window	->	Preferences	->	Checkstyle
Select	New	->	"Project	Relative	Configuration"	in	the	"Type"	dropdown
Give	the	configuration	a	name	and	under	location	put	"/artemis-
pom/etc/checkstyle.xml"	then	hit	ok
You	should	now	see	your	new	configuration	in	the	list	of	Checkstyle	profiles.	You
can	select	the	new	configuration	as	the	default	if	you	want.

IDE	Integration

11

http://eclipse.org/m2e/
http://download.eclipse.org/releases/kepler
http://sevntu-checkstyle.github.io/sevntu.checkstyle/


Annotation	Pre-Processing

ActiveMQ	Artemis	uses	JBoss	Logging	and	that	requires	source	code	generation	from
Java	annotations.	In	order	for	it	to	'just	work'	in	Eclipse	you	need	to	install	the	Maven
Integration	for	Eclipse	JDT	Annotation	Processor	Toolkit	m2e-apt.	See	this	JBoss	blog
post	for	details.

Running	tests	from	Eclipse

Setting	up	annotation	pre-processing	in	the	above	section	is	all	you	need	to	run	tests	in
the	"unit-tests"	project	as	that	will	properly	add	the	generated	logger	to	the	source.
However,	one	more	step	is	needed	to	run	tests	in	other	projects	such	as	"performance-
tests"	or	"integration-tests"	that	have	a	dependency	on	"unit-tests".	Currently	m2eclipse
does	not	properly	link	the	generated	source	annotations	folder	from	"unit-tests"	which
causes	the	logger	that	is	generated	to	not	be	available.	To	simplest	way	to	fix	this	is	to
manually	add	a	project	dependency	on	"unit-tests"	to	each	of	the	projects	where	you
want	to	run	a	test	class	from:

Right	click	on	the	test	project	(i.e.	integration-tests):	Properties	->	Java	Build	Path	->
Projects	->	Add
Select	the	"unit-tests"	project	and	click	Ok

You	should	now	be	able	to	run	tests	assuming	that	the	annotation	pre-processing	was
set	up	properly	in	the	previous	step.

M2E	Connector	for	Javacc-Maven-Plugin

Eclipse	Indigo	(3.7)	has	out-of-the-box	support	for	it.

As	of	this	writing,	Eclipse	Kepler	(4.3)	still	lacks	support	for	Maven's	javacc	plugin.	The
available	m2e	connector	for	javacc-maven-plugin	requires	a	downgrade	of	Maven
components	to	be	installed.	manual	installation	instructions	(as	of	this	writing	you	need
to	use	the	development	update	site).	See	this	post	for	how	to	do	this	with	Eclipse	Juno
(4.2).

The	current	recommended	solution	for	Eclipse	Kepler	is	to	mark		javacc-maven-plugin	
as	ignored	by	Eclipse,	run	Maven	from	the	command	line	and	then	modify	the	project
	activemq-core-client		adding	the	folder		target/generated-sources/javacc		to	its	build
path.

IDE	Integration

12

https://community.jboss.org/wiki/JBossLoggingTooling
https://github.com/jbosstools/m2e-apt
https://community.jboss.org/en/tools/blog/2012/05/20/annotation-processing-support-in-m2e-or-m2e-apt-100-is-out
https://github.com/objectledge/maven-extensions
http://dev.eclipse.org/mhonarc/lists/m2e-users/msg02725.html


Use	Project	Working	Sets

Importing	all	ActiveMQ	Artemis	subprojects	will	create	too	many	projects	in	Eclipse,
cluttering	your	Package	Explorer	and	Project	Explorer	views.	One	way	to	address	that	is
to	use	Eclipse's	Working	Sets	feature.	A	good	introduction	to	it	can	be	found	at	a	Dzone
article	on	Eclipse	Working	Sets.

IDE	Integration

13

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fcworkset.htm
http://eclipse.dzone.com/articles/categorise-projects-package


Building
We	use	Apache	Maven	to	build	the	code,	distribution,	etc.	and	to	manage	dependencies.

We	use		gitbook		to	build	the	docs.

The	minimum	required	Maven	version	is	3.0.0.

Note	that	there	are	some	compatibility	issues	with	Maven	3.X	still	unsolved.	This	is
specially	true	for	the	'site'	plugin.

