Table of Contents

1. General Project Information
2. Why use Apache ActiveMQ Artemis?
3. Messaging Concepts
3.1. General Concepts
3.2. Messaging styles
3.3. Delivery guarantees
3.4. Transactions
3.5. Durability
3.6. Messaging APIs
3.7. High Availability
3.8. Clusters
3.9. Bridges and routing
4. Core Architecture
4.1. Standalone Broker
4.2. Embedded Broker
4.3. Integrated with a Java/Jakarta EE application server
5. Protocols and Interoperability
5.1. Supported Protocols
5.2. Configuring Acceptors
6. AMQP
6.1. Examples
6.2. Message Conversions
6.3. Intercepting and changing messages
6.4. AMQP and security
6.5. AMQP and destinations
6.6. AMQP and Multicast Addresses (Topics)
6.7. AMQP and Coordinations - Handling Transactions
6.8. AMQP scheduling message delivery
6.9. DLQ and Expiry transfer
6.10. Filtering on Message Annotations
6.11. Configuring AMQP Idle Timeout
6.12. Web Sockets
7. STOMP
7.1. Limitations
7.2. Mapping STOMP destinations to addresses and queues
7.3. Logging
7.4. Routing Semantics
7.5. STOMP heart-beating and connection-ttl

© 00 I J O O O OO bk wN

NN NN NN R R B R R R) | R|) |l Rl Rl | |l |l Rl))
N R O O O O W 00 00 g N9 9 o0 o0 o0 o0 Uuuw N DNDOoO o o

7.6. Selector/Filter expressions

7.7. STOMP and JMS interoperability

7.8. Durable Subscriptions

7.9. Handling of Large Messages with STOMP
7.10. Web Sockets

7.11. Flow Control

8. MQTT

8.1. MQTT Quuality of Service

8.2. MQTT Retain Messages

8.3. Will Messages

8.4. Debug Logging

8.5. Persistent Subscriptions

8.6. Custom Client ID Handling

8.7. Wildcard subscriptions

8.8. Web Sockets

8.9. Link Stealing

8.10. Automatic Subscription Clean-up
8.11. Flow Control

8.12. Topic Alias Maximum

8.13. Maximum Packet Size

8.14. Server Keep Alive

8.15. Enhanced Authentication

8.16. Publish Authorization Failures

9. OpenWire

9.1. Connection Monitoring
9.2. Disable/Enable Advisories
9.3. OpenWire Destination Cache

9.4. Virtual Topic Consumer Destination Translation

10. Using Core

10.1. Core Messaging Concepts
10.2. Core API

10.3. A simple example of using Core

11. Core Client Failover

11.1. Reconnect to the same server

11.2. Reconnect to the backup server

11.3. Reconnect to other active servers
11.4. Session reconnection

11.5. Failing over on the initial connection
11.6. Reconnection and failover attributes

11.7. ExceptionListeners and SessionFailureListeners

12. Mapping JMS Concepts to the Core API

24
24
25
25
26
26
28
28
29
29
29
30
30
31
31
32
32
33
33
33
34
34
34
36
36
36
37
37
39
39
40
41
43
43
43
44
44
44
44
45
46

13. Using JMS or Jakarta MesSaging o 47

13.1. Asimple ordering System. 47
13,2, N DI . e 47
13.3. Directly instantiating JMS Resources without using JNDI 52
13.4. Setting The Client ID 53
13.5. Setting The Batch Size for DUPS_OK i 54
13.6. Setting The Transaction Batch Size 54
13.7. Setting The Destination Cache. 54
14. Extra Acknowledge MOdes. 55
14.1. Using PRE_ACKNOWLEDGE. 55
14.2. Individual Acknowledge. 55
14.3. ERample . 56
15.VETSIONS . ..o 57
1500, 2. 38,0 . 57
15,2, 2. 32,0 . 58
15,3, 2. 3. 59
1504, 2. 3.0 59
15,5, 2. 3.0 . 59
15.6. 2.30.0 . .. 60
15,7, 2.20.0 . 60
15,8, 2. 28,0 . 62
15,0, 2. 27 62
1500, 2. 27,0 63
1500, 2.26.0 . 64
1502, 2. 25,0 65
1503, 2. 24,0 65
1504, 2. 2. 65
1505, 2. 28,0 66
1506, 22,0 66
1507, 2. 20,0 66
1508, 2.20.0 . . 67
1510, 2.10.0 . . 67
15.20. 2. 18.0 . . 67
15,20, 2. 7.0 69
15,22, 216,00 69
15,23, 2. 5.0 71
15,24, 2. 14,0 . 71
15,25, 2. 8.0 72
15,26, 2. 02,0 . 73
15,2, 2. 0.0 73

15.28. 2.10.0 . .. 74

15.29. 2.0.0 . e 74

15.30. 2. 8.0 75
15,30, 2. 8.0 . 76
15,32, 2. 7.0 76
15,33, 2.6.4 77
15,34, 2.6.3 77
15,35, 2.6, 77
15,36, 2.6, 0 . 77
15,37, 2.6.0 . 77
15,38, 2. 5.0 . 78
15,30, 2.4.0 . o 78
15.40. 2.3.0 . . 79
15040, 2. 2.0 . 79
15042, 2.0.0 . o 80
15043, 1. 5.6 80
15044, 1. DS 80
154D, L D 81
15046, 1.5, 81
S TR U 70/ 81
1548, L. DL 81
15040, 15,0 . 81
15,50, .40 . o 82
15,50, L. 3.0 . 82
15,52, L 2.0 . 82
15,53, L .0 . 83
15,54, 1.0.0 . oo 83
16. Upgrading the Broker 84
16.1. General Upgrade Procedure 84
16.2. Upgrading tool. 85
7. DOCKET . . . o 86
17.1. Official IMages 86
17.2. Build your own Image. 86
18.UsIing the Server 90
18.1. Installation. 90
18.2. Creating a Broker Instance. 90
18.3. Starting and Stopping a Broker Instance 96
18.4. Configuration Files. 96
18.5. Other Use-Cases. 98
19. Command Line Interface 100
19.1. Getting Help. o 100

19.2. Bash and Zsh auto complete 105

19.3. Input required
19.4. Artemis Shell
20. The Client Classpath
20.1. Maven dependencies
20.2. Individual client dependencies
20.3. Repackaged "-all' clients
21. Address Model
21.1. Address
21.2. Queue
21.3. Routing Type
21.4. Automatic Configuration
21.5. Basic Manual Configuration
21.6. Advanced Manual Configuration
21.7. How to filter messages
21.8. Alternate Ways to Determine Routing Type
22. Address Settings
22.1. Literal Matches
23. Wildcard Syntax
23.1. Matching Any Word
23.2. Matching a Single Word
23.3. Customizing the Syntax
24. Routing Messages With Wild Cards
25. Diverting and Splitting Message Flows
25.1. Exclusive Divert
25.2. Non-exclusive Divert
25.3. Composite Divert
26. Transformers
26.1. Configuration
27. Filter Expressions
27.1. XPath
28. Management
28.1. The Management API
28.2. Management Via JMX
28.3. Using Management Message API
28.4. Management Notifications
28.5. Message Counters
29. Management Console
29.1. Login
29.2. Security
29.3. Console
29.4. Artemis Tab

106
106
109
109
109
109
111
111
111
111
112
112
114
118
120
122
130
131
131
131
132
133
134
135
135
136
137
137
138
139
141
141
145
153
155
159
161
161
161
161
163

30. Metrics
30.1. Exported Metrics
30.2. Configuration
31. Core Bridges
31.1. Configuring Core Bridges
32. Clusters
32.1. Overview
32.2. Performance Considerations
32.3. Server discovery
32.4. Server-Side Message Load Balancing
32.5. Client-Side Load balancing
32.6. Specifying Members of a Cluster Explicitly
32.7. Message Redistribution
32.8. Cluster topologies
33. Federation
33.1. Benefits
33.2. Address Federation
33.3. Queue Federation
33.4. WAN Full Mesh
33.5. Configuring Federation
34. Address Federation
34.1. Topology Patterns
34.2. Configuring Address Federation
34.3. Configuring Downstream Federation
35. Queue Federation
35.1. Use Cases
35.2. Configuring Queue Federation
35.3. Configuring Downstream Federation
36. High Availability and Failover
36.1. Terminology
36.2. HA Policies
36.3. Failing Back to Primary Server
36.4. Scaling Down
36.5. Client Failover
37. Network Isolation (Split Brain)
37.1. Pluggable Lock Manager
37.2. Quorum Voting
37.3. Pinging the network
38. Restart Sequence
38.1. Restarting 1 broker at a time
38.2. Completely shutting down the brokers and starting

165
165
168
169
169
174
174
174
175
181
186
188
188
189
192
192
192
193
194
195
197
197
202
206
208
208
209
213
215
215
216
227
232
234
239
239
240
240
244
244
244

38.3. Split-brain situation 244

39. Activation Sequence Tools 246
39.1. ZooKeeper cluster disaster 246
40. Connection Routers 247
40.1. Target Broker 247
40.2. Keys 247
40.3. Pools 247
40.4. Policies 249
40.5. Cache 250
40.6. Defining connection routers 250
40.7. Key values 251
40.8. Connection Router Workflow 251
40.9. Data gravity 254
40.10. Redirection 254
41. Broker Connections 256
41.1. AMQP Server Connections 256
41.2. AMQP Server Connection Operations 257
41.3. Reconnecting and Failover 257
41.4. Mirroring 258
41.5. Dual Mirror (Disaster Recovery) 260
41.6. Example 261
41.7. Senders and Receivers 261
41.8. Peers 263
41.9. Address Consideration 264
41.10. Federation 265
42. The JMS Bridge 269
42.1. JMS Bridge Parameters 269
42.2. Source and Target Connection Factories 272
42.3. Source and Target Destination Factories 272
42.4. Quality Of Service 272
43. Authentication & Authorization 274
43.1. Tracking the Validated User 274
43.2. Role based security for addresses 274
43.3. Security Setting Plugin 277
43.4. Secure Sockets Layer (SSL) Transport 281
43.5. User credentials 281
43.6. Mapping external roles 301
43.7. SASL 301
43.8. Changing the username/password for clustering 301
43.9. Securing the console 301

43.10. Controlling JMS ObjectMessage deserialization 303

43.11. Masking Passwords
43.12. Custom Security Manager
43.13. Per-Acceptor Security Domains
44. Masking Passwords
44.1. Generating a Masked Password
44.2. Masking Configuration
44.3. Choosing a codec for password masking

45. Resource Limits

45.1. Configuring Limits Via Resource Limit Settings

46. Performance Tuning
46.1. Tuning persistence
46.2. Tuning JMS
46.3. Other Tunings
46.4. Tuning Transport Settings
46.5. Tuning the VM
46.6. Avoiding Anti-Patterns
46.7. Troubleshooting

47. Performance Tools

47.1. Case 1: Single producer Single consumer over a queue
47.2. Case 2: Target Rate Single producer Single consumer over a queue

47.3. Case 3: Target Rate load on 10 durable topics, each with 3 producers and 2 unshared

consumers
48. Thread management
48.1. Server-Side Thread Management
48.2. Client-Side Thread Management
49. Scheduled Messages
49.1. Scheduled Delivery Property
49.2. Example
50. Last-Value Queues
50.1. Configuration
50.2. Last-Value Property
50.3. Forcing all consumers to be non-destructive
50.4. Clustering
50.5. Example
51. Non-Destructive Queues
51.1. Limiting the Size of the Queue
52. Ring Queue
52.1. Configuration
52.2. Messages in Delivery & Rollbacks
52.3. Scheduled Messages
52.4. Paging

305
305
305
306
306
307
312
315
315
316
316
316
317
318
318
319
319
321
321
326

329
332
332
333
334
334
334
335
335
336
337
337
337
338
338
339
340
340
341
342

53. Retroactive Addresses 343

53.1. Internal Retroactive Resources 343
53.2. Configuration 344
54. Exclusive Queues 345
54.1. Configuring Exclusive Queues 345
54.2. Example 345
55. Message Grouping 347
55.1. Using Core API 347
55.2. Using JMS 347
55.3. Closing a Message Group 348
55.4. Notifying Consumer of Group Ownership change 348
55.5. Rebalancing Message Groups 349
55.6. Group Buckets 350
55.7. Example 351
55.8. Clustered Grouping 351
56. Consumer Priority 354
56.1. Core 354
56.2. OpenWire 354
56.3. AMQP 354
57. Message Expiry 356
57.1. Core API 356
57.2. Configuring Expiry Delay 356
57.3. Configuring Expiry Addresses 357
57.4. Configuring Automatic Creation of Expiry Resources 358
57.5. Configuring The Expiry Reaper Thread 358
57.6. Example 359
58. Large Messages 360
58.1. Configuring the server 360
58.2. Configuring the Core Client 360
58.3. Compressed Large Messages on Core Protocol 361
58.4. Streaming large messages from Core Protocol 361
58.5. Configuring AMQP Acceptor 364
58.6. Large message example 364
59. Paging 365
59.1. Page Files 365
59.2. Paging Mode 365
59.3. Global Max Size 368
59.4. Global Max Messages 369
59.5. Dropping messages 369
59.6. Dropping messages and throwing an exception to producers 369

59.7. Blocking producers 369

59.8. Caution with Addresses with Multiple Multicast Queues 369

59.9. Monitoring Disk 370
59.10. Page Sync Timeout 371
59.11. Memory usage from Paged Messages. 371
59.12. Page Limits and Page Full Policy 371
59.13. Example 371
60. Duplicate Message Detection 372
60.1. Using Duplicate Detection for Message Sending 372
60.2. Configuring the Duplicate ID Cache 373
60.3. Duplicate Detection and Bridges 374
60.4. Duplicate Detection and Cluster Connections 374
61. Message Redelivery and Undelivered Messages 375
61.1. Delayed Redelivery 375
61.2. Dead Letter Addresses 377
61.3. Delivery Count Persistence 379
62. Persistence 380
62.1. File Journal (Default) 380
62.2. JDBC Persistence 386
62.3. Zero Persistence 390
63. Data Tools 391
64. Libaio Native Libraries 400
64.1. Runtime dependencies 400
64.2. Compiling the native libraries 400
64.3. Compilation dependencies 400
64.4. Invoking the compilation 401
65. Detecting Dead Connections 402
65.1. Cleaning up Resources on the Server 402
65.2. Closing Forgotten Resources 404
65.3. Detecting Failure from the Client 404
65.4. Configuring Asynchronous Connection Execution 404
66. Configuring the Transport 406
66.1. Acceptors 406
66.2. Connectors 406
66.3. Configuring the Transport Directly from the Client 407
66.4. Configuring the Netty transport 407
67. Flow Control 418
67.1. Consumer Flow Control 418
67.2. Window-Based Flow Control 418
67.3. Rate limited flow control 419
67.4. Producer flow control 419

68. Plugin Support 423

68.1. Registering a Plugin
68.2. Registering a Plugin Programmatically
68.3. Using the LoggingActiveMQServerPlugin
68.4. Using the NotificationActiveMQServerPlugin
68.5. Using the BrokerMessageAuthorizationPlugin
69. Intercepting Operations
69.1. Implementing The Interceptors
69.2. Configuring The Interceptors
69.3. Interceptors on the Client Side
69.4. Examples
70. Configuration Reload
70.1. Reloadable Parameters
71. Detecting Slow Consumers
71.1. Required Configuration
71.2. Example
72. Critical Analysis of the broker
72.1. What to Expect
73. Resource Manager Configuration
74. Guarantees of Sends and Commits
74.1. Transaction Completion
74.2. Non Transactional Message Sends
74.3. Non Transactional Acknowledgements
74.4. Asynchronous Send Acknowledgements
75. Graceful Server Shutdown
76. Embedded Web Server
76.1. Configuration
76.2. Request Log
76.3. Proxy Forwarding
76.4. Management
77. Logging
77.1. Configuring a Specific Level for a Logger
77.2. Configuration Reload
77.3. Logging in a client application
77.4. Configuring Broker Audit Logging
77.5. More on Log4]2 configuration:
78. Embedding Apache ActiveMQ Artemis
78.1. Embedding with XML configuration
78.2. Embedding with programmatic configuration
79. Artemis on Apache Karaf
79.1. Installation

79.2. Configuration

423
423
424
425
425
427
427
428
428
428
430
431
442
442
442
443
443
446
447
447
447
448
448
450
451
451
453
455
455
456
456
456
457
458
459
460
460
461
463
463
463

80. Apache Tomcat Support

80.1. Resource Context Client Configuration

80.2. Example Tomcat App
81. CDI Integration

81.1. Configuring a connection

82. Properties for Copied Messages

83. Maven Plugins
83.1. When to use it
83.2. Goals
83.3. Declaration
83.4. create goal
83.5. cli goal

84. Unit Testing
84.1. Examples

84.2. Ordering rules / extensions

84.3. Available Rules / Extensions

85. JCA Resource Adapter
85.1. Versions
85.2. Building the RA
85.3. Configuration
85.4. Logging

86. Configuration Reference

86.1. Broker Configuration

86.2. The core configuration

86.3. address-setting type
86.4. bridge type
86.5. broadcast-group type

86.6. cluster-connection type

86.7. discovery-group type
86.8. divert type

86.9. address type

86.10. queue type

86.11. security-setting type
86.12. broker-plugin type
86.13. metrics-plugin type

86.14. resource-limit type

86.15. grouping-handler type
86.16. amqp-connection type

87. Examples

87.1. Running the Examples

87.2. Application-Layer Failover

465
465
465
466
466
467
468
468
468
468
468
469
473
473
474
475
476
476
476
477
479
480
480
482
490
493
494
495
496
496
497
497
498
498
498
498
499
499
500
500
504

87.3. Core Bridge Example

87.4. Browser

87.5. Camel

87.6. Client Kickoff

87.7. Client side failover listener
87.8. Client-Side Load-Balancing
87.9. Clustered Durable Subscription

87.10.