Full	Release

Upgrading	the		gitbook		version	and	regenerating	the
	npm-shrinkwrap.json		file

The	full	release	uses		gitbook		to	build	a	static	website	from	the	documentation.	This	is
automatically	installed	using	an		NPM		plugin	and	is	controlled	via	a	package.json	file.

Install		NPM		using	the	instructions	below

cd	artemis-website

alter	the	`package.json`	changing	the	version

npm	cache	clean;	rm	-rf	./node_modules/	./node	npm-shrinkwrap.json

npm	install	--save-dev

npm	shrinkwrap	--dev

The	new	npm-shrinkwrap.json	should	be	written,	commit	it.

gitbook

Artemis	will	automate	the	execution	and	download	of	npm.	But	it	may	be	useful	to	install
it	on	your	system.	Simply	type:

$	npm	install	-g	gitbook-cli

If	you	don't	have		npm		installed	then	you	would	need	to	install	it	first.

Building

14

https://cwiki.apache.org/confluence/display/MAVEN/Maven+3.x+Compatibility+Notes
https://maven.apache.org/plugins-archives/maven-site-plugin-3.3/maven-3.html


Install	npm	On	Fedora

$	yum	install	npm

Install	npm	On	Fedora	24

This	is	what	you	should	do	if	you	are	using	Fedora	24+.

$	dnf	install	nodejs

Install	npm	On	Mac-OS

The	easiest	way	would	be	through	brew	brew

You	first	install	brew	using	the	instructions	on	the	brew	website.

After	you	installed	brew	you	can	install	npm	by:

brew	install	npm

To	build	the	full	release	with	documentation,	Javadocs,	and	the	full	web	site:

$	mvn	-Prelease	package

To	install	it	to	your	local	maven	repo:

$	mvn	-Prelease	install

Build	the	distribution	without	docs
It	is	possible	to	build	a	distribution	without	the	manuals	and	Javadocs.	simply	run

$	mvn	package

Building	the	docs

Building

15

http://brew.sh
http://brew.sh


From	either		docs/hacking-guide/en		or		docs/user-manual/en		run		gitbook	build		(after
you've	installed	gitbook)

Building

16



Tests

Running	Tests
To	run	the	unit	tests:

$	mvn	-Ptests	test

Generating	reports	from	unit	tests:

$	mvn	install	site

Running	tests	individually

$	mvn	-Ptests	-DfailIfNoTests=false	-Dtest=<test-name>	test

where	<test-name>	is	the	name	of	the	Test	class	without	its	package	name

Writing	Tests
The	broker	is	comprised	of	POJOs	so	it's	simple	to	configure	and	run	a	broker	instance
and	test	particular	functionality.	Even	complex	test-cases	involving	multiple	clustered
brokers	are	relatively	easy	to	write.	Almost	every	test	in	the	test-suite	follows	this	pattern
-	configure	broker,	start	broker,	test	functionality,	stop	broker.

The	test-suite	uses	JUnit	to	manage	test	execution	and	life-cycle.	Most	tests	extend
	org.apache.activemq.artemis.tests.util.ActiveMQTestBase		which	contains	JUnit	setup
and	tear-down	methods	as	well	as	a	wealth	of	utility	functions	to	configure,	start,
manage,	and	stop	brokers	as	well	as	perform	other	common	tasks.

Check	out		org.apache.activemq.artemis.tests.integration.SimpleTest	.	It's	a	very	simple
test-case	that	extends		org.apache.activemq.artemis.tests.util.ActiveMQTestBase		and
uses	its	methods	to	configure	a	server,	run	a	test,	and	then		super.tearDown()		cleans	it
up	once	the	test	completes.	The	test-case	includes	comments	to	explain	everything.	As

Tests

17



the	name	implies,	this	is	a	simple	test-case	that	demonstrates	the	most	basic
functionality	of	the	test-suite.	A	simple	test	like	this	takes	less	than	a	second	to	run	on
modern	hardware.