87.11

Clustered Grouping

. Clustered Queue
87.12.
87.13.
87.14.
87.15.
87.16.
87.17.
87.18.
87.19.
87.20.
87.21.
87.22.
87.23.
87.24.
87.25.
87.26.
87.27.
87.28.
87.29.
87.30.
87.31.
87.32.
87.33.
87.34.
87.35.
87.36.
87.37.
87.38.
87.39.
87.40.
87.41.
87.42.
87.43.

Clustering with JGroups
Clustered Standalone

Clustered Static Discovery
Clustered Static Cluster One Way
Clustered Topic

Message Consumer Rate Limiting
Dead Letter

Delayed Redelivery

Divert

Durable Subscription
Embedded

Embedded Simple

Exclusive Queue

Message Expiration

Apache ActiveMQ Artemis Resource Adapter example
HTTP Transport

Instantiate JMS Objects Directly
Interceptor

Interceptor AMQP

Interceptor Client

Interceptor MQTT

JAAS

JMS Auto Closable

JMS Completion Listener

JMS Bridge

JMS Context

JMS Shared Consumer

JMX Management

Large Message

Last-Value Queue

Management

Management Notification

504
504
505
505
505
505
505
505
505
505
506
506
506
506
506
506
507
507
507
507
507
507
507
508
508
508
508
508
508
508
509
509
509
509
509
509
509
509
510
510
510

87.44.
87.45.
87.46.
87.47.
87.48.
87.49.
87.50.
87.51.
87.52.
87.53.
87.54.
87.55.
87.56.
87.57.
87.58.
87.59.
87.60.
87.61
87.62.
87.63.
87.64.
87.65.
87.66.
87.67.
87.68.
87.69.
87.70.
87.71.
87.72.
87.73.
87.74.
87.75.
87.76.
87.717.
87.78.
87.79
87.80.
87.81.
87.82.
87.83.
87.84.

Message Counter

Message Group

Message Group

Message Priority

Multiple Failover

Multiple Failover Failback

No Consumer Buffering
Non-Transaction Failover With Server Data Replication
OpenWire

Paging

Pre-Acknowledge

Message Producer Rate Limiting
Queue

Message Redistribution

Queue Requestor

Queue with Message Selector

Reattach Node example

. Replicated Failback example

Replicated Failback static example
Replicated multiple failover example
Replicated Failover transaction example
Request-Reply example

Scheduled Message

Security

Security LDAP

Security keycloak

Send Acknowledgements

Slow Consumer

Spring Integration

SSL Transport

Static Message Selector

Static Message Selector Using JMS
Stomp

Stomp1.1

Stomp1.2

. Stomp Over Web Sockets

Symmetric Cluster
Temporary Queue
Topic

Topic Hierarchy
Topic Selector 1

510
510
510
511
511
511
511
511
512
512
512
512
512
512
513
513
513
513
513
513
513
513
513
514
514
514
514
514
514
514
514
514
515
515
515
515
515
515
515
515
516

87.85. Topic Selector 2
87.86. Transaction Failover
87.87. Failover Without Transactions
87.88. Transactional Session
87.89. XA Heuristic
87.90. XA Receive
87.91. XA Send
88. Legal Notice

516
516
516
516
516
516
516
518

rq APACHE
‘)/ACTIVEMQ

anual on all aspects of Apache ActiveMQ Artemis 2.33.0

Chapter 1. General Project Information

Apache ActiveMQ Artemis is an open source project to build a multi-protocol, embeddable, very
high performance, clustered, asynchronous messaging system.

Apache ActiveMQ Artemis is an example of Message Oriented Middleware (MoM). For a
description of MoMs and other messaging concepts please see the Messaging Concepts.

If you have any questions related to the use or development of Apache ActiveMQ Artemis please
use one of our mailing lists.

Official project page: https://activemg.apache.org/components/artemis/.
Download: https://activemq.apache.org/components/artemis/download/

Git repository: https://github.com/apache/activemg-artemis

https://activemq.apache.org/contact
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/download/
https://github.com/apache/activemq-artemis

Chapter 2. Why use Apache ActiveMQ
Artemis?

Here are just a few reasons:

* 100% open source software. Apache ActiveMQ Artemis is licensed using the Apache Software
License v 2.0 to minimise barriers to adoption.

* Apache ActiveMQ Artemis is designed with usability in mind.

» Written in Java. Runs on any platform with a Java 11+ runtime, that’s everything from Windows
desktops to IBM mainframes.

* Amazing performance. Our ground-breaking high performance journal provides persistent
messaging performance at rates normally seen for non-persistent messaging, our non-persistent
messaging performance rocks the boat too.

 Full feature set. All the features you’d expect in any serious messaging system, and others you
won’t find anywhere else.

* Elegant, clean-cut design with minimal third party dependencies. Run ActiveMQ Artemis stand-
alone, run it in integrated in your favourite Java EE application server, or run it embedded
inside your own product. It’s up to you.

» Seamless high availability. We provide a HA solution with automatic client failover so you can
guarantee zero message loss or duplication in event of server failure.

* Hugely flexible clustering. Create clusters of servers that know how to load balance messages.
Link geographically distributed clusters over unreliable connections to form a global network.
Configure routing of messages in a highly flexible way.

Chapter 3. Messaging Concepts

Apache ActiveMQ Artemis is an asynchronous messaging system, an example of Message Oriented
Middleware, we’ll just call them messaging systems in the remainder of this book.

We’ll first present a brief overview of what kind of things messaging systems do, where they’re
useful and the kind of concepts you’ll hear about in the messaging world.

If you’re already familiar with what a messaging system is and what it’s capable of, then you can
skip this chapter.

3.1. General Concepts

Messaging systems allow you to loosely couple heterogeneous systems together, whilst typically
providing reliability, transactions and many other features.

Unlike systems based on a Remote Procedure Call (RPC) pattern, messaging systems primarily use
an asynchronous message passing pattern with no tight relationship between requests and
responses. Most messaging systems also support a request-response mode but this is not a primary
feature of messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of your
hardware resources, minimizing the amount of threads blocking on IO operations, and to use your
network bandwidth to its full capacity. With an RPC approach you have to wait for a response for
each request you make so are limited by the network round trip time, or latency of your network.
With an asynchronous system you can pipeline flows of messages in different directions, so are
limited by the network bandwidth not the latency. This typically allows you to create much higher
performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The senders
and consumers of messages are completely independent and know nothing of each other. This
allows you to create flexible, loosely coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely couples
heterogeneous systems together. Message buses often form the core of an Enterprise Service Bus
(ESB). Using a message bus to de-couple disparate systems can allow the system to grow and adapt
more easily. It also allows more flexibility to add new systems or retire old ones since they don’t
have brittle dependencies on each other.

3.2. Messaging styles

Messaging systems normally support two main styles of asynchronous messaging: message queue
messaging (also known as point-to-point messaging) and publish subscribe messaging. We’ll
summarise them briefly here:

3.2.1. Point-to-Point

With this type of messaging you send a message to a queue. The message is then typically persisted

https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Message_queue
https://en.wikipedia.org/wiki/Publish_subscribe

to provide a guarantee of delivery, then some time later the messaging system delivers the message
to a consumer. The consumer then processes the message and when it is done, it acknowledges the
message. Once the message is acknowledged it disappears from the queue and is not available to be
delivered again. If the system crashes before the messaging server receives an acknowledgement
from the consumer, then on recovery, the message will be available to be delivered to a consumer
again.

With point-to-point messaging, there can be many consumers on the queue but a particular
message will only ever be consumed by a maximum of one of them. Senders (also known as
producers) to the queue are completely decoupled from receivers (also known as consumers) of the
queue - they do not know of each other’s existence.

A classic example of point to point messaging would be an order queue in a company’s book
ordering system. Each order is represented as a message which is sent to the order queue. Let’s
imagine there are many front end ordering systems which send orders to the order queue. When a
message arrives on the queue it is persisted - this ensures that if the server crashes the order is not
lost. Let’s also imagine there are many consumers on the order queue - each representing an
instance of an order processing component - these can be on different physical machines but
consuming from the same queue. The messaging system delivers each message to one and only one
of the ordering processing components. Different messages can be processed by different order
processors, but a single order is only processed by one order processor - this ensures orders aren’t
processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the
warehouse system and then updates the order database with the order details. Once it’s done that it
acknowledges the message to tell the server that the order has been processed and can be forgotten
about. Often the send to the warehouse system, update in database and acknowledgement will be
completed in a single transaction to ensure ACID properties.

3.2.2. Publish-Subscribe

With publish-subscribe messaging many senders can send messages to an entity on the server,
often called a topic (e.g. in the JMS world).

There can be many subscriptions on a topic, a subscription is just another word for a consumer of a
topic. Each subscription receives a copy of each message sent to the topic. This differs from the
message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to the
topic until the subscriber consumes them - even if the server crashes or is restarted in between.
Non-durable subscriptions only last a maximum of the lifetime of the connection that created them.

An example of publish-subscribe messaging would be a news feed. As news articles are created by
different editors around the world they are sent to a news feed topic. There are many subscribers
around the world who are interested in receiving news items - each one creates a subscription and
the messaging system ensures that a copy of each news message is delivered to each subscription.

https://en.wikipedia.org/wiki/ACID

3.3. Delivery guarantees

A key feature of most messaging systems is reliable messaging. With reliable messaging the server
gives a guarantee that the message will be delivered once and only once to each consumer of a
queue or each durable subscription of a topic, even in the event of system failure. This is crucial for
many businesses; e.g. you don’t want your orders fulfilled more than once or any of your orders to
be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to
cope with duplicate deliveries or lost messages - an example of this might be transient stock price
updates - which are quickly superseded by the next update on the same stock. The messaging
system allows you to configure which delivery guarantees you require.

3.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in a
single local transaction. Apache ActiveMQ Artemis also supports the sending and acknowledgement
of message as part of a large global transaction - using the Java mapping of XA: JTA.

3.5. Durability

Messages are either durable or non durable. Durable messages will be persisted in permanent
storage and will survive server failure or restart. Non durable messages will not survive server
failure or restart. Examples of durable messages might be orders or trades, where they cannot be
lost. An example of a non durable message might be a stock price update which is transitory and
doesn’t need to survive a restart.

3.6. Messaging APIs

How do client applications interact with messaging systems in order to send and consume
messages?

Several messaging systems provide their own proprietary APIs with which the client communicates
with the messaging system.

There are also some standard ways of operating with messaging systems and some emerging
standards in this space. Let’s take a brief look at these.

3.6.1. JMS & Jakarta Messaging

JMS was historically part of Oracle’s Java EE specification. However, in 2017 control was
transferred to the Eclipse Foundation and it is now known as Jakarta Messaging which is part of
Jakarta EE.

It is a Java API that encapsulates both message queue and publish-subscribe messaging patterns. It
is a lowest common denominator specification - i.e. it was created to encapsulate common
functionality of the already existing messaging systems that were available at the time of its
creation.

https://en.wikipedia.org/wiki/Java_Message_Service
https://jakarta.ee/specifications/messaging/

It is a very popular API and is implemented by most messaging systems. It is only available to
clients running Java.

It does not define a standard wire format - it only defines a programmatic API so clients and servers
from different vendors cannot directly interoperate since each will use the vendor’s own internal
wire protocol.

Apache ActiveMQ Artemis provides client implementations which are a fully compliant with JMS
1.1 & 2.0 as well as Jakarta Messaging 2.0 & 3.0.

3.6.2. System specific APIs

Many systems provide their own programmatic API for which to interact with the messaging
system. The advantage of this it allows the full set of system functionality to be exposed to the client
application. API’s like JMS are not normally rich enough to expose all the extra features that most
messaging systems provide.

Apache ActiveMQ Artemis provides its own core client API for clients to use if they wish to have
access to functionality over and above that accessible via the JMS API.

Please see Core for using the Core API with Apache ActiveMQ Artemis.

3.7. High Availability

High Availability (HA) means that the system should remain operational after failure of one or
more of the servers. The degree of support for HA varies between various messaging systems.

Apache ActiveMQ Artemis provides automatic failover where your sessions are automatically
reconnected to a backup server on event of a server failure.

For more information on HA, please see High Availability and Failover.

3.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters. Clusters
allow the load of sending and consuming messages to be spread over many servers. This allows
your system to scale horizontally by adding new servers to the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having fairly
basic clusters with the cluster members being hardly aware of each other.

Apache ActiveMQ Artemis provides very configurable state-of-the-art clustering model where
messages can be intelligently load balanced between the servers in the cluster, according to the
number of consumers on each node, and whether they are ready for messages.

Apache ActiveMQ Artemis also has the ability to automatically redistribute messages between
nodes of a cluster to prevent starvation on any particular node.

For full details on clustering, please see Clusters.

3.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically
over unreliable connections like a wide area network (WAN), or the internet.

A bridge normally consumes from a queue on one server and forwards messages to another queue
on a different server. Bridges cope with unreliable connections, automatically reconnecting when
the connections becomes available again.

Apache ActiveMQ Artemis bridges can be configured with filter expressions to only forward certain
messages, and transformation can also be hooked in.

Apache ActiveMQ Artemis also allows routing between queues to be configured in server side
configuration. This allows complex routing networks to be set up forwarding or copying messages
from one destination to another, forming a global network of interconnected brokers.

For more information please see Core Bridges and Diverting and Splitting Message Flows.

Chapter 4. Core Architecture

Apache ActiveMQ Artemis core is designed simply as set of Plain Old Java Objects (POJOs) - we hope
you like its clean-cut design.

Each Apache ActiveMQ Artemis server has its own ultra high performance persistent journal,
which it uses for message and other persistence.

Using a high performance journal allows outrageous persistence message performance, something
not achievable when using a relational database for persistence (although JDBC is still an option if
necessary).

Apache ActiveMQ Artemis clients, potentially on different physical machines, interact with the
Apache ActiveMQ Artemis broker. Apache ActiveMQ Artemis currently ships three API
implementations for messaging at the client side:

1. Core client API This is a simple intuitive Java API that is aligned with the Artemis internal Core.
Allowing more control of broker objects (e.g direct creation of addresses and queues). The Core
API also offers a full set of messaging functionality without some of the complexities of JMS.

2. JMS 2.0 client API. The standard JMS API is available at the client side. This client is also
compliant with the Jakarta Messaging 2.0 specification.

3. Jakarta Messaging 3.0 client API. This is essentially the same as the JMS 2.0 API. The only
difference is the package names use jakarta insead of javax. This difference was introduced due
to the move from Oracle’s Java EE to Eclipse’s Jakarta EE.

Apache ActiveMQ Artemis also provides different protocol implementations on the server so you
can use respective clients for these protocols:

*« AMQP

* OpenWire

* MQTT

» STOMP

HornetQ (for use with HornetQ clients).

Core (Artemis CORE protocol)
JMS semantics are implemented by a JMS facade layer on the client side.

The Apache ActiveMQ Artemis broker does not speak JMS and in fact does not know anything about
JMS, it is a protocol agnostic messaging server designed to be used with multiple different
protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into operations
on the Apache ActiveMQ Artemis core client API before being transferred over the wire using the
core protocol.

The broker always just deals with core API interactions.

4.1. Standalone Broker

The normal stand-alone messaging broker configuration comprises a core messaging broker and a
number of protocol managers that provide support for the various protocol mentioned earlier.

The standalone broker configuration uses picocli for bootstrapping the broker.

For more information on server configuration files see Server Configuration.

4.2. Embedded Broker

Apache ActiveMQ Artemis core is designed as a set of simple POJOs so if you have an application
that requires messaging functionality internally but you don’t want to expose that as an Apache
ActiveMQ Artemis broker you can directly instantiate and embed brokers in your own application.

Read more about embedding Apache ActiveMQ Artemis.

4.3. Integrated with a Java/Jakarta EE application
server

Apache ActiveMQ Artemis provides its own fully functional Java Connector Architecture (JCA)
adaptor which enables it to be integrated easily into any Java/Jakarta EE (henceforth just "EE")
compliant application server or servlet engine.