Although		org.apache.activemq.artemis.tests.integration.SimpleTest		is	simple	it	could
be	simpler	still	by	extending
	org.apache.activemq.artemis.tests.util.SingleServerTestBase	.	This	class	does	all	the
setup	of	a	simple	server	automatically	and	provides	the	test-case	with	a		ServerLocator	,
	ClientSessionFactory	,	and		ClientSession		instance.
	org.apache.activemq.artemis.tests.integration.SingleServerSimpleTest		is	an	example
based	on		org.apache.activemq.artemis.tests.integration.SimpleTest		but	extends
	org.apache.activemq.artemis.tests.util.SingleServerTestBase		which	eliminates	all	the
setup	and	class	variables	which	are	provided	by		SingleServerTestBase		itself.

Keys	for	writing	good	tests

Avoid	leaks

An	important	task	for	any	test-case	is	to	clean	up	all	the	resources	it	creates	when	it
runs.	This	includes	the	server	instance	itself	and	any	resources	created	to	connect	to	it
(e.g.	instances	of		ServerLocator	,		ClientSessionFactory	,		ClientSession	,	etc.).	This
task	is	typically	completed	in	the	test's		tearDown()		method.	However,
	ActiveMQTestBase		(and	other	classes	which	extend	it)	simplifies	this	process.	As
	org.apache.activemq.artemis.tests.integration.SimpleTest		demonstrates,	there	are
several	methods	you	can	use	when	creating	your	test	which	will	ensure	proper	clean	up
automatically	when	the	test	is	torn	down.	These	include:

All	the	overloaded
	org.apache.activemq.artemis.tests.util.ActiveMQTestBase.createServer(..)	

methods.	If	you	choose	not	to	use	one	of	these	methods	to	create	your
	ActiveMQServer		instance	then	use	the		addServer(ActiveMQServer)		method	to	add
the	instance	to	the	test-suite's	internal	resource	ledger.
Methods	from		org.apache.activemq.artemis.tests.util.ActiveMQTestBase		to	create	a
	ServerLocator		like		createInVMNonHALocator		and		createNettyNonHALocator	.	If	you
choose	not	to	use	one	of	these	methods	then	use		addServerLocator(ServerLocator)	
to	add	the	locator	to	the	test-suite's	internal	resource	ledger.
	org.apache.activemq.artemis.tests.util.ActiveMQTestBase.createSessionFactory(Serv

erLocator)		for	creating	your	session	factory.	If	you	choose	not	to	use	this	method

Tests

18



then	use
	org.apache.activemq.artemis.tests.util.ActiveMQTestBase.addSessionFactory		to	add
the	factory	to	the	test-suite's	internal	resource	ledger.

Create	configurations

There	are	numerous	methods	in
	org.apache.activemq.artemis.tests.util.ActiveMQTestBase		to	create	a	configuration.
These	methods	are	named	like	create*Config(..).	Each	one	creates	a	slightly	different
configuration	but	there	is	a	lot	of	overlap	between	them.

In	any	case,		org.apache.activemq.artemis.core.config.Configuration		is	a	fluent	interface
so	it's	easy	to	customize	however	you	need.

Look	at	other	test-cases

If	you	need	ideas	on	how	to	configure	something	or	test	something	try	looking	through
the	test-suite	at	other	test-cases	which	may	be	similar.	This	is	one	of	the	best	ways	to
learn	how	the	test-suite	works	and	how	you	can	leverage	the	testing	infrastructure	to	test
your	particular	case.

Tests

19

http://en.wikipedia.org/wiki/Fluent_interface


Code	Formatting

Eclipse
Eclipse	code	formatting	and	(basic)	project	configuration	files	can	be	found	at	the		etc/	
folder.	You	should	manually	copy	them	after	importing	all	your	projects:

for	settings_dir	in	`find	.	-type	d	-name	.settings`;	do

			\cp	-v	etc/ide-settings/eclipse/org.eclipse.jdt.*	$settings_dir

done

Do	not	use	the	maven-eclipse-plugin	to	copy	the	files	as	it	conflicts	with	m2e.

IDEA
If	you	completed	the	step	described	on	idea	instructions,	and	selected	the	code	style
accordingly	you	should	be	ready	to	go.

EditorConfig
For	editors	supporting	EditorConfig,	a	settings	file	is	provided	in	etc/ide-
settings/editorconfig.ini.	Copy	it	to	your	Artemis	top	level	directory	and	name	it
.editorconfig

Code	Formatting

20

https://maven.apache.org/plugins/maven-eclipse-plugin/
http://eclipse.org/m2e/
http://editorconfig.org/
http://editorconfig.org/#file-location


Validating	releases

Setting	up	the	maven	repository
When	a	release	is	proposed	a	maven	repository	is	staged.

This	information	was	extracted	from	Guide	to	Testing	Staged	Releases

For	examples,	the	1.1.0	release	had	the	Maven	Repository	statged	as
https://repository.apache.org/content/repositories/orgapacheactivemq-1066.

The	first	thing	you	need	to	do	is	to	be	able	to	use	this	release.	The	easiest	way	we	have
found	is	to	change	your	maven	settings	at		~/.m2/settings.xml	,	setting	up	the	staged
repo.

file	~/.m2/settings.xml:

Validating	releases

21

https://maven.apache.org/guides/development/guide-testing-releases.html
https://repository.apache.org/content/repositories/orgapacheactivemq-1066


<?xml	version="1.0"	encoding="UTF-8"	standalone="no"?>

<settings>

			<profiles>

						<profile>

									<id>apache-artemis-test</id>

									<repositories>

												<repository>

															<id>artemis-test</id>

															<name>Apache	Artemis	Test</name>

															<url>https://repository.apache.org/content/repositories/orgapacheac

tivemq-1066</url>

															<layout>default</layout>

															<releases>

																		<enabled>true</enabled>

															</releases>

															<snapshots>

																		<enabled>true</enabled>

															</snapshots>

												</repository>

									</repositories>

									<pluginRepositories>

												<pluginRepository>

															<id>artemis-test2</id>

															<name>Apache	Artemis	Test</name>

															<url>https://repository.apache.org/content/repositories/orgapacheac

tivemq-1066</url>

															<releases>

																		<enabled>true</enabled>

															</releases>

															<snapshots>

																		<enabled>true</enabled>

															</snapshots>

												</pluginRepository>

									</pluginRepositories>

						</profile>

			</profiles>

			<activeProfiles>

						<activeProfile>apache-artemis-test</activeProfile>

			</activeProfiles>

</settings>

After	you	configure	this,	all	the	maven	objects	will	be	available	to	your	builds.

Using	the	examples

Validating	releases

22



The	Apache	ActiveMQ	Artemis	examples	will	create	servers	and	use	most	of	the	maven
components	as	real	application	were	supposed	to	do.	You	can	do	this	by	running	these
examples	after	the	.m2	profile	installations	for	the	staged	repository.

Of	course	you	can	use	your	own	applications	after	you	have	staged	the	maven
repository.

Validating	releases

23



Notes	for	Maintainers
Core	ActiveMQ	Artemis	members	have	write	access	to	the	Apache	ActiveMQ	Artemis
repositories	and	will	be	responsible	for	acknowledging	and	pushing	commits	contributed
via	pull	requests	on	GitHub.

Core	ActiveMQ	Artemis	members	are	also	able	to	push	their	own	commits	directly	to	the
canonical	Apache	repository.	However,	the	expectation	here	is	that	the	developer	has
made	a	good	effort	to	test	their	changes	and	is	reasonably	confident	that	the	changes
that	are	being	committed	will	not	break	the	build.

What	does	it	mean	to	be	reasonably	confident?	If	the	developer	has	run	the	same
maven	commands	that	the	pull-request	builds	are	running	they	can	be	reasonably
confident.	Currently	the	PR	build	runs	this	command:

mvn	-Pfast-tests	-Pextra-tests	install

However,	if	the	changes	are	significant,	touches	a	wide	area	of	code,	or	even	if	the
developer	just	wants	a	second	opinion	they	are	encouraged	to	engage	other	members	of
the	community	to	obtain	an	additional	review	prior	to	pushing.	This	can	easily	be	done
via	a	pull	request	on	GitHub,	a	patch	file	attached	to	an	email	or	JIRA,	commit	to	a
branch	in	the	Apache	git	repo,	etc.	Having	additional	eyes	looking	at	significant	changes
prior	to	committing	to	the	main	development	branches	is	definitely	encouraged	if	it	helps
obtain	the	"reasonable	confidence"	that	the	build	is	not	broken	and	code	quality	has	not
decreased.

If	the	build	does	break	then	developer	is	expected	to	make	their	best	effort	to	get	the
builds	fixed	in	a	reasonable	amount	of	time.	If	it	cannot	be	fixed	in	a	reasonable	amount
of	time	the	commit	can	be	reverted	and	re-reviewed.