EE application servers provide Message Driven Beans (MDBs), which are a special type of
Enterprise Java Beans (E]JBs) that can process messages from sources such as JMS systems or mail
systems.

Probably the most common use of an MDB is to consume messages from a JMS messaging system.

According to the EE specification an application server uses a JCA adapter to integrate with a JMS
messaging system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the EE application server for consuming messages via
MDBs, it is also used when sending message to the JMS messaging system e.g. from inside an EJB or
servlet.

When integrating with a JMS messaging system from inside an EE application server it is always
recommended that this is done via a JCA adaptor. In fact, communicating with a JMS messaging
system directly, without using JCA would be illegal according to the EE specification.

The application server’s JCA service provides extra functionality such as connection pooling and
automatic transaction enlistment, which are desirable when using messaging, say, from inside an
EJB. It is possible to talk to a JMS messaging system directly from an EJB, MDB or servlet without
going through a JCA adapter, but this is not recommended since you will not be able to take
advantage of the JCA features, such as caching of JMS sessions, which can result in poor
performance.

Note that all communication between E]JB sessions or entity beans and Message Driven beans go

https://picocli.info/

through the adaptor and not directly to Apache ActiveMQ Artemis.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the Apache
ActiveMQ Artemis server. This is not recommended as you’ll most likely end up creating a new
connection and session every time you want to interact from the EJB, which is an anti-pattern.

Chapter 5. Protocols and Interoperability

Apache ActiveMQ Artemis has a powerful & flexible core which provides a foundation upon which
other protocols can be implemented. Each protocol implementation translates the ideas of its
specific protocol onto this core.

The broker ships with a client implementation which interacts directly with this core. It uses what’s
called the "core" API, and it communicates over the network using the "core" protocol.

5.1. Supported Protocols

The broker has a pluggable protocol architecture. Protocol plugins come in the form of protocol
modules. Each protocol module is included on the broker’s class path and loaded by the broker at
boot time. The broker ships with 5 protocol modules out of the box.

5.1.1. AMQP

AMQP is a specification for interoperable messaging. It also defines a wire format, so any AMQP
client can work with any messaging system that supports AMQP. AMQP clients are available in
many different programming languages.

Apache ActiveMQ Artemis implements the AMQP 1.0 specification. Any client that supports the 1.0
specification will be able to interact with Apache ActiveMQ Artemis.

Please see AMQP for more details.

5.1.2. MQTT

MQTT is a lightweight connectivity protocol. It is designed to run in environments where device
and networks are constrained. Any client that supports the 3.1, 3.1.1, or 5 specification will be able
to interact with Apache ActiveMQ Artemis.

Please see MQTT for more details.

5.1.3. STOMP

Stomp is a very simple text protocol for interoperating with messaging systems. It defines a wire
format, so theoretically any Stomp client can work with any messaging system that supports Stomp.
Stomp clients are available in many different programming languages. Any client that supports the
1.0, 1.1, or 1.2 specification will be able to interact with Apache ActiveMQ Artemis.

Please see Stomp for more details.

5.1.4. OpenWire

ActiveMQ Classic defines its own wire protocol: OpenWire. In order to support ActiveMQ "Classic"
clients, Apache ActiveMQ Artemis supports OpenWire. Any ActiveMQ 5.12.x or higher can be used
with Apache ActiveMQ Artemis.

https://en.wikipedia.org/wiki/AMQP
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://mqtt.org/
https://stomp.github.io/

Please see OpenWire for more details.

5.1.5. Core

ActiveMQ Classic defines its own wire protocol: OpenWire. In order to support ActiveMQ "Classic"
clients, Apache ActiveMQ Artemis supports OpenWire. Any ActiveMQ 5.12.x or higher can be used
with Apache ActiveMQ Artemis.

Please see Core for more details.

APIs and Other Interfaces

Although JMS and Jakarta Messaging are standardized APIs, they do not define a network protocol.
The ActiveMQ Artemis JMS & Jakarta Messaging clients are implemented on top of the core
protocol. We also provide a client-side JNDI implementation.

5.2. Configuring Acceptors

In order to make use of a particular protocol, a transport must be configured with the desired
protocol enabled. There is a whole section on configuring transports that can be found here.

The default configuration shipped with the ActiveMQ Artemis distribution comes with a number of
acceptors already defined, one for each of the above protocols plus a generic acceptor that supports
all protocols. To enable protocols on a particular acceptor simply add the protocols url parameter
to the acceptor url where the value is one or more protocols (separated by commas). If the
protocols parameter is omitted from the url all protocols are enabled.

* The following example enables only MQTT on port 1883

<acceptors>
<acceptor>tcp://localhost:18837protocols=MQTT</acceptor>
</acceptors>

» The following example enables MQTT and AMQP on port 5672

<acceptors>
<acceptor>tcp://localhost:56727protocols=MQTT,AMQP</acceptor>
</acceptors>

» The following example enables all protocols on 61616:

<acceptors>
<acceptor>tcp://localhost:61616</acceptor>
</acceptors>

Here are the supported protocols and their corresponding value used in the protocols url

parameter.

Protocol

Core (Artemis & HornetQ native)
OpenWire (5.X native)

AMQP

MQTT

STOMP

protocols value
CORE

OPENWIRE
AMQP
MQTT
STOMP

Chapter 6. AMQP

Apache ActiveMQ Artemis supports the AMQP 1.0 specification. By default there are acceptor
elements configured to accept AMQP connections on ports 61616 and 5672.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
AMQP.

You can use any AMQP 1.0 compatible clients.
A short list includes:

* (pid clients
* .NET Clients
* Javascript NodeJS
* Java Script RHEA

e ... and many others.

6.1. Examples

We have a few examples as part of the Artemis examples:

* NET:

o ./Jexamples/protocols/amqp/dotnet

ProtonCPP
o ./Jexamples/protocols/amqp/proton-cpp
- ./Jexamples/protocols/amqp/proton-clustered-cpp
* Ruby
o ./Jexamples/protocols/amqp/proton-ruby
* Java (Using the qpid JMS Client)

o ./Jexamples/protocols/amqp/queue

Interceptors
- ./examples/features/standard/interceptor-amqp

o ./Jexamples/features/standard/broker-plugin

6.2. Message Conversions

The broker will not perform any message conversion to any other protocols when sending AMQP
and receiving AMQP.

However if you intend your message to be received by an AMQP JMS Client, you must follow the
JMS Mapping Conventions. If you send a body type that is not recognized by this specification the

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://qpid.apache.org/download.html
https://blogs.apache.org/activemq/entry/using-net-libraries-with-activemq
https://github.com/noodlefrenzy/node-amqp10
https://github.com/grs/rhea
https://www.oasis-open.org/committees/download.php/53086/amqp-bindmap-jms-v1.0-wd05.pdf

conversion between AMQP and any other protocol will make it a Binary Message. Make sure you
follow these conventions if you intend to cross protocols or languages. Especially on the message
body.

A compatibility setting allows aligning the naming convention of AMQP queues (JMS Durable and
Shared Subscriptions) with CORE. For backwards compatibility reasons, you need to explicitly
enable this via broker configuration:

amgp-use-core-subscription-naming

* true - use queue naming convention that is aligned with CORE.

+ false (default) - use older naming convention.

6.3. Intercepting and changing messages

We don’t recommend changing messages at the server’s side for a few reasons:

* AMQP messages are meant to be immutable

* The message won’t be the original message the user sent

AMQP has the possibility of signing messages. The signature would be broken.

* For performance reasons. We try not to re-encode (or even decode) messages.

If regardless these recommendations you still need and want to intercept and change AMQP
messages, look at the aforementioned interceptor examples.

6.4. AMQP and security

The Apache ActiveMQ Artemis Server accepts the PLAIN, ANONYMOUS, and GSSAPI SASL
mechanism. These are implemented on the broker’s security infrastructure.

6.5. AMQP and destinations

If an AMQP Link is dynamic then a temporary queue will be created and either the remote source
or remote target address will be set to the name of the temporary queue. If the Link is not dynamic
then the address of the remote target or source will be used for the queue. In case it does not exist,
it will be auto-created if the settings allow.

6.6. AMQP and Multicast Addresses (Topics)

Although AMQP has no notion of "topics" it is still possible to treat AMQP consumers or receivers as
subscriptions rather than just consumers on a queue. By default any receiving link that attaches to
an address that has only multicast enabled will be treated as a subscription and a corresponding
subscription queue will be created. If the Terminus Durability is either UNSETTLED_STATE or
CONFIGURATION then the queue will be made durable (similar to a JMS durable subscription) and
given a name made up from the container id and the link name, something like my-container-id:my-
link-name. If the Terminus Durability is configured as NONE then a volatile multicast queue will be
created.

6.7. AMQP and Coordinations - Handling Transactions

An AMQP links target can also be a Coordinator. A Coordinator is used to handle transactions. If a
coordinator is used then the underlying server session will be transacted and will be either rolled
back or committed via the coordinator.

AMQP allows the use of multiple transactions per session, amqp:multi-txns-per-ssn,
however in this version of Apache ActiveMQ Artemis will only support single
transactions per session.

6.8. AMQP scheduling message delivery

An AMQP message can provide scheduling information that controls the time in the future when
the message will be delivered at the earliest. This information is provided by adding a message
annotation to the sent message.

There are two different message annotations that can be used to schedule a message for later
delivery:

x-opt-delivery-time
The specified value must be a positive long corresponding to the time the message should be
made available for delivery (in milliseconds).

x-opt-delivery-delay
The specified value must be a positive long corresponding to the amount of milliseconds after
the broker receives the given message before it should be made available for delivery.

If both annotations are present in the same message then the broker will prefer the more specific
x-opt-delivery-time value.

6.9. DLQ and Expiry transfer

AMQP Messages will be copied before transferred to a DLQ or ExpiryQueue and will receive
properties and annotations during this process.

The broker also keeps an internal only property (called extra property) that is not exposed to the
clients, and those will also be filled during this process.

Here is a list of Annotations and Property names AMQP Messages will receive when transferred:

Annotation name Internal Property Name Description

x-opt-ORIG-MESSAGE-ID _AMQ_ORIG_MESSAGE_ID The original message ID before
the transfer

x-opt-ACTUAL-EXPIRY _AMQ_ACTUAL_EXPIRY When the expiry took place.

Milliseconds since epoch times

Annotation name Internal Property Name Description

x-opt-ORIG-QUEUE _AMQ_ORIG_QUEUE The original queue name before
the transfer
X‘Opt'ORIG'ADDRESS _AMQ_ORIG_ADDRESS The original address name

before the transfer

6.10. Filtering on Message Annotations

It is possible to filter on messaging annotations if you use the prefix "m." before the annotation
name.

For example if you want to filter messages sent to a specific destination, you could create your filter
accordingly to this:

ConnectionFactory factory = new JmsConnectionFactory("amgp://localhost:5672");
Connection connection = factory.createConnection();

Session session = connection.createSession(false, Session.AUTO ACKNOWLEDGE);
connection.start();

javax.jms.Queue queue = session.createQueue("my-DLQ");

MessageConsumer consumer = session.createConsumer(queuve, "\"m.x-opt-ORIG-
ADDRESS\"="ORIGINAL_PLACE'");

Message message = consumer.receive();

The broker will set internal properties. If you intend to filter after DLQ or Expiry you may choose
the internal property names:

// Replace the consumer creation on the previous example:
MessageConsumer consumer = session.createConsumer(queue,
"_AMQ_ORIG_ADDRESS='ORIGINAL_PLACE'");

6.11. Configuring AMQP Idle Timeout

It is possible to configure the AMQP Server’s IDLE Timeout by setting the property
amgpldleTimeout in milliseconds on the acceptor.

This will make the server to send an AMQP frame open to the client, with your configured timeout /
2.

So, if you configured your AMQP Idle Timeout to be 60000, the server will tell the client to send
frames every 30,000 milliseconds.

<acceptor name="amqp">.... ;amqpIdleTimeout=<configured-timeout>; </acceptor>

6.11.1. Disabling Keep alive checks

if you set amqgpldleTimeout=0 that will tell clients to not sending keep alive packets towards the
server. On this case you will rely on TCP to determine when the socket needs to be closed.

<acceptor name="amqp">.... ;amgpIdleTimeout=0; </acceptor>
This contains a real example for configuring amqpldleTimeout:

<acceptor name="amqp"

>tep://0.0.0.0:56727amgpIdleTimeout=0; tcpSendBufferSize=1048576; tcpReceiveBufferSize=1
048576;protocols=AMQP;useEpoll=true;amqpCredits=1000;amgpLowCredits=300;directDeliver=
false;batchDelay=10</acceptor>

6.12. Web Sockets

Apache ActiveMQ Artemis also supports AMQP over Web Sockets. Modern web browsers which
support Web Sockets can send and receive AMQP messages.

AMQP over Web Sockets is supported via a normal AMQP acceptor:
<acceptor name="amqp-ws-acceptor">tcp://localhost:56727?protocols=AMQP</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept AMQP connections over Web Sockets
on the port 5672. Web browsers can then connect to ws://<server>:5672 using a Web Socket to send
and receive AMQP messages.

https://html.spec.whatwg.org/multipage/web-sockets.html

Chapter 7. STOMP

STOMP is a text-orientated wire protocol that allows STOMP clients to communicate with STOMP
Brokers. Apache ActiveMQ Artemis supports STOMP 1.0, 1.1 and 1.2.

STOMP clients are available for several languages and platforms making it a good choice for
interoperability.

By default there are acceptor elements configured to accept STOMP connections on ports 61616 and
61613.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
STOMP.

Refer to the STOMP examples for a look at some of this functionality in action.

7.1. Limitations

7.1.1. Transactional Acknowledgements

The STOMP specification identifies transactional acknowledgements as an optional feature.
Support for transactional acknowledgements is not implemented in Apache ActiveMQ Artemis. The
ACK frame can not be part of a transaction. It will be ignored if its transaction header is set.

7.1.2. Virtual Hosting

Apache ActiveMQ Artemis currently doesn’t support virtual hosting, which means the host header
in CONNECT frame will be ignored.

7.2. Mapping STOMP destinations to addresses and
queues

STOMP clients deals with destinations when sending messages and subscribing. Destination names
are simply strings which are mapped to some form of destination on the server - how the server
translates these is left to the server implementation.

In Apache ActiveMQ Artemis, these destinations are mapped to addresses and queues depending on
the operation being done and the desired semantics (e.g. anycast or multicast).

7.3. Logging

Incoming and outgoing STOMP frames can be logged by enabling DEBUG for
org.apache.activemg.artemis.core.protocol.stomp.StompConnection. This can be extremely useful for
debugging or simply monitoring client activity. Along with the STOMP frame itself the remote IP
address of the client is logged as well as the internal connection ID so that frames from the same
client can be correlated.

https://stomp.github.io/

Follow these steps to configure logging appropriately.

7.4. Routing Semantics

The STOMP specification is intentionally ambiguous about message routing semantics. When
providing an overview of the protocol the STOMP 1.2 specification says:

A STOMP server is modelled as a set of destinations to which messages can
be sent. The STOMP protocol treats destinations as opaque string and their
syntax is server implementation specific. Additionally STOMP does not
define what the delivery semantics of destinations should be. The delivery,
or "message exchange", semantics of destinations can vary from server to
server and even from destination to destination. This allows servers to be
creative with the semantics that they can support with STOMP.

Therefore, there are a handful of different ways to specify which semantics are desired both on the
client-side and broker-side.

7.4.1. Configuring Routing Semantics from the Client Side

Sending

When a STOMP client sends a message (using a SEND frame), the protocol manager looks at the
destination-type header to determine where to route it and potentially how to create the address
and/or queue to which it is being sent. Valid values are ANYCAST and MULTICAST (case sensitive). If no
indication of routing type is supplied (either by the client or the broker) then the default defined in
the corresponding default-address-routing-type & default-queue-routing-type address-settings will
be used as necessary.

The destination header maps to an address of the same name if MULTICAST is used and additionally
to a queue of the same name if ANYCAST is used.

Subscribing

When a STOMP client subscribes to a destination (using a SUBSCRIBE frame), the protocol manager
looks at the subscription-type header frame to determine what subscription semantics to use and
potentially how to create the address and/or queue for the subscription. If no indication of routing
type is supplied (either by the client or the broker) then the default defined in the corresponding
default-address-routing-type & default-queue-routing-type address-settings will be used as
necessary.

The destination header maps to an address of the same name if MULTICAST is used and additionally
to a queue of the same name if ANYCAST is used.

7.4.2. Configuring Routing Semantics from the Broker side

On the broker-side there are two main options for specifying routing semantics - prefixes and

https://stomp.github.io/stomp-specification-1.2.html#Protocol_Overview

address settings

Prefixes

Using prefixes involves specifying the anycastPrefix and/or the multicastPrefix on the acceptor
which the STOMP client is using. For the STOMP use-case these prefixes tell the broker that
destinations using them should be treated as anycast or multicast. For example, if the acceptor has
anycastPrefix=queue/ then when a STOMP client sends a message to destination:queue/foo the
broker will auto-create the address foo and queue foo appropriately as anycast and the message
will be placed in that queue. Additionally, if the acceptor has multicastPrefix=topic/ then when a
STOMP client sends a message to destination:topic/bar the broker will auto-create the address bar
as multicast, but it won’t create a queue since multicast (i.e. pub/sub) semantics require a client to
explicitly create a subscription to receive those messages.

o The anycastPrefix and/or multicastPrefix on the acceptor will be stripped from the
destination value.

Address Settings

Using address settings involves defining address-setting elements whose match corresponds with the
destination names the clients will use along with the proper delimiter to enabled matching. For
example, broker.xml could use the following:

<address-settings>
<address-setting match="queue/#">
<default-address-routing-type>ANYCAST</default-address-routing-type>
<default-queue-routing-type>ANYCAST</default-queue-routing-type>
</address>
<address-setting match="topic/#">
<default-address-routing-type>MULTICAST</default-address-routing-type>
<default-queue-routing-type>MULTICAST</default-queue-routing-type>
</address>
</address-settings>
<wildcard-addresses>
<delimiter>/</delimiter>
</wildcard-addresses>

Then if a STOMP client sends a message to destination:queue/foo the broker will auto-create the
address queue/foo and queue queue/foo appropriately as anycast and the message will be placed in
that queue. Additionally, if a STOMP client sends a message to destination:topic/bar the broker will
auto-create the address topic/bar as multicast, but it won’t create a queue as previously explained.

7.5. STOMP heart-beating and connection-ttl

Well behaved STOMP clients will always send a DISCONNECT frame before closing their connections.
In this case the server will clear up any server side resources such as sessions and consumers
synchronously. However if STOMP clients exit without sending a DISCONNECT frame or if they crash
the server will have no way of knowing immediately whether the client is still alive or not. STOMP

connections therefore default to a connection-ttl value of 1 minute (see chapter on connection-ttl
for more information. This value can be overridden using the connection-ttl-override property or
if you need a specific connectionTtl for your stomp connections without affecting the broker-wide
connection-ttl-override setting, you can configure your stomp acceptor with the connectionTtl
property, which is used to set the ttl for connections that are created from that acceptor. For
example:

<acceptor name="stomp-acceptor"
>tcp://localhost:61613?protocols=STOMP; connectionTt1=20000</acceptor>

The above configuration will make sure that any STOMP connection that is created from that
acceptor and does not include a heart-beat header or disables client-to-server heart-beats by
specifying a 0 value will have its connection-ttl set to 20 seconds. The connectionTtl set on an
acceptor will take precedence over connection-ttl-override. The default connectionTtl is 60,000
milliseconds.

Since STOMP 1.0 does not support heart-beating then all connections from STOMP 1.0 clients will
have a connection TTL imposed upon them by the broker based on the aforementioned
configuration options. Likewise, any STOMP 1.1 or 1.2 clients that don’t specify a heart-beat header
or disable client-to-server heart-beating (e.g. by sending 0,X in the heart-beat header) will have a
connection TTL imposed upon them by the broker.

For STOMP 1.1 and 1.2 clients which send a non-zero client-to-server heart-beat header value then
their connection TTL will be set accordingly. However, the broker will not strictly set the
connection TTL to the same value as the specified in the heart-beat since even small network delays
could then cause spurious disconnects. Instead, the client-to-server value in the heart-beat will be
multiplied by the heartBeatToConnectionTtlModifier specified on the acceptor. The
heartBeatToConnectionTt1Modifier is a decimal value that defaults to 2.0 so for example, if a client
sends a heart-beat header of 1000,0 the connection TTL will be set to 2000 so that the data or ping
frames sent every 1000 milliseconds will have a sufficient cushion so as not to be considered late
and trigger a disconnect. This is also in accordance with the STOMP 1.1 and 1.2 specifications which
both state, "because of timing inaccuracies, the receiver SHOULD be tolerant and take into account
an error margin."

The minimum and maximum connection TTL allowed can also be specified on the acceptor via the
connectionTt1lMin and connectionTt1Max properties respectively. The default connectionTt1Min is 1000
and the default connectionTtlMax is Java’s Long.MAX_VALUE meaning there essentially is no max
connection TTL by default. Keep in mind that the heartBeatToConnectionTt1Modifier is relevant here.
For example, if a client sends a heart-beat header of 20000,0 and the acceptor is using a
connectionTt1Max of 30000 and a default heartBeatToConnectionTt1Modifier of 2.0 then the connection
TTL would be 40000 (i.e. 20000 * 2.0) which would exceed the connectionTtlMax. In this case the
server would respond to the client with a heart-beat header of @,15000 (i.e. 30000 / 2.0). As described
previously, this is to make sure there is a sufficient cushion for the client heart-beats in accordance
with the STOMP 1.1 and 1.2 specifications. The same kind of calculation is done for
connectionTt1Min.

The minimum server-to-client heart-beat value is 500ms.

Please note that the STOMP protocol version 1.0 does not contain any heart-beat
frame. It is therefore the user’s responsibility to make sure data is sent within

o connection-ttl or the server will assume the client is dead and clean up server side
resources. With STOMP 1.1 users can use heart-beats to maintain the life cycle of
stomp connections.

7.6. Selector/Filter expressions

STOMP subscribers can specify an expression used to select or filter what the subscriber receives
using the selector header. The filter expression syntax follows the core filter syntax described in
the Filter Expressions documentation.

7.7. STOMP and JMS interoperability

7.7.1. Sending and consuming STOMP message from JMS or Core API

STOMP is mainly a text-orientated protocol. To make it simpler to interoperate with JMS and Core
API, our STOMP implementation checks for presence of the content-length header to decide how to
map a STOMP 1.0 message to a JMS Message or a Core message.

If the STOMP 1.0 message does not have a content-length header, it will be mapped to a JMS
TextMessage or a Core message with a single nullable SimpleString in the body buffer.

Alternatively, if the STOMP 1.0 message has a content-length header, it will be mapped to a JMS
BytesMessage or a Core message with a byte[] in the body buffer.

The same logic applies when mapping a JMS message or a Core message to STOMP. A STOMP 1.0
client can check the presence of the content-length header to determine the type of the message
body (String or bytes).

7.7.2. Message IDs for STOMP messages

When receiving STOMP messages via a JMS consumer or a QueueBrowser, the messages have no
properties like JMSMessagelID by default. However this may bring some inconvenience to clients
who wants an ID for their purpose. The broker STOMP provides a parameter to enable message ID
on each incoming STOMP message. If you want each STOMP message to have a unique ID, just set
the stompEnableMessageld to true. For example:

<acceptor name="stomp-acceptor”
>tcp://localhost:616137protocols=STOMP; stompEnableMessageld=true</acceptor>

When the server starts with the above setting, each stomp message sent through this acceptor will
have an extra property added. The property key is amgMessageld and the value is a String
representation of a long type internal message id prefixed with STOMP, like:

amgMessageld : STOMP12345

The default stompEnableMessageld value is false.

7.8. Durable Subscriptions

The SUBSCRIBE and UNSUBSCRIBE frames can be augmented with special headers to create and destroy
durable subscriptions respectively.

To create a durable subscription the client-id header must be set on the CONNECT frame and the
durable-subscription-name must be set on the SUBSCRIBE frame. The combination of these two
headers will form the identity of the durable subscription.

To delete a durable subscription the client-id header must be set on the CONNECT frame and the
durable-subscription-name must be set on the UNSUBSCRIBE frame. The values for these headers
should match what was set on the SUBSCRIBE frame to delete the corresponding durable
subscription.

Aside from durable-subscription-name, the broker also supports durable-subscriber-name (a
deprecated property used before durable-subscription-name) as well as activemq.subscriptionName
from ActiveMQ "Classic". This is the order of precedence if the frame contains more than one of
these:

1) durable-subscriber-name 2) durable-subscription-name 3) activemq.subscriptionName

It is possible to pre-configure durable subscriptions since the STOMP implementation creates the
queue used for the durable subscription in a deterministic way (i.e. using the format of client-id
.subscription-name). For example, if you wanted to configure a durable subscription on the address
myAddress with a client-id of myclientid and a subscription name of mysubscription then configure
the durable subscription:

<addresses>
<address name="myAddress">
<multicast>
<queue name="myclientid.mysubscription"/>
</multicast>
</address>
</addresses>

7.9. Handling of Large Messages with STOMP

STOMP clients may send very large frame bodies which can exceed the size of the broker’s internal
buffer, causing unexpected errors. To prevent this situation from happening, the broker provides a
STOMP configuration attribute stompMinLargeMessageSize. This attribute can be configured inside a
stomp acceptor, as a parameter. For example:

<acceptor name="stomp-acceptor"
>tcp://localhost:616137protocols=STOMP; stompMinLargeMessageSize=10240</acceptor>

The type of this attribute is integer. When this attributed is configured, the broker will check the
size of the body of each STOMP frame arrived from connections established with this acceptor. If
the size of the body is equal or greater than the value of stompMinLargeMessageSize, the message will
be persisted as a large message. When a large message is delivered to a STOMP consumer, the
broker will automatically handle the conversion from a large message to a normal message, before
sending it to the client.

If a large message is compressed, the server will uncompressed it before sending it to stomp clients.
The default value of stompMinLargeMessageSize is the same as the default value of
minLargeMessageSize.

7.10. Web Sockets

Apache ActiveMQ Artemis also supports STOMP over Web Sockets. Modern web browsers which
support Web Sockets can send and receive STOMP messages.

STOMP over Web Sockets is supported via the normal STOMP acceptor:
<acceptor name="stomp-ws-acceptor">tcp://localhost:61614?protocols=STOMP</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept STOMP connections over Web
Sockets on the port 61674. Web browsers can then connect to ws://<server>:61614 using a Web
Socket to send and receive STOMP messages.

A companion JavaScript library to ease client-side development is available from GitHub (please see
its documentation for a complete description).

The payload length of Web Socket frames can vary between client implementations. By default the
broker will accept frames with a payload length of 65,536. If the client needs to send payloads
longer than this in a single frame this length can be adjusted by using the
webSocketMaxFramePayloadLength URL parameter on the acceptor. In previous version this was
configured via the similarly named stompMaxFramePayloadLength acceptor URL parameter.

Web Socket frames can be encoded as either binary or text. By default the broker encodes them as
binary. However, this can be changed by using the webSocketEncoderType acceptor URL parameter.
Valid values are binary and text.

The stomp-websockets example shows how to configure an Apache ActiveMQ Artemis broker to have
web browsers and Java applications exchanges messages.

7.11. Flow Control

STOMP clients can use the consumer-window-size header on the SUBSCRIBE frame to control the flow
of messages to clients. This is broadly discussed in the Flow Control chapter.

https://html.spec.whatwg.org/multipage/web-sockets.html
https://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/
https://datatracker.ietf.org/doc/html/rfc6455#section-11.8

This ability is similar to the activemg.prefetchSize header supported by ActiveMQ "Classic".
However, that header specifies the size in terms of messages whereas consumer-window-size
specifies the size in terms of bytes. ActiveMQ Artemis supports the activemq.prefetchSize header for
backwards compatibility but the value will be interpreted as bytes just like consumer-window-size
would be. If both activemqg.prefetchSize and consumer-window-size are set then the value for
consumer-window-size will be used.

Setting consumer-window-size to @ will ensure that once a STOMP client receives a message that it
will not receive another one until it sends the appropriate ACK or NACK frame for the message it
already has.

Setting consumer-window-size to a value greater than 0 will allow it to receive messages until the
cumulative bytes of those messages reaches the configured size. Once that happens the client will
not receive any more messages until it sends the appropriate ACK or NACK frame for the messages it
already has.

Setting consumer-window-size to -1 means there is no flow control and the broker will dispatch
messages to clients as fast as it can.

Flow control can be configured at the acceptor as well using the stompConsumerWindowSize URL
parameter. This value is 10240 (i.e. 10K) by default for clients using client and client-individual
acknowledgement modes. It is -1 for clients using the auto acknowledgement mode. Even if
stompConsumerWindowSize is set on the STOMP acceptor it will be overriden by the value provided by
individual clients using the consumer-window-size header on their SUBSCRIBE frame.

The stompConsumerWindowSize URL parameter used to be called stompConsumerCredits

o but was changed to be more consistent with the new header name (i.e. consumer-
window-size). The stompConsumerCredits parameter is deprecated but it will still
work for the time being.

Using the DEBUG logging mentioned earlier it is possible to see the size of the MESSAGE frames
dispatched to clients. This can help when trying to determine the best consumer-window-size setting.

Chapter 8. MQTT

MQTT is a light weight, client to server, publish / subscribe messaging protocol. MQTT has been
specifically designed to reduce transport overhead (and thus network traffic) and code footprint on
client devices. For this reason MQTT is ideally suited to constrained devices such as sensors and
actuators and is quickly becoming the defacto standard communication protocol for IoT.

Apache ActiveMQ Artemis supports the following MQTT versions (with links to their respective
specifications):

* 3.1
* 3.1.1
* 5.0

By default there are acceptor elements configured to accept MQTT connections on ports 61616 and
1883.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
MQTT.

Refer to the MQTT examples for a look at some of this functionality in action.

8.1. MQTT Quality of Service

MQTT offers 3 quality of service levels.

Each message (or topic subscription) can define a quality of service that is associated with it. The
quality of service level defined on a topic is the maximum level a client is willing to accept. The
quality of service level on a message is the desired quality of service level for this message. The
broker will attempt to deliver messages to subscribers at the highest quality of service level based
on what is defined on the message and topic subscription.

Each quality of service level offers a level of guarantee by which a message is sent or received:
* QoS 0: AT MOST ONCE

Guarantees that a particular message is only ever received by the subscriber a maximum of one
time. This does mean that the message may never arrive. The sender and the receiver will
attempt to deliver the message, but if something fails and the message does not reach its
destination (say due to a network connection) the message may be lost. This QoS has the least
network traffic overhead and the least burden on the client and the broker and is often useful
for telemetry data where it doesn’t matter if some of the data is lost.

* QoS 1: AT LEAST ONCE

Guarantees that a message will reach its intended recipient one or more times. The sender will
continue to send the message until it receives an acknowledgment from the recipient,
confirming it has received the message. The result of this QoS is that the recipient may receive
the message multiple times, and also increases the network overhead than QoS 0, (due to acks).

https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

In addition more burden is placed on the sender as it needs to store the message and retry
should it fail to receive an ack in a reasonable time.

* QoS 2: EXACTLY ONCE

The most costly of the QoS (in terms of network traffic and burden on sender and receiver) this
QoS will ensure that the message is received by a recipient exactly one time. This ensures that
the receiver never gets any duplicate copies of the message and will eventually get it, but at the
extra cost of network overhead and complexity required on the sender and receiver.

8.2. MQTT Retain Messages

MQTT has an interesting feature in which messages can be "retained" for a particular address. This
means that once a retain message has been sent to an address, any new subscribers to that address
will receive the last sent retained message before any others messages. This happens even if the
retained message was sent before a client has connected or subscribed. An example of where this
feature might be useful is in environments such as IoT where devices need to quickly get the
current state of a system when they are on boarded into a system.

Retained messages are stored in a queue named with a special prefix according to the name of the
topic where they were originally sent. For example, a retained message sent to the topic /abc/123
will be stored in a multicast queue named $sys.mqtt.retain.abc.123 with an address of the same
name. The MQTT specification doesn’t define how long retained messages should be stored so the
broker will hold on to this data until a client explicitly deletes the retained message or it potentially
expires. However, even at that point the queue and address for the retained message will remain.
These resources can be automatically deleted via the following address-setting:

<address-setting match="$sys.mqtt.retain.#">
<auto-delete-queues>true</auto-delete-queues>
<auto-delete-addresses>true</auto-delete-addresses>
</address-setting>

Keep in mind that it’s also possible to automatically apply an expiry-delay to retained messages as
well.

8.3. Will Messages

A will message can be sent when a client initially connects to a broker. Clients are able to set a "will
message" as part of the connect packet. If the client abnormally disconnects, say due to a device or
network failure the broker will proceed to publish the will message to the specified address (as
defined also in the connect packet). Other subscribers to the will topic will receive the will message
and can react accordingly. This feature can be useful in an IoT style scenario to detect errors across
a potentially large scale deployment of devices.

8.4. Debug Logging

Detailed protocol logging (e.g. packets in/out) can be activated by turning on TRACE logging for

org.apache.activemg.artemis.core.protocol.mqtt. Follow these steps to configure logging
appropriately.

The MQTT specification doesn’t dictate the format of the payloads which clients publish. As far as
the broker is concerned a payload is just an array of bytes. However, to facilitate logging the broker
will encode the payloads as UTF-8 strings and print them up to 256 characters. Payload logging is
limited to avoid filling the logs with potentially hundreds of megabytes of unhelpful information.