Using	the	dev	profile.
Developers	are	encouraged	also	to	use	the	Dev	profile,	which	will	activate	checkstyle
during	the	build:

mvn	-Pdev	install

Notes	for	Maintainers

24

https://builds.apache.org/job/ActiveMQ-Artemis-PR-Build/


Commit	Messages
Please	ensure	the	commit	messages	follow	the	50/72	format	as	described	here.

Configuring	git	repositories
Aside	from	the	traditional		origin		and		upstream		repositories	committers	will	need	an
additional	reference	for	the	canonical	Apache	git	repository	where	they	will	be	merging
and	pushing	pull-requests.	For	the	purposes	of	this	document,	let's	assume	these
ref/repo	associations	already	exist	as	described	in	the	Working	with	the	Code	section:

	origin		:	https://github.com/(your-user-name)/activemq-artemis.git
	upstream		:	https://github.com/apache/activemq-artemis

Add	the	canonical	Apache	repository	as	a	remote.	Here	we	call	it		apache	.

	$	git	remote	add	apache	https://git-wip-us.apache.org/repos/asf/activemq-arte

mis.git

Add	the	following	section	to	your	/.git/config	statement	to	fetch	all	pull	requests	sent
to	the	GitHub	mirror.	We	are	using		upstream		as	the	remote	repo	name	(as	noted
above),	but	the	remote	repo	name	may	be	different	if	you	choose.	Just	be	sure	to
edit	all	references	to	the	remote	repo	name	so	it's	consistent.

	[remote	"upstream"]

					url	=	git@github.com:apache/activemq-artemis.git

					fetch	=	+refs/heads/*:refs/remotes/upstream/*

					fetch	=	+refs/pull/*/head:refs/remotes/upstream/pr/*

Merging	and	pushing	pull	requests
Here	are	the	basic	commands	to	retrieve	pull	requests,	merge,	and	push	them	to	the
canonical	Apache	repository:

1.	 Download	all	the	remote	branches	etc...	including	all	the	pull	requests.

Notes	for	Maintainers

25

https://github.com/(your-user-name)/activemq-artemis.git
https://github.com/apache/activemq-artemis


	$	git	fetch	--all

	Fetching	origin

	Fetching	upstream

	remote:	Counting	objects:	566,	done.

	remote:	Compressing	objects:	100%	(188/188),	done.

	remote:	Total	566	(delta	64),	reused	17	(delta	17),	pack-reused	351

	Receiving	objects:	100%	(566/566),	300.67	KiB	|	0	bytes/s,	done.

	Resolving	deltas:	100%	(78/78),	done.

	From	github.com:apache/activemq-artemis

		*	[new	ref]									refs/pull/105/head	->	upstream/pr/105

2.	 Checkout	the	pull	request	you	wish	to	review

	$	git	checkout	pr/105	-B	105

3.	 Rebase	the	branch	against	master,	so	the	merge	would	happen	at	the	top	of	the
current	master

	$	git	pull	--rebase	apache	master

4.	 Once	you've	reviewed	the	change	and	are	ready	to	merge	checkout		master	.

	$	git	checkout	master

5.	 Ensure	you	are	up	to	date	on	your	master	also.

	$	git	pull	--rebase	apache	master

6.	 We	actually	recommend	checking	out	master	again,	to	make	sure	you	wouldn't	add
any	extra	commits	by	accident:

	$	git	fetch	apache

	$	git	checkout	apache/master	-B	master

7.	 Create	a	new	merge	commit	from	the	pull-request.	IMPORTANT:	The	commit
message	here	should	be	something	like:	"This	closes	#105"	where	"105"	is	the	pull
request	ID.	The	"#105"	shows	up	as	a	link	in	the	GitHub	UI	for	navigating	to	the	PR
from	the	commit	message.	This	will	ensure	the	github	pull	request	is	closed	even	if
the	commit	ID	changed	due	to	eventual	rebases.

Notes	for	Maintainers

26



	$	git	merge	--no-ff	105	-m	"This	closes	#105"

8.	 Push	to	the	canonical	Apache	repo.

	$	git	push	apache	master

Using	the	automated	script
If	you	followed	the	naming	conventions	described	here	you	can	use	the		scripts/rebase-
PR.sh		script	to	automate	the	merging	process.	This	will	execute	the	exact	steps
described	on	this	previous	section.