8.5. Persistent Subscriptions

The subscription information for MQTT sessions is stored in an internal queue named
$sys.mqtt.sessions and persisted to storage (assuming persistence is enabled). The information is
durable so that MQTT subscribers can reconnect and resume their subscriptions seamlessly after a
broker restart, failure, etc. When brokers are configured for high availability this information will
be available on the backup so even in the case of a broker fail-over subscribers will be able to
resume their subscriptions.

While persistent subscriptions can be convenient they impose a performance penalty since data
must be written to storage. If you don’t need the convenience (e.g. you always use clean sessions)
and you don’t want the performance penalty then you can disable it by disabling durability for the
$sys.mgtt.sessions queue in broker.xml, e.g.:

<addresses>

<address name="$sys.mqtt.sessions">
<anycast>
<queue name="$sys.mqtt.sessions">
<durable>false</durable>
</queue>
</anycast>
</address>

</addresses>

The setting mqtt-session-state-persistence-timeout controls how long the broker will wait for the
data to be written to storage before throwing an error. It is measured in milliseconds. The default is
5000.

8.6. Custom Client ID Handling

The client ID used by an MQTT application is very important as it uniquely identifies the
application. In some situations broker administrators may want to perform extra validation or even
modify incoming client IDs to support specific use-cases. This is possible by implementing a custom
security manager as demonstrated in the security-manager example.

The simplest implementation is a "wrapper" just like the security-manager example uses. In the
authenticate method you can modify the «client ID wusing setClientId() on the

org.apache.activemg.artemis.spi.core.protocol.RemotingConnection that is passed in. If you perform
some custom validation of the client ID you can reject the client ID by throwing a
org.apache.activemq.artemis.core.protocol.mqtt.exceptions.InvalidClientIdException.

8.7. Wildcard subscriptions

MQTT defines a special wildcard syntax for topic filters. This definition is found in section 4.7.1 of
both the 3.1.1 and 5 specs. MQTT topics are hierarchical much like a file system, and they use a
special character (i.e. / by default) to separate hierarchical levels. Subscribers are able to subscribe
to specific topics or to whole branches of a hierarchy.

To subscribe to branches of an address hierarchy a subscriber can use wild cards. There are 2 types
of wildcards in MQTT:

e Multi level (#)

Adding this wildcard to an address would match all branches of the address hierarchy under a
specified node. For example: /uk/ Would match /uk/cities, /uk/cities/newcastle and also
/uk/rivers/tyne. Subscribing to an address would result in subscribing to all topics in the
broker. This can be useful, but should be done so with care since it has significant performance
implications.

* Single level (+)

Matches a single level in the address hierarchy. For example /uk/+/stores would match
/uk/newcastle/stores but not /uk/cities/newcastle/stores.

This is close to the default wildcard syntax, but not exactly the same. Therefore, some conversion is
necessary. This conversion isn’t free so if you want the best MQTT performance use broker.xml to
configure the wildcard syntax to match MQTT’s, e.g.:

<wildcard-addresses>
<delimiter>/</delimiter>
<any-words>#</any-words>
<single-word>*</single-word>

</wildcard-addresses>

Of course, changing the default syntax also means other clients on other protocols will need to
follow this same syntax as well as the match values of your address-setting configuration elements.

8.8. Web Sockets

Apache ActiveMQ Artemis also supports MQTT over Web Sockets. Modern web browsers which
support Web Sockets can send and receive MQTT messages.

MQTT over Web Sockets is supported via a normal MQTT acceptor:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718107
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901242
https://html.spec.whatwg.org/multipage/web-sockets.html

<acceptor name="mqtt-ws-acceptor">tcp://host:1883?protocols=MQTT</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept MQTT connections over Web Sockets
on the port 1883. Web browsers can then connect to ws://<server>:1883 using a Web Socket to send
and receive MQTT messages.

SSL/TLS is also available, e.g.:

<acceptor name="mqtt-wss-acceptor"
>tep://host:88837protocols=MQTT;sslEnabled=true;keyStorePath=/path/to/keystore;keyStor
ePassword=myPass</acceptor>

Web browsers can then connect to wss://<server>:8883 using a Web Socket to send and receive
MQTT messages.

8.9. Link Stealing

The MQTT specifications define a behavior often referred to as "link stealing." This means that
whenever a new client connects with the same client ID as another existing client then the existing
client’s session will be closed and its network connection will be terminated.

In certain use-cases this behavior is not desired so it is configurable. The URL parameter
allowLinkStealing can be configured on the MQTT acceptor to modify this behavior. By default
allowLinkStealing is true. If it is set to false then whenever a new client connects with the same
client ID as another existing client then the new client’s session will be closed and its network
connection will be terminated. In the case of MQTT 5 clients they will receive a disconnect reason
code of 0x80 (i.e. "Unspecified error").

8.10. Automatic Subscription Clean-up

Sometimes MQTT 3.x clients using (leanSession=false don’t properly unsubscribe. The URL
parameter defaultMgttSessionExpiryInterval can be configured on the MQTT acceptor so that
abandoned sessions and subscription queues will be cleaned up automatically after the expiry
interval elapses.

MQTT 5 has the same basic semantics with slightly different configuration. The CleanSession flag
was replaced with CleanStart and a session expiry interval property. The broker will use the client’s
session expiry interval if it is set. If it is not set then the broker will apply the
defaultMqttSessionExpiryInterval.

The default defaultMqttSessionExpiryInterval is -1 which means no clean up will happen for MQTT
3.x clients or for MQTT 5 clients which do not pass their own session expiry interval. Otherwise it
represents the number of seconds which must elapse after the client has disconnected before the
broker will remove the session state and subscription queues.

MQTT session state is scanned every 5,000 milliseconds by default. This can be changed using the

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901048

mqtt-session-scan-interval element set in the core section of broker.xml.

8.11. Flow Control

MQTT 5 introduced a simple form of flow control. In short, a broker can tell a client how many QoS
1 & 2 messages it can receive before being acknowledged and vice versa.

This is controlled on the broker by setting the receiveMaximum URL parameter on the MQTT acceptor
in broker.xml.

The default value is 65535 (the maximum value of the 2-byte integer used by MQTT).
A value of 0 is prohibited by the MQTT 5 specification.

A value of -1 will prevent the broker from informing the client of any receive maximum which
means flow-control will be disabled from clients to the broker. This is effectively the same as setting
the value to 65535, but reduces the size of the CONNACK packet by a few bytes.

8.12. Topic Alias Maximum

MQTT 5 introduced https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-
os.html#Topic_Alias[topic aliasing]. This is an optimization for the size of PUBLISH control packets as a
2-byte integer value can now be substituted for the _name of the topic which can potentially be quite
long.

Both the client and the broker can inform each other about the maximum alias value they support
(i.e. how many different aliases they support). This is controlled on the broker using the
topicAliasMaximum URL parameter on the acceptor used by the MQTT client.

The default value is 65535 (the maximum value of the 2-byte integer used by MQTT).
A value of 0 will disable topic aliasing from clients to the broker.

A value of -1 will prevent the broker from informing the client of any topic alias maximum which
means aliasing will be disabled from clients to the broker. This is effectively the same as setting the
value to 0, but reduces the size of the CONNACK packet by a few bytes.

8.13. Maximum Packet Size

MQTT 5 introduced the maximum packet size. This is the maximum packet size the server or client
is willing to accept.

This is controlled on the broker by setting the maximumPacketSize URL parameter on the MQTT
acceptor in broker.xml.

The default value is 268435455 (i.e. 256 MB - the maximum value of the variable byte integer used by
MQTT).

A value of 0 is prohibited by the MQTT 5 specification.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Flow_Control
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901086

A value of -1 will prevent the broker from informing the client of any maximum packet size which
means no limit will be enforced on the size of incoming packets. This also reduces the size of the
CONNACK packet by a few bytes.

8.14. Server Keep Alive

All MQTT versions support a connection keep alive value defined by the client. MQTT 5 introduced a
server keep alive value so that a broker can define the value that the client should use. The primary
use of the server keep alive is for the server to inform the client that it will disconnect the client for
inactivity sooner than the keep alive specified by the client.

This is controlled on the broker by setting the serverKeepAlive URL parameter on the MQTT
acceptor in broker.xml.

The default value is 60 and is measured in seconds.

A value of 0 completely disables keep alives no matter the client’s keep alive value. This is not
recommended because disabling keep alives is generally considered dangerous since it could lead
to resource exhaustion.

A value of -1 means the broker will always accept the client’s keep alive value (even if that value is
0).

Any other value means the serverKeepAlive will be applied if it is less than the client’s keep alive
value unless the client’s keep alive value is 0 in which case the serverKeepAlive is applied. This is
because a value of @ would disable keep alives and disabling keep alives is generally considered
dangerous since it could lead to resource exhaustion.

8.15. Enhanced Authentication

MQTT 5 introduced enhanced authentication which extends the existing name & password
authentication to include challenge / response style authentication.

However, there are currently no challenge / response mechanisms implemented so if a client passes
the "Authentication Method" property in its CONNECT packet it will receive a CONNACK with a reason
code of 0x8C (i.e. bad authentication method) and the network connection will be closed.

8.16. Publish Authorization Failures

The MQTT 3.1.1 specification is ambiguous regarding the broker’s behavior when a PUBLISH packet
fails due to a lack of authorization. In section 3.3.5 it says:

If a Server implementation does not authorize a PUBLISH to be performed
by a Client; it has no way of informing that Client. It MUST either make a
positive acknowledgement, according to the normal QoS rules, or close the
Network Connection

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901094
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901256
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718042

By default the broker will close the network connection. However if you’d rather have the broker
make a positive acknowledgement then set the URL parameter
closeMgttConnectionOnPublishAuthorizationFailure to false on the relevant MQTT acceptor in
broker.xml, e.g.:

<acceptor name="mqtt"

>tep://0.0.0:18837protocols=MQTT;closeMgttConnectionOnPublishAuthorizationFailure=fals
e</acceptor>

Chapter 9. OpenWire

Apache ActiveMQ Artemis supports the OpenWire protocol so that an Apache ActiveMQ "Classic"
JMS client can talk directly to an Apache ActiveMQ Artemis server. By default there is an acceptor
configured to accept OpenWire connections on port 61676.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
OpenWire.

Refer to the OpenWire examples for a look at this functionality in action.

9.1. Connection Monitoring

OpenWire has a few parameters to control how each connection is monitored, they are:

maxInactivityDuration

It specifies the time (milliseconds) after which the connection is closed by the broker if no data
was received. Default value is 30000.

maxInactivityDurationInitalDelay

It specifies the maximum delay (milliseconds) before inactivity monitoring is started on the
connection. It can be useful if a broker is under load with many connections being created
concurrently. Default value is 10000.

uselnactivityMonitor

A value of false disables the InactivityMonitor completely and connections will never time out.
By default it is enabled. On broker side you don’t neet set this. Instead you can set the
connection-ttl to -1.

useKeepAlive

Indicates whether to send a KeepAliveIlnfo on an idle connection to prevent it from timing out.
Enabled by default. Disabling the keep alive will still make connections time out if no data was
received on the connection for the specified amount of time.

Note at the beginning the InactivityMonitor negotiates the appropriate maxInactivityDuration and
maxInactivityDurationInitalDelay. The shortest duration is taken for the connection.

Fore more details please see ActiveMQ InactivityMonitor.

9.2. Disable/Enable Advisories

By default, advisory topics (ActiveMQ Advisory) are created in order to send certain type of
advisory messages to listening clients. As a result, advisory addresses and queues will be displayed
on the management console, along with user deployed addresses and queues. This sometimes cause
confusion because the advisory objects are internally managed without user being aware of them.
In addition, users may not want the advisory topics at all (they cause extra resources and
performance penalty) and it is convenient to disable them at all from the broker side.

http://activemq.apache.org/openwire.html
http://activemq.apache.org/activemq-inactivitymonitor.html
http://activemq.apache.org/advisory-message.html

The protocol provides two parameters to control advisory behaviors on the broker side.

supportAdvisory

Indicates whether the broker supports advisory messages. If the value is true, advisory
addresses/queues will be created. If the value is false, no advisory addresses/queues are created.
Default value is true.

suppressinternalManagementObjects

Indicates whether advisory addresses/queues, if any, will be registered to management service
(e.g. JMX registry). If set to true, no advisory addresses/queues will be registered. If set to false,
those are registered and will be displayed on the management console. Default value is true.

The two parameters are configured on an OpenWire acceptor, e.g.:

<acceptor name="artemis"
>tep://localhost:616167protocols=0PENWIRE; supportAdvisory=true;suppressIinternalManagem
entObjects=false</acceptor>

9.3. OpenWire Destination Cache

For improved performance of the broker we keep a cache of recently used destinations, so that
when new messages are dispatched to them, we do not have to do a lookup every time. By default,
this cache holds up to 16 destinations. If additional destinations are added they will overwrite older
records. If you are dealing with a large amount of queues you might want to increase this value,
which is done via configuration option: openWireDestinationCacheSize set on the OpenWire acceptor
like this:

<acceptor name="artemis"
>tcp://localhost:616167protocols=0PENWIRE;openWireDestinationCacheSize=64</acceptor>

This cache has to be set to a power of 2, i.e.: 2, 16, 128 and so on.

9.4. Virtual Topic Consumer Destination Translation

For existing OpenWire consumers of virtual topic destinations it is possible to configure a mapping
function that will translate the virtual topic consumer destination into a FQQN address. This
address will then represents the consumer as a multicast binding to an address representing the
virtual topic.

The configuration string list property virtualTopicConsumerWildcards has parts separated by a ;. The
first is the classic style destination filter that identifies the destination as belonging to a virtual
topic. The second identifies the number of paths that identify the consumer queue such that it can
be parsed from the destination. Any subsequent parts are additional configuration parameters for
that mapping.

For example, the default virtual topic with consumer prefix of Consumer.., would require a

virtualTopicConsumerWildcards filter of Consumer..>;2. As a url parameter this transforms to
Consumer.*.%3E%3B2 when the url significant characters >; are escaped with their hex code points. In
an acceptor url it would be:

<acceptor name="artemis"
>tep://localhost:616167protocols=0PENWIRE;virtualTopicConsumerWildcards=Consumer.*.%3E
%3B2</acceptor>

This will translate Consumer.A.VirtualTopic.Orders into a FQON of
VirtualTopic.Orders::Consumer.A.VirtualTopic.Orders wusing the int component 2 of the
configuration to identify the consumer queue as the first two paths of the destination.
virtualTopicConsumerWildcards is multi valued using a , separator.

9.4.1. selectorAware

The mappings support an optional parameter, selectorAware which when true, transfers any
selector information from the OpenWire consumer into a queue filter of any auto-created
subscription queue.

o the selector/filter is persisted with the queue binding in the normal way, such that
it works independent of connected consumers.

Please see Virtual Topic Mapping example contained in the OpenWire examples.

Chapter 10. Using Core

Apache ActiveMQ Artemis core is a messaging system with its own API. We call this the core API.

If you don’t want to use the JMS API or any of the other supported protocols you can use the core
API directly. The core API provides all the functionality of JMS but without much of the complexity.
It also provides features that are not available using JMS.

10.1. Core Messaging Concepts

Some of the core messaging concepts are similar to JMS concepts, but core messaging concepts are
also different in some ways as well. In general the core API is simpler than the JMS API], since we
remove distinctions between queues, topics and subscriptions. We’ll discuss each of the major core
messaging concepts in turn, but to see the API in detail please consult the Javadoc.

Also refer to the address model chapter for a high-level overview of these concepts as well as
configuration details.

10.1.1. Message

* A message is the unit of data which is sent between clients and servers.

* A message has a body which is a buffer containing convenient methods for reading and writing
data into it.

* A message has a set of properties which are key-value pairs. Each property key is a string and
property values can be of type integer, long, short, byte, byte[], String, double, float or boolean.

* A message has an address it is being sent to. When the message arrives on the server it is routed
to any queues that are bound to the address. The routing semantics (i.e. anycast or multicast)
are determined by the "routing type" of the address and queue. If the queues are bound with
any filter, the message will only be routed to that queue if the filter matches. An address may
have many queues bound to it or even none. There may also be entities other than queues (e.g.
diverts) bound to addresses.

* Messages can be either durable or non durable. Durable messages in a durable queue will
survive a server crash or restart. Non durable messages will never survive a server crash or
restart.

* Messages can be specified with a priority value between 0 and 9. 0 represents the lowest
priority and 9 represents the highest. The broker will attempt to deliver higher priority
messages before lower priority ones.

* Messages can be specified with an optional expiry time. The broker will not deliver messages
after its expiry time has been exceeded.

* Messages also have an optional timestamp which represents the time the message was sent.

* Apache ActiveMQ Artemis also supports the sending/consuming of very large messages much
larger than can fit in available RAM at any one time.

10.2. Core API

10.2.1. ServerLocator

Clients use Serverlocator instances to create (lientSessionFactory instances. ServerlLocator
instances are used to locate servers and create connections to them.

In JMS terms think of a ServerLocator in the same way you would a JMS Connection Factory.

Serverlocator instances are created using the ActiveMQClient factory class.

10.2.2. ClientSessionFactory

Clients use ClientSessionFactory instances to create ClientSession instances. C(lientSessionFactory
instances are basically the connection to a server

In JMS terms think of them as JMS Connections.

ClientSessionFactory instances are created using the ServerlLocator class.

10.2.3. ClientSession

A client uses a (lientSessionfor consuming and producing messages and for grouping them in
transactions. ClientSession instances can support both transactional and non transactional
semantics and also provide an XAResource interface so messaging operations can be performed as
part of a JTA transaction.

ClientSession instances group ClientConsumer instances and ClientProducer instances.

ClientSession instances can be registered with an optional SendAcknowledgementHandler. This allows
your client code to be notified asynchronously when sent messages have successfully reached the
server. This unique Apache ActiveMQ Artemis feature, allows you to have full guarantees that sent
messages have reached the server without having to block on each message sent until a response is
received. Blocking on each messages sent is costly since it requires a network round trip for each
message sent. By not blocking and receiving send acknowledgements asynchronously you can
create true end to end asynchronous systems which is not possible using the standard JMS API. For
more information on this advanced feature please see the section Guarantees of sends and
commits.

Identifying your session for management and debugging

Assigning IDs to your core sessions can help you with monitoring and debugging the cluster using
the management console.

ClientSession session;

/] ...

session.addMetaData(ClientSession.JMS_SESSION_IDENTIFIER_PROPERTY, "jms-client-id");
session.addMetaData("jms-client-id", "my-session");

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Such ID will then appear in the Client ID column under the Connections, Consumers and
Producers tabs.

If you are using the JMS API, the setClientID would give you the same effect.

10.2.4. ClientConsumer

Clients use ClientConsumer instances to consume messages from a queue. Core messaging supports
both synchronous and asynchronous message consumption semantics. ClientConsumer instances
can be configured with an optional filter expression and will only consume messages which match
that expression.

10.2.5. ClientProducer

Clients create ClientProducer instances on ClientSession instances so they can send messages.
(lientProducer instances can specify an address to which all sent messages are routed, or they can
have no specified address, and the address is specified at send time for the message.

Please note that ClientSession, ClientProducer and ClientConsumer instances are
designed to be re-used.

A It’s an anti-pattern to create new ClientSession, ClientProducer and ClientConsumer
instances for each message you produce or consume. If you do this, your
application will perform very poorly. This is discussed further in the section on
performance tuning Performance Tuning.

10.3. A simple example of using Core

Here’s a very simple program using the core messaging API to send and receive a message.
Logically it’s comprised of two sections: firstly setting up the producer to write a message to an
address, and secondly, creating a queue for the consumer using anycast routing, creating the
consumer, and starting it.

ServerLocator locator = ActiveMQClient.createServerLocator("vm://0");
// In this simple example, we just use one session for both producing and receiving

ClientSessionFactory factory = locator.createClientSessionFactory();
ClientSession session = factory.createSession();

// A producer is associated with an address ...
ClientProducer producer = session.createProducer("example");
ClientMessage message = session.createMessage(true);

message.getBodyBuffer().writeString("Hello");

// We need a queue attached to the address ...

session.createQueue("example", RoutingType.ANYCAST, "example", true);
// And a consumer attached to the queue ...

ClientConsumer consumer = session.createConsumer("example");

// Once we have a queue, we can send the message ...
producer.send(message);

// We need to start the session before we can -receive- messages ...

session.start();
ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBodyBuffer().readString());

session.close();

Chapter 11. Core Client Failover

Apache ActiveMQ Artemis clients can be configured to automatically reconnect to the same server,
reconnect to the backup server or reconnect to other active servers in the event that a failure is
detected in the connection between the client and the server. The clients detect connection failure
when they have not received any packets from the server within the time given by client-failure-
check-period as explained in section Detecting Dead Connections.

11.1. Reconnect to the same server

Set reconnectAttempts to any non-zero value to reconnect to the same server, for further details see
Reconnection and failover attributes.

If the disconnection was due to some transient failure such as a temporary network outage and the
target server was not restarted, then the sessions will still exist on the server, assuming the client
hasn’t been disconnected for more than connection-ttl

In this scenario, the client sessions will be automatically re-attached to the server sessions after the
reconnection. This is done 100% transparently and the client can continue exactly as if nothing had
happened.

The way this works is as follows:

As Apache ActiveMQ Artemis clients send commands to their servers they store each sent command
in an in-memory buffer. In the case that connection failure occurs and the client subsequently
reattaches to the same server, as part of the reattachment protocol the server informs the client
during reattachment with the id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent
commands from its buffer so that the client and server can reconcile their states.Ac

The size of this buffer is configured with the confirmationWindowSize parameter on the connection
URL. When the server has received confirmationWindowSize bytes of commands and processed them
it will send back a command confirmation to the client, and the client can then free up space in the
buffer.

The window is specified in bytes.

Setting this parameter to -1 disables any buffering and prevents any re-attachment from occurring,
forcing reconnect instead. The default value for this parameter is -1. (Which means by default no
auto re-attachment will occur)

11.2. Reconnect to the backup server

Set reconnectAttempts to any non-zero value and ha to true to reconnect to the back server, for
further details see Reconnection and failover attributes.

The clients can be configured to discover the list of live-backup server groups in a number of
different ways. They can be configured explicitly or probably the most common way of doing this is

to use server discovery for the client to automatically discover the list. For full details on how to
configure server discovery, please see Clusters. Alternatively, the clients can explicitly connect to a
specific server and download the current servers and backups see Clusters.

By default, failover will only occur after at least one connection has been made. In other words, by
default, failover will not occur if the client fails to make an initial connection - in this case it will
simply retry connecting according to the reconnect-attempts property and fail after this number of
attempts.

11.3. Reconnect to other active servers

Set failoverAttempts to any non-zero value to reconnect to other active servers, for further details
see Reconnection and failover attributes.

If reconnectAttempts value is not zero then the client will try to reconnect to other active servers
only after all attempts to reconnect to the same server or reconnect to the backup server fail.

11.4. Session reconnection

When clients reconnect to the same server after a restart, reconnect to the backup server or
reconnect to other active servers any sessions will no longer exist on the server and it won’t be
possible to 100% transparently re-attach to them. In this case, any sessions and consumers on the
client will be automatically recreated on the server.

Client reconnection is also used internally by components such as core bridges to allow them to
reconnect to their target servers.

11.5. Failing over on the initial connection

Since the client does not learn about the full topology until after the first connection is made there
is a window where it does not know about the backup. If a failure happens at this point the client
can only try reconnecting to the original server. To configure how many attempts the client will
make you can set the URL parameter initialConnectAttempts. The default for this is 0, that is try
only once. Once the number of attempts has been made an exception will be thrown.

For examples of automatic failover with transacted and non-transacted JMS sessions, please see the
examples chapter.

11.6. Reconnection and failover attributes

Client reconnection and failover is configured using the following parameters:

retrylnterval

This optional parameter determines the period in milliseconds between subsequent
reconnection attempts, if the connection to the target server has failed. The default value is 2000
milliseconds.

retrylntervalMultiplier

This optional parameter determines a multiplier to apply to the time since the last retry to
compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.
Let’s take an example:

If we set retryInterval to 1000 ms and we set retryIntervalMultiplier to 2.0, then, if the first
reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between subsequent
reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

maxRetryInterval

This optional parameter determines the maximum retry interval that will be used. When setting
retryIntervalMultiplier it would otherwise be possible that subsequent retries exponentially
increase to ridiculously large values. By setting this parameter you can set an upper limit on that
value. The default value is 2000 milliseconds.

ha

This optional parameter determines whether the client will try to reconnect to the backup node
when the primary node is not reachable. The default value is false. For more information on
HA, please see High Availability and Failover.

reconnectAttempts

This optional parameter determines the total number of reconnect attempts to make to the
current live/backup pair before giving up. A value of -1 signifies an unlimited number of
attempts. The default value is 0.

failoverAttempts

This optional parameter determines the total number of failover attempts to make after a
reconnection failure before giving up and shutting down. A value of -1 signifies an unlimited
number of attempts. The default value is 0.

All of these parameters are set on the URL used to connect to the broker.

If your client does manage to reconnect but the session is no longer available on the server, for
instance if the server has been restarted or it has timed out, then the client won’t be able to re-
attach, and any ExceptionListener or FailurelListener instances registered on the connection or
session will be called.

11.7. ExceptionListeners and SessionFailureListeners

Please note, that when a client reconnects or re-attaches, any registered JMS ExceptionListener or
core API SessionFailurelListener will be called.

Chapter 12. Mapping JMS Concepts to the
Core API

This chapter describes how JMS destinations are mapped to Apache ActiveMQ Artemis addresses.

Apache ActiveMQ Artemis core is JMS-agnostic. It does not have any concept of a JMS topic. A JMS
topic is implemented in core as an address with name=(the topic name) and with a MULTICAST
routing type with zero or more queues bound to it. Each queue bound to that address represents a
topic subscription.

Likewise, a JMS queue is implemented as an address with name=(the JMS queue name) with an
ANYCAST routing type associated with it.

o While it is possible to configure a JMS topic and queue with the same name, it is
not a recommended configuration for use with cross protocol.

Chapter 13. Using JMS or Jakarta Messaging

Although Apache ActiveMQ Artemis provides a JMS agnostic messaging API, many users will be
more comfortable using JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a JMS APL
If you are completely new to JMS we suggest you follow the Oracle JMS tutorial - a full JMS tutorial
is out of scope for this guide.

Apache ActiveMQ Artemis also ships with a wide range of examples, many of which demonstrate
JMS API usage. A good place to start would be to play around with the simple JMS Queue and Topic
example, but we also provide examples for many other parts of the JMS API. A full description of
the examples is available in Examples.

In this section we’ll go through the main steps in configuring the server for JMS and creating a
simple JMS program. We’ll also show how to configure and use JNDI, and also how to use JMS with
Apache ActiveMQ Artemis without using any JNDI.

13.1. A simple ordering system

For this chapter we’re going to use a very simple ordering system as our example. It is a somewhat
contrived example because of its extreme simplicity, but it serves to demonstrate the very basics of
setting up and using JMS.

We will have a single JMS Queue called OrderQueue, and we will have a single MessageProducer
sending an order message to the queue and a single MessageConsumer consuming the order message
from the queue.

The queue will be a durable queue, i.e. it will survive a server restart or crash. We also want to pre-
deploy the queue, i.e. specify the queue in the server configuration so it is created automatically
without us having to explicitly create it from the client.

13.2. JNDI

The JMS specification establishes the convention that administered objects (i.e. JMS queue, topic and
connection factory instances) are made available via the J]NDI API. Brokers are free to implement
JNDI as they see fit assuming the implementation fits the API. Apache ActiveMQ Artemis does not
have a JNDI server. Rather, it uses a client-side JNDI implementation that relies on special
properties set in the environment to construct the appropriate JMS objects. In other words, no
objects are stored in JNDI on the Apache ActiveMQ Artemis server, instead they are simply
instantiated on the client based on the provided configuration. Let’s look at the different kinds of
administered objects and how to configure them.

The following configuration properties are strictly required when Apache ActiveMQ

o Artemis is running in stand-alone mode. When Apache ActiveMQ Artemis is
integrated to an application server (e.g. Wildfly) the application server itself will
almost certainly provide a JNDI client with its own properties.

https://docs.oracle.com/javaee/7/tutorial/partmessaging.htm

13.2.1. ConnectionFactory JNDI

A JMS connection factory is used by the client to make connections to the server. It knows the
location of the server it is connecting to, as well as many other configuration parameters.

Here’s a simple example of the JNDI context environment for a client looking up a connection
factory to access an embedded instance of Apache ActiveMQ Artemis:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.invmConnectionFactory=vm://0

In this instance we have created a connection factory that is bound to invmConnectionFactory, any
entry with prefix connectionFactory. will create a connection factory.

In certain situations there could be multiple server instances running within a particular JVM. In
that situation each server would typically have an InVM acceptor with a unique server-ID. A client
using JMS and JNDI can account for this by specifying a connction factory for each server, like so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory

connectionFactory.invmConnectionFactory@=vm://0
connectionFactory.invmConnectionFactoryl=vm://1
connectionFactory.invmConnectionFactory2=vm://2

Here is a list of all the supported URL schemes:

o vm
* tep
e udp
* jgroups

Most clients won’t be connecting to an embedded broker. Clients will most commonly connect

across a network a remote broker. Here’s a simple example of a client configuring a connection
factory to connect to a remote broker running on myhost:5445:

java.naming.factory.initial=org.apache.activemg.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.ConnectionFactory=tcp://myhost:5445

In the example above the client is using the tcp scheme for the provider URL. A client may also
specify multiple comma-delimited host:port combinations in the URL (e.g. (tcp://remote-
host1:5445, remote-host2:5445)). Whether there is one or many host:port combinations in the URL
they are treated as the initial connector(s) for the underlying connection.

The udp scheme is also supported which should use a host:port combination that matches the group-

address and group-port from the corresponding broadcast-group configured on the ActiveMQ
Artemis server(s).

Each scheme has a specific set of properties which can be set using the traditional URL query string
format (e.g. scheme://host:port?keyl=valuel&key2=value?) to customize the underlying transport
mechanism. For example, if a client wanted to connect to a remote server using TCP and SSL it
would create a connection factory like so, tcp://remote-host:5445?ss1-enabled=true.

All the properties available for the tcp scheme are described in the documentation regarding the
Netty transport.

Note if you are using the tcp scheme and multiple addresses then a query can be applied to all the
url’s or just to an individual connector, so where you have

o (tcp://remote-host1:5445?httpEnabled=true, remote-host2:54457httpEnabled=true)?clientID=1234

then the httpEnabled property is only set on the individual connectors where as the clientld is set
on the actual connection factory. Any connector specific properties set on the whole URI will be
applied to all the connectors.

The udp scheme supports 4 properties:

localAddress

If you are running with multiple network interfaces on the same machine, you may want to
specify that the discovery group listens only on a specific interface. To do this you can specify
the interface address with this parameter.

localPort

If you want to specify a local port to which the datagram socket is bound you can specify it here.
Normally you would just use the default value of -1 which signifies that an anonymous port
should be used. This parameter is always specified in conjunction with localAddress.

refreshTimeout

This is the period the discovery group waits after receiving the last broadcast from a particular
server before removing that servers connector pair entry from its list. You would normally set
this to a value significantly higher than the broadcast-period on the broadcast group otherwise
servers might intermittently disappear from the list even though they are still broadcasting due
to slight differences in timing. This parameter is optional, the default value is 10000 milliseconds
(10 seconds).

discoverylnitialWaitTimeout

If the connection factory is used immediately after creation then it may not have had enough
time to received broadcasts from all the nodes in the cluster. On first usage, the connection
factory will make sure it waits this long since creation before creating the first connection. The
default value for this parameter is 10000 milliseconds.

Lastly, the jgroups scheme is supported which provides an alternative to the udp scheme for server
discovery. The URL pattern is jgroups://channelName?file=jgroups-xml-conf-filename wherejgroups-
xml-conf-filename refers to an XML file on the classpath that contains the JGroups configuration.

The channelName is the name given to the jgroups channel created.
The refreshTimeout and discoveryInitialWaitTimeout properties are supported just like with udp.

The default type for the default connection factory is of type javax.jms.ConnectionFactoryor
jakarta.jms.ConnectionFactory depending on the client you’re using. This can be changed by setting
the type like so

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
java.naming.provider.url=tcp://localhost:5445?type=CF

In this example it is still set to the default, below shows a list of types that can be set.

Configuration for Connection Factory Types

The interface provided will depend on whether you’re using the JMS or Jakarta Messaging client
implementation.

type interface

CF (default) javax.jms.ConnectionFactory or
jakarta.jms.ConnectionFactory

XA_CF javax.jms.XAConnectionFactoryor
jakarta.jms.XAConnectionFactory

QUEUE_CF javax.jms.QueueConnectionFactoryor
jakarta.jms.QueueConnectionFactory

QUEUE_XA_CF javax.jms.XAQueueConnectionFactoryor
jakarta.jms.XAQueueConnectionFactory

TOPIC_CF javax.jms.TopicConnectionFactoryor
jakarta.jms.TopicConnectionFactory

TOPIC_XA_CF javax.jms.XATopicConnectionFactoryor
jakarta.jms.XATopicConnectionFactory

13.2.2. Destination JNDI

JMS destinations are also typically looked up via JNDI. As with connection factories, destinations
can be configured using special properties in the JNDI context environment. The property name
should follow the pattern: queuve.<jndi-binding> or topic.<jndi-binding>. The property value should
be the name of the queue hosted by the Apache ActiveMQ Artemis server. For example, if the server
had a JMS queue configured like so:

<address name="OrderQueue">
<queue name="OrderQueue"/>
</address>

And if the client wanted to bind this queue to "queues/OrderQueue"” then the JNDI properties would

be configured like so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory

java.naming.provider.url=tcp://myhost:5445

queue.queues/OrderQueue=0rderQueue

It is also possible to look-up JMS destinations which haven’t been configured explicitly in the JNDI
context environment. This is possible using dynamicQueues/ or dynamicTopics/ in the look-up string.
For example, if the client wanted to look-up the aforementioned "OrderQueue" it could do so simply
by using the string "dynamicQueues/OrderQueue". Note, the text that follows dynamicQueues/ or
dynamicTopics/ must correspond exactly to the name of the destination on the server.