Simply	use:

$	<checkout-directory>/scripts/merge-pr.sh	<PR	number>	Message	on	the	PR

Example:

$		pwd

/checkouts/apache-activemq-artemis

$		./scripts/merge-PR.sh	175	ARTEMIS-229	address	on	Security	Interface

The	previous	example	was	taken	from	a	real	case	that	generated	this	merge	commit	on
#175.

After	this	you	can	push	to	the	canonical	Apache	repo.

$	git	push	apache	master

Use	a	separate	branch	for	your	changes
It	is	recommended	that	you	work	away	from	master	for	two	reasons:

1.	 When	you	send	a	PR,	your	PR	branch	could	be	rebased	during	the	process	and
your	commit	ID	changed.	You	might	get	unexpected	conflicts	while	rebasing	your
old	branch.

Notes	for	Maintainers

27

https://github.com/apache/activemq-artemis/commit/e85bb3ca4a75b0f1dfbe717ff90b34309e2de794


2.	 You	could	end	up	pushing	things	upstream	that	you	didn't	intend	to.	Minimize	your
risks	by	working	on	a	branch	away	from	master.

Notes:
The	GitHub	mirror	repository	(i.e.		upstream	)	is	cloning	the	canonical	Apache	repository.
Because	of	this	there	may	be	a	slight	delay	between	when	a	commit	is	pushed	to	the
Apache	repo	and	when	that	commit	is	reflected	in	the	GitHub	mirror.	This	may	cause
some	difficulty	when	trying	to	push	a	PR	to		apache		that	has	been	merged	on	the	out-of-
date	GitHub	mirror.	You	can	wait	for	the	mirror	to	update	before	performing	the	steps
above	or	you	can	change	your	local	master	branch	to	track	the	master	branch	on	the
canonical	Apache	repository	rather	than	the	master	branch	on	the	GitHub	mirror:

$	git	branch	master	-u	apache/master

Where		apache		points	to	the	canonical	Apache	repository.

If	you'd	like	your	local	master	branch	to	always	track		upstream/master		(i.e.	the	GitHub
mirror)	then	another	way	to	achieve	this	is	to	add	another	branch	that	tracks
	apache/master		and	push	from	that	branch	e.g.

$	git	checkout	master

$	git	branch	apache_master	--track	apache/master

$	git	pull

$	git	merge	--no-ff	pr/105

$	git	push

Notes	for	Maintainers

28



History
The	Apache	ActiveMQ	Artemis	project	was	started	in	October	2014.	The	Artemis	code
base	was	seeded	with	a	code	donation	granted	by	Red	Hat,	of	the	HornetQ	project.	The
code	donation	process	consisted	of	taking	a	snapshot	of	the	latest	HornetQ	code	base
and	contributing	this	snapshot	as	an	initial	git	commit	into	the	Artemis	git	repository.

The	HornetQ	commit	history	is	preserved	and	can	be	accessed	here:
https://github.com/hornetq/hornetq/tree/apache-donation

Credit	should	be	given	to	those	developers	who	contributed	to	the	HornetQ	project.	The
top	10	committers	are	highlighted	here:

Clebert	Suconic
Tim	Fox
Francisco	Borges
Andy	Taylor
Jeff	Mesnil
Ovidiu	Feodorov
Howard	Gao
Justin	Bertram
Trustin	Lee
Adrian	Brock

For	more	information	please	visit	the	HornetQ	GitHub	project.

Rebasing	original	donation
It	may	be	useful	to	look	at	the	donation	history	combined	with	the	artemis	history.	It	is
the	case	when	eventually	looking	at	old	changes.

For	that	there	is	a	script	that	will	rebase	master	against	the	donation	branch	under
master/scripts:

rebase-donation.sh

History

29

https://issues.apache.org/jira/browse/ARTEMIS-1
https://github.com/hornetq/hornetq/tree/apache-donation
https://github.com/hornetq/hornetq/tree/apache-donation


History

30


	Introduction
	Legal Notice
	Working with the Code
	IDE Integration
	Building
	Tests
	Code Formatting
	Validating releases
	Notes for Maintainers
	History