13.2.3. The code
Here’s the code for the example:

First we’ll create a JNDI initial context from which to lookup our JMS objects. If the above
properties are set in jndi.properties and it is on the classpath then any new, empty InitialContext
will be initialized using those properties:

InitialContext ic = new InitialContext();

//Now we'll look up the connection factory from which we can create
//connections to myhost:5445:

ConnectionFactory cf = (ConnectionFactory)ic.lookup("ConnectionFactory");
//And Took up the Queue:

Queue orderQueue = (Queue)ic.lookup("queues/OrderQueue");

//Next we create a JMS connection using the connection factory:
Connection connection = cf.createConnection();

//And we create a non transacted JMS Session, with AUTO_ACKNOWLe.g. //acknowledge
mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
//We create a MessageProducer that will send orders to the queue:
MessageProducer producer = session.createProducer(orderQueue);

//And we create a MessageConsumer which will consume orders from the
//queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

//We make sure we start the connection, or delivery won't occur on it:
connection.start();
//Me create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

//And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

It is as simple as that. For a wide range of working JMS examples please see the examples.

Warning

Please note that JMS connections, sessions, producers and consumers are
designed to be re-used.

It is an anti-pattern to create new connections, sessions, producers and
consumers for each message you produce or consume. If you do this, your
application will perform very poorly. This is discussed further in the section
on performance tuning Performance Tuning.

13.3. Directly instantiating JMS Resources without
using JNDI

Although it is a very common JMS usage pattern to lookup JMS Administered Objects (that’s JMS
Queue, Topic and ConnectionFactory instances) from JNDI, in some cases you just think "Why do I
need JNDI? Why can’t I just instantiate these objects directly?"

With Apache ActiveMQ Artemis you can do exactly that. Apache ActiveMQ Artemis supports the
direct instantiation of JMS Queue, Topic and ConnectionFactory instances, so you don’t have to use
JNDI at all.

For a full working example of direct instantiation please look at the
Instantiate JMS Objects Directly example under the JMS section of the
examples.

Here’s our simple example, rewritten to not use JNDI at all:

We create the JMS ConnectionFactory object via the ActiveMQJMSClient Utility class, note we need
to provide connection parameters and specify which transport we are using, for more information

on connectors please see Configuring the Transport.

TransportConfiguration transportConfiguration = new TransportConfiguration
(NettyConnectorFactory.class.getName());

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactoryWithoutHA
(IMSFactoryType.CF, transportConfiguration);

//We also create the JMS Queue object via the ActiveMQIMSClient Utility
//class:

Queue orderQueue = ActiveMQIMSClient.createQueue("OrderQueue");
//Next we create a JMS connection using the connection factory:
Connection connection = cf.createConnection();

//And we create a non transacted JMS Session, with AUTO_ACKNOWLe.g. //acknowledge
mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
//We create a MessageProducer that will send orders to the queue:
MessageProducer producer = session.createProducer(orderQueue);

//And we create a MessageConsumer which will consume orders from the
//queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

//We make sure we start the connection, or delivery won't occur on it:
connection.start();

//We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

//And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

13.4. Setting The Client ID

This represents the client id for a JMS client and is needed for creating durable subscriptions. It is
possible to configure this on the connection factory and can be set via the clientId element. Any

connection created by this connection factory will have this set as its client id.

13.5. Setting The Batch Size for DUPS_OK

When the JMS acknowledge mode is set to DUPS_OK it is possible to configure the consumer so that it
sends acknowledgements in batches rather that one at a time, saving valuable bandwidth. This can
be configured via the connection factory via the dupsOkBatchSize element and is set in bytes. The
default is 1024 * 1024 bytes = 1 MiB.

13.6. Setting The Transaction Batch Size

When receiving messages in a transaction it is possible to configure the consumer to send
acknowledgements in batches rather than individually saving valuable bandwidth. This can be
configured on the connection factory via the transactionBatchSize element and is set in bytes. The
default is 1024 * 1024.

13.7. Setting The Destination Cache

Many frameworks such as Spring resolve the destination by name on every operation, this can
cause a performance issue and extra calls to the broker, in a scenario where destinations
(addresses) are permanent broker side, such as they are managed by a platform or operations team.
using cacheDestinations element, you can toggle on the destination cache to improve the
performance and reduce the calls to the broker. This should not be used if destinations (addresses)
are not permanent broker side, as in dynamic creation/deletion.

Chapter 14. Extra Acknowledge Modes

JMS specifies 3 acknowledgement modes:

* AUTO_ACKNOWLEDGE
o CLIENT_ACKNOWLEDGE
* DUPS_OK_ACKNOWLEDGE

Apache ActiveMQ Artemis supports two additional modes: PRE_ACKNOWLEDGE and
INDIVIDUAL _ACKNOWLEDGE

In some cases you can afford to lose messages in event of failure, so it would make sense to
acknowledge the message on the server before delivering it to the client.

This extra mode is supported by Apache ActiveMQ Artemis and will call it pre-acknowledge mode.

The disadvantage of acknowledging on the server before delivery is that the message will be lost if
the system crashes after acknowledging the message on the server but before it is delivered to the
client. In that case, the message is lost and will not be recovered when the system restart.

Depending on your messaging case, preAcknowledgement mode can avoid extra network traffic and
CPU at the cost of coping with message loss.

An example of a use case for pre-acknowledgement is for stock price update messages. With these
messages it might be reasonable to lose a message in event of crash, since the next price update
message will arrive soon, overriding the previous price.

Please note, that if you use pre-acknowledge mode, then you will lose transactional

o semantics for messages being consumed, since clearly they are being
acknowledged first on the server, not when you commit the transaction. This may
be stating the obvious but we like to be clear on these things to avoid confusion!

14.1. Using PRE_ACKNOWLEDGE

This can be configured by setting the boolean URL parameter preAcknowledge to true.
Alternatively, when using the JMS API, create a JMS Session with the

ActiveMQSession.PRE_ACKNOWLEDGE constant.

// messages will be acknowledge on the server *before* being delivered to the client
Session session = connection.createSession(false, ActiveMQIMSConstants.
PRE_ACKNOWLEDGE);

14.2. Individual Acknowledge

A valid use-case for individual acknowledgement would be when you need to have your own
scheduling and you don’t know when your message processing will be finished. You should prefer

having one consumer per thread worker but this is not possible in some circumstances depending
on how complex is your processing. For that you can use the individual acknowledgement.

You basically setup Individual ACK by creating a session with the acknowledge mode with
ActiveMQIMSConstants.INDIVIDUAL _ACKNOWLEDGE. Individual ACK inherits all the semantics from Client
Acknowledge, with the exception the message is individually acked.

Please note, that to avoid confusion on MDB processing, Individual

e ACKNOWLEDGE is not supported through MDBs (or the inbound resource
adapter). this is because you have to finish the process of your message inside the
MDB.

14.3. Example

See the Pre-acknowledge Example which shows how to use pre-acknowledgement mode with JMS.

Chapter 15. Versions

This chapter provides the following information for each release:

¢ Alink to the full release notes which includes all issues resolved in the release.
* A brief list of "highlights" when applicable.

* If necessary, specific steps required when upgrading from the previous version.

o If the upgrade spans multiple versions then the steps from each version need to be
followed in order.

e Follow the general upgrade procedure outlined in the Upgrading the Broker
chapter in addition to any version-specific upgrade instructions outlined here.

15.1. 2.33.0

Full release notes

15.1.1. Highlights

» Support for JSON formatted typed properties on CLI producer command

* New CLI command pwd for showing directories related to the current instance
* Maven Bill of Materials (BOM) artemis-bom to simplify integration

» "FirstMessage" API for scheduled messages

* New "view" and "edit" permissions for management operations configurable via security-
settings in broker.xml

* New sslAutoReload parameter for the embedded web server configured in bootstrap.xml to
detect and automatically reload whe SSL stores change on disk

* Performance improvements on mirroring and paging
» Logging metrics to mitigate the risk of missing WARN or ERROR messages in the log.
* Much improved documentation on network isolation (aka split brain)

* Pluggable lock manager (aka pluggable quorum voting) out of "experimental" status and ready
for general use

15.1.2. Upgrading from 2.32.0

* Due to ARTEMIS-4532 the names of addresses and queues related to MQTT topics and
subscriptions respectively may change. This will only impact you if both of the following are
true:

1. The broker is configured to use a wildcard syntax which doesn’t match the MQTT wildcard
syntax (e.g. the default wildcard syntax).

2. You are using characters from the broker’s wildcard syntax in your MQTT topic name or

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354184
https://issues.apache.org/jira/browse/ARTEMIS-4532

filter. For example, if you were using the default wildcard syntax and an MQTT topic named
1.0/group/device. The dot (.) character here is part of the broker’s wildcard syntax, and it is
being used in the name of an MQTT topic.

In this case the characters from the broker’s wildcard syntax that do not match the
characters in the MQTT wildcard syntax will be escaped with a backslash (i.e. \). To avoid
this conversion you can configure the broker to use the MQTT wildcard syntax or change the
name of the MQTT topic name or filter.

Due to ARTEMIS-4559 folks embedding the broker and also depending on the artemis-quorum-ri

and/or artemis-quorum-api modules and/or using
org.apache.activemq.artemis.core.config.ha.DistributedPrimitiveManagerConfiguration will
need to use artemis-lockmanager-ri, artemis-lockmanager-api, and

org.apache.activemq.artemis.core.config.ha.DistributedLockManagerConfiguration respectively.
Previously these were marked as "experimental" in the documentation and were changed
strictly in name to clarify their use conceptually. Furthermore, the documentation around high
availability and network isolation (i.e. split brain) was refactored significantly to be more clear
and comprehensive.

15.2.2.32.0

Full release notes

15.2.1. Highlights

Mirrored Core Messages can now be sent on their native format without conversions
Mirror bug fixes and improvements
ActiveMQ Artemis has now adopted more inclusive language definitions.

The examples are now part of its own repository: https://github.com/apache/activemg-artemis-
examples/

15.2.2. Upgrading from 2.31.x

Due to ARTEMIS-4501 MQTT subscription queues will be automatically removed when the
corresponding session expires, either based on the session expiry interval passed by an MQTT 5
client or based on the configured defaultMqttSessionExpiryInterval for MQTT 3.x clients or
MQTT 5 clients which don’t explicitly pass a session expiry interval.

Prior to this change removing subscription queues relied on the generic auto-delete-* address-
settings.

These settings are now no longer required.
Configure defaultMqttSessionExpiryInterval instead.

Due to ARTEMIS-3474 the following configuration elements have changed wherever they occur
(e.g. broker.xml, bootstrap.xml, etc.), although all the previous configurations will still be
supported for the time being:

https://issues.apache.org/jira/browse/ARTEMIS-4559
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353769
https://issues.apache.org/jira/browse/ARTEMIS-3474
https://github.com/apache/activemq-artemis-examples/
https://github.com/apache/activemq-artemis-examples/
https://issues.apache.org/jira/browse/ARTEMIS-4501
https://issues.apache.org/jira/browse/ARTEMIS-3474

o master — primary

o slave — backup

o check-for-live-server — check-for-active-server
o whitelist — allowlist

o blacklist — denylist
Additionally, references to these elements have also changed in the documentation and in
management interfaces. Cluster topology information (e.g. returned from the
listNetworkTopology) will contain both primary and live entries for nodes functioning as
primary servers.

15.3.2.31.2

Full release notes

15.3.1. Highlights

* Bug Fix

15.4.2.31.1

Full release notes

15.4.1. Highlights

* Bug Fixes and component upgrades

15.5.2.31.0

Full release notes

15.5.1. Highlights

* Introduced an interactive shell for running CLI command as well as Bash & ZSH auto-complete
support.

* Added a CLI cluster verification tool to help monitor broker topologies. Use via the check
cluster command.

* The queuve stat command is now able to to verify the message counts on the entire cluster
topology when clustering is in use.

* Added AMQP Federation support to broker connections.
* MQTT subscription state is now persisted.
« Significantly improved the Paging JDBC Persistence.

e Converted much of the documentation from MarkDown to AsciiDoc. See ARTEMIS-4383 for
more details.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353776
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353642
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353446
https://issues.apache.org/jira/browse/ARTEMIS-4383

* Many other bug fixes and improvements.

15.5.2. Upgrading from 2.30.0

* Due to ARTEMIS-4372 and the introduction of the new Artemis shell feature when you invoke
./artemis it will now start the new shell to navigate through the CLI commands rather than just
spitting out the help text.

15.6. 2.30.0

Full release notes

15.6.1. Highlights

» This is mainly a bug-fix release with a few small improvements and a handful of dependency
upgrades. See the release notes for all the details.

15.7.2.29.0

Full release notes

15.7.1. Highlights

» This version underwent extensive testing and fixes regarding Large Messages, with a few JIRAs
dedicated to this topic. Look on the release notes for more information.

15.7.2. Upgrading from 2.28.0

* Due to ARTEMIS-4151 the default access for MBeans not defined in the role-access or allowlist
of management.xml is now read only. This is a precautionary measure to ensure no unanticipated
MBean deployed with the broker poses a risk. However, this will also impact JVM-specific and
platform MBeans as well (e.g. which allow manual garbage collection, "flight recording," etc.).
Write access and general operational access to these MBeans will now have to be manually
enabled in management.xml either by changing the default-access (not recommended) or
specifically configuring a role-access for the particular MBean in question.

o This applies to all MBean access including directly via JMX and via the Jolokia
JMX-HTTP bridge.

* Due to ARTEMIS-4212 the broker will reject address definitions in broker.xml which don’t
specify a routing type, e.g.:

<address name="myAddress"/>

Such configurations will need to be changed to specify a routing-type, e.g.:

https://issues.apache.org/jira/browse/ARTEMIS-4372
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353357
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353357
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352880&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352880&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-4151
https://issues.apache.org/jira/browse/ARTEMIS-4212

<address name="myAddress">
<anycast/>
</address>

Or

<address name="myAddress">
<multicast/>
</address>

If an address without a routing type is configured the broker will throw an exception like this
and fail to start:

java.lang.I1llegalArqumentException: AMQ229247: Invalid address configuration for
'myAddress'. Address must support multicast and/or anycast.

at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseAddres
sConfiguration(FileConfigurationParser.java:1580)

at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseAddres
ses(FileConfigurationParser.java:1038)

at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseMainCo
nfig(FileConfigurationParser.java:804)

at
org.apache.activemq.artemis.core.config.impl.FileConfiguration.parse(FileConfigurat
ion.java:56)

at
org.apache.activemq.artemis.core.config.FileDeploymentManager.readConfiguration(Fil
eDeploymentManager.java:81)

at
org.apache.activemq.artemis.integration.FileBroker.createComponents(FileBroker.java
:120)

at org.apache.activemq.artemis.cli.commands.Run.execute(Run.java:119)

at org.apache.activemq.artemis.cli.Artemis.internalExecute(Artemis.java:212)

at org.apache.activemq.artemis.cli.Artemis.execute(Artemis.java:162)

at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke@(Native
Method)

at
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessor
Impl.java:62)

at
java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethod
AccessorImpl.java:43)

at java.base/java.lang.reflect.Method.invoke(Method.java:566)

at org.apache.activemq.artemis.boot.Artemis.execute(Artemis.java:144)

at org.apache.activemq.artemis.boot.Artemis.main(Artemis.java:61)

* Due to ARTEMIS-3707 all use of javax.transaction.TransactionManager was removed from the
JCA Resource Adapter. However, this rendered the transactionTimeout activation configuration
property useless. Some existing users rely on this behavior so it has been restored and properly
deprecated for future removal.

15.8. 2.28.0

Full release notes

15.8.1. Highlights

* Bug Fixes and improvements as usual
* ARTEMIS-4136 Mirror sync replication

o Mirror now has an option to set sync=true. Blocking operations from clients will wait a
round trip on the mirror.

* ARTEMIS-4065 Paging Counter Journal Records were removed

- We don’t store page counters records on the journal any longer what should simplify
operation and improve performance.

15.8.2. Upgrading from 2.27.0

* Due to ARTEMIS-3871 the naming pattern used for MQTT shared subscription queues has
changed. Previously the subscription queue was named according to the subscription name
provided in the MQTT SUBSCRIBE packet. However, MQTT allows the same name to be used
across multiple subscriptions whereas queues in the broker must be named uniquely. Now the
subscription queue will be named according to the subscription name and topic name so that all
subscription queue names will be unique. Before upgrading please ensure all MQTT shared
subscriptions are empty. When the subscribers reconnect they will get a new subscription
queue. If they are not empty you can move the messages to the new subscription queue
administratively.

15.9.2.271

Full release notes

15.9.1. Highlights

* Bug Fixes

* AMQP Large Message over Bridges were broken

Rollback of massive transactions would take a long time to process

* Improvements to auto-create and auto-delete queues.

https://issues.apache.org/jira/browse/ARTEMIS-3707
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352523&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-4136
https://issues.apache.org/jira/browse/ARTEMIS-4065
https://issues.apache.org/jira/browse/ARTEMIS-3871
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352610&projectId=12315920

15.10. 2.27.0

Full release notes

15.10.1. Highlights

* 2.27.0 Introduced a new upgrade tool to help migrating your instance to a newer version.
* The client and broker now use SLF4] for their logging API.

* The broker distribution now uses Log4] 2 as its logging implementation.

15.10.2. Upgrading from 2.26.0

Client applications wanting logging will now need to supply an appropriate SLF4]-supporting
logging implementation configured appropriately for their needs. See client application logging for
more information plus an example around using Log4] 2.

The broker distribution now includes and configures Log4] 2 as its logging implementation, see
logging for more details. If upgrading an existing broker instance rather than creating a new
instance, some configuration etc updates will be necessary for the brokers existing instance /etc and
/bin files.

You can use the new upgrade helper tool from the newly downloaded broker to refresh various
configuration files and scripts for an existing broker instance. The broker.xml and data are left in
place as-is.

A You should back up your existing broker instance before running the command.

The command can be executed by running ./artemis upgrade <path-to-your-instance> from the
new downloaded broker home.

Most existing customisations to the old configuration files and scripts will be lost
in the process of refreshing the files. As such you should compare the old
configuration files with the refreshed ones and then port any missing
customisations you may have made as necessary. The upgrade command itself will

o copy the older files it changes to an old-config-bkp. folder within the instance
directory.

Similarly, if you had customised the old logging.properties file you may need to
prepare analogous changes for the new log4j2.properties file.

Note also that the configuration-file-refresh-period setting in broker.xml no longer covers logging
configuration refresh. Log4] 2 has its own configuration reload handling, configured via the
monitorInterval property within the Log4] configuration file itself. The default
<instance>/etc/log4j2.properties file created has a 5 second monitorInterval value set to align with
the prior default broker behaviour.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352246&projectId=12315920
https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/manual/

15.10.3. Manual update

Alternatively, rather than using the upgrade helper command as outlined above, you can instead
perform the update manually, following the general upgrading procedure plus the additional steps
below:

1. The new <instance>/etc/log4j2.properties file should be created with Log4] 2 configuration.
The file used by the "artemis create” CLI command can be downloaded from: log4j2.properties
2. The old <instance>/etc/logging.properties JBoss Logging configuration file should be deleted.

3. Related startup script or profile cleanups are needed: a diff file demonstrating the changes
needed since 2.26.0 is available here for *nix or here for Windows.

15.11. 2.26.0

Full release notes

15.11.1. Highlights

* Bug fixes and improvements

15.11.2. Upgrading from 2.25.0

1. Due to ARTEMIS-4006 the artemis-jms-client-all and artemis-jakarta-client-all clients were
removed from the 1ib/client directory in the binary distribution. If you use these libraries they
can be found at Maven Central (e.g. here). Please refer to the client class path documentation for
more information.

2. We removed the REST interface from the code-base and documentation. If you still require the
REST interface you can access the latest version which is still viable. You can still follow the
steps from the previous documentation to build and deploy the interface. However, you should
stop using it as it will not be maintained any more.

3. Due to ARTEMIS-3980 the web content was removed from the binary distribution. We now
redirect web requests with the root target to the administration console. To enable this new
redirect behavior on current instances you have to update bootstrap.xml. Change:

<web path="web">
to:
<web path="web" rootRedirectLocation="console">

If you used to customize the index page or to add custom content in the web folder please refer
to the web-server documentation for more information on disabling the redirect and enabling
the web content.

https://github.com/apache/activemq-artemis/blob/2.27.0/artemis-cli/src/main/resources/org/apache/activemq/artemis/cli/commands/etc/log4j2.properties
02-27-00-scripts-profiles.diff
02-27-00-scripts-profiles-windows.diff
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352297&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-4006
https://repo1.maven.org/maven2/org/apache/activemq/artemis-jms-client-all/
https://mvnrepository.com/artifact/org.apache.activemq.rest/artemis-rest/2.25.0
https://activemq.apache.org/components/artemis/documentation/2.25.0/rest.html
https://issues.apache.org/jira/browse/ARTEMIS-3980

15.12. 2.25.0

Full release notes

15.12.1. Highlights

* Improvement on Paging Flow Control

* Many other bug fixes and improvements

15.13. 2.24.0

Full release notes

15.13.1. Highlights

 Streamlined page caches and files are just read into queues without the need of soft caches.

15.13.2. Upgrading from 2.23.0

1. Due to ARTEMIS-3851 the queue created for an MQTT 3.x subscriber using CleanSession=1 is
now non-durable rather than durable. This may impact security-settings for MQTT clients
which previously only had createDurableQueve for their role. They will now need
createNonDurableQueue as well. Again, this only has potential impact for MQTT 3.x clients using
CleanSession=1.

2. Due to ARTEMIS-3892 the username assigned to queues will be based on the validated user
rather than just the username submitted by the client application. This will impact use-cases
like the following:

a. When login.config is configured with the GuestLoginModule which causes some users to be
assigned a specific username and role during the authentication process.

b. When login.config is configured with the CertificateLoginModule which causes users to be
assigned a username and role corresponding to the subject DN from their SSL certificate.

In these kinds of situations the broker will use this assigned (i.e. validated) username for any

queues created with the connection. In the past the queue’s username would have been left

blank.

15.14. 2.23.1

Full release notes

15.14.1. Highlights

* ARTEMIS-3856 - Failed to change channel state to ReadyForWriting
java.util.ConcurrentModificationException

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352143&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351822&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-3851
https://issues.apache.org/jira/browse/ARTEMIS-3892
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351846&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-3856

15.15. 2.23.0

Full release notes.

15.15.1. Highlights

* management operations for the embedded web server.
» JakartaEE 10 Support

* BugFix: High cpu usage on ReadWrite locks

15.16. 2.22.0

Full release notes.

15.16.1. Highlights

* The default producer-window-size on cluster-connection was changed to 1MB to mitigate
potential OutOfMemoryErrors in environments with with high latency networking.

15.17. 2.21.0

Full release notes.

15.17.1. Highlights

* MQTT 5 is now supported.

* A new set of performance tools are now available to evaluate throughput and Response Under
Load performance of Artemis

 Diverts now support multiple addresses
* Runtime configuration reloading now supports bridges.

» Paging can now be configured by message count.

15.17.2. Upgrading from 2.20.0

1. Due to XML schema changes to correct an inaccurate domain name 2 files will need to be
updated:

a. etc/bootstrap.xml

b. etc/management.xml

In both files change the XML namespace from activemg.org to activemq.apache.org, e.g. in
bootsrap.xml use:

<broker xmlns="http://activemq.apache.org/schema">

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12351677
https://issues.apache.org/jira/browse/ARTEMIS-3700
https://issues.apache.org/jira/browse/ARTEMIS-3848
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12351488
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351083&projectId=12315920

2.

And in management.xml use:

<management-context xmlns="http://activemq.apache.org/schema">

If you’re using JDBC persistence then due to the changes in ARTEMIS-3679 you’ll need to
update your database. The column HOLDER_EXPIRATION_TIME on the NODE_MANAGER_STORE changed
from a TIMESTAMP to a BIGINT (or NUMBER(19) on Oracle). You will have to stop any broker that is
accessing that table and either drop it or execute the proper ALTER TABLE statement for your
database. If you drop the table then it will be automatically recreated when broker restarts and
repopulated with a new, auto-generated node ID.

If you’re using JGroups then due to the changes in ARTEMIS-2413 where JGroups was updated
from 3.x to 5.x you will need to update your JGroups configuration. Many of the protocols have
changed, and there’s no automated tool to bring legacy configurations up to date so please refer
to the JGroups documentation for more details on the new configuration. You can find example
configurations in the JGroups repository (e.g. tcp.xml and udp. xml).

15.18. 2.20.0

Full release notes.

15.18.1. Highlights

Java 11 is now required.

15.19. 2.19.0

Full release notes.

15.19.1. Highlights

New ability to replay retained journal records via the management API.

New environment/system property to set the "key" for masked passwords when using the
default codec.

Ability to disable message-load-balancing and still allow redistribution via the new
OFF_WITH_REDISTRIBUTION type.

MQTT session state can now be cleaned up automatically to avoid excessive accumulation in
situations where client’s don’t clean up their own sessions.

Distribute full Jakarta Messaging 3.0 client in the 1lib/client directory along with a new
example of how to use it in examples/features/standard/queue-jakarta.

15.20. 2.18.0

Full release notes.

https://issues.apache.org/jira/browse/ARTEMIS-3679
https://issues.apache.org/jira/browse/ARTEMIS-2413
http://jgroups.org/manual5/index.html#protlist
https://github.com/belaban/JGroups/tree/master/conf
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12350581&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12350519
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12349689

15.20.1. Highlights

Dual Mirror support improving capabilities on AMQP Mirror for Disaster Recovery
Journal Retention

Replication integrated with ZooKeeper

Connection Routers

Concurrency configuration for core bridges.

XPath filter expressions (for parity with ActiveMQ "Classic").

15.20.2. Upgrading from 2.17.0

1.

Due to ARTEMIS-3367 the default setting for verifyHost on core connectors has been changed
from false to true. This means that core clients will now expect the CN or Subject Alternative
Name values of the broker’s SSL certificate to match the hostname in the client’s URL.

This impacts all core-based clients including core JMS clients and core connections between
cluster nodes. Although this is a "breaking" change, not performing hostname verification is a
security risk (e.g. due to man-in-the-middle attacks). Enabling it by default aligns core client
behavior with industry standards. To deal with this you can do one of the following:

- Update your SSL certificates to use a hostname which matches the hostname in the client’s
URL. This is the recommended option with regard to security.

o Update any connector using sslEnabled=true to also use verifyHost=false. Using this option
means that you won’t get the extra security of hostname verification, but no certificates will
need to change. This essentially restores the previous default behavior.

For additional details about please refer to section 3.1 of RFC 2818 "HTTP over TLS".

Due to ARTEMIS-3117 SSL Kkeystore and truststores are no longer reloaded automatically.
Previously an instance of javax.net.ssl.SSLContext was created for every connection. This
would implicitly pick up any changes to the keystore and truststore for any new connection.
However, this was grossly inefficient and therefore didn’t scale well with lots of connections.
The behavior was changed so that just one javax.net.ssl.SSLContext is created for each
acceptor. However, one can still reload keystores & truststores from disk without restarting the
broker. Simply use the reload management operation on the acceptor. This is available via JMX,
the web console, Jolokia, etc.

Here’s an example curl command you can use with Jolokia to invoke the artemis acceptor’s
reload operation:

curl --user admin:admin --header "Content-Type: application/json" --request POST

--data '{"type":"exec",

"mbean":"org.apache.activemq.artemis:broker=\"0.0.0.0\",component=acceptors,name=\"
artemis\"", "operation":"reload"}' http://localhost:8161/console/jolokia/exec

Of course you’ll want to adjust the username & password as well as the broker and acceptor
names for your environment.

https://issues.apache.org/jira/browse/ARTEMIS-3367
https://datatracker.ietf.org/doc/html/rfc2818#section-3.1
https://issues.apache.org/jira/browse/ARTEMIS-3117

3. The "rate" metric for queues was removed from the web console via ARTEMIS-3397. This was a
follow-up from ARTEMIS-2909 in 2.16.0 (referenced in the upgrade instructions below). The
"rate” metric mistakenly left visible on the web console after it was removed from the
management API.

4. Due to ARTEMIS-3141, ARTEMIS-3128, & ARTEMIS-3175 the data returned for any "list" or
"browse" management method which return message data, including those exposed via the web
console, will have their return data truncated by default. This is done to avoid adverse
conditions with large volumes of message data which could potentially negatively impact
broker stability. The management-message-attribute-size-limit address-setting controls this
behavior. If you wish to restore the previous (and potentially dangerous behavior) then you can
specify -1 for this. It is 256 by default.

15.21. 2.17.0

Full release notes.

15.21.1. Highlights

* Message-level authorization similar to ActiveMQ "Classic".
* A count of addresses and queues is now available from the management API.

* You can now reload the broker’s configuration from disk via the management API rather than
waiting for the periodic disk scan to pick it up

* Performance improvements on libaio journal.

* New command-line option to transfer messages.

* Performance improvements for the wildcard address manager.

» JDBC datasource property values can now be masked.

* Lots of usability improvements to the Hawtio 2 based web console introduced in 2.16.0

* New management method to create a core bridge using JSON-based configuration input.

* Jakarta Messaging 2.0 & 3.0 artifacts for Jakarta EE 8 & 9 respectively.

15.22. 2.16.0

Full release notes.

15.22.1. Highlights

* Configurable namespace for temporary queues
* AMQP Server Connectivity
» "Basic" SecurityManager implementation that supports replication

* Consumer window size support for individual STOMP clients

Improved JDBC connection management

« New web console based on Hawtio 2

https://issues.apache.org/jira/browse/ARTEMIS-3397
https://issues.apache.org/jira/browse/ARTEMIS-2909
https://issues.apache.org/jira/browse/ARTEMIS-3141
https://issues.apache.org/jira/browse/ARTEMIS-3128
https://issues.apache.org/jira/browse/ARTEMIS-3175
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12349326
https://blogs.apache.org/activemq/entry/activemq-artemis-embraces-jakarta-ee
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348718

* Performance optimizations (i.e. caching) for authentication and authorization

» Support for admin objects in the JCA resource adapter to facilitate deployment into 3rd-party
Java EE application servers

* Ability to prevent an acceptor from automatically starting

15.22.2. Upgrading from 2.15.0

1. Due to ARTEMIS-2893 the fundamental way user management was implemented had to change
to avoid data integrity issues related to concurrent modification. From a user’s perspective two
main things changed:

a. User management is no longer possible using the artemis user commands when the broker
is offline. Of course users are still free to modify the properties files directly in this
situation.

b. The parameters of the artemis user commands changed. Instead of using something like
this:

./artemis user add --user guest --password guest --role admin
Use this instead:

./artemis user add --user-command-user guest --user-command-password guest
--role admin

In short, use user-command-user in lieu of user and user-command-password in lieu of password.
Both user and password parameters now apply to the connection used to send the command
to the broker.

For additional details see ARTEMIS-2893 and ARTEMIS-3010

2. Due to ARTEMIS-2909 the "rate" metric was removed from the management API for queues. In
short, the org.apache.activemqg.artemis.core.server.Queue#getRate method is for slow-consumer
detection and is designed for internal use only.

Furthermore, it’s too opaque to be trusted by a remote user as it only returns the number of
message added to the queue since the last time it was called. The problem here is that the user
calling it doesn’t know when it was invoked last. Therefore, they could be getting the rate of
messages added for the last 5 minutes or the last 5 milliseconds. This can lead to inconsistent
and misleading results.

There are three main ways for users to track rates of message production and consumption (in
recommended order):

a. Use a metrics plugin. This is the most feature-rich and flexible way to track broker metrics,
although it requires tools (e.g. Prometheus) to store the metrics and display them (e.g.
Grafana).

https://issues.apache.org/jira/browse/ARTEMIS-2893
https://issues.apache.org/jira/browse/ARTEMIS-2893
https://issues.apache.org/jira/browse/ARTEMIS-3010
https://issues.apache.org/jira/browse/ARTEMIS-2909

b. Invoke the getMessageCount() and getMessagesAdded() management methods and store the
returned values along with the time they were retrieved. A time-series database is a great
tool for this job. This is exactly what tools like Prometheus do. That data can then be used to
create informative graphs, etc. using tools like Grafana. Of course, one can skip all the tools
and just do some simple math to calculate rates based on the last time the counts were
retrieved.

c. Use the broker’s message counters. Message counters are the broker’s simple way of
providing historical information about the queue. They provide similar results to the
previous solutions, but with less flexibility since they only track data while the broker is up
and there’s not really any good options for graphing.

15.23. 2.15.0

Full release notes.

15.23.1. Highlights

* Ability to use FQQN syntax for both security-settings and JNDI lookup
» Support pausing dispatch during group rebalance (to avoid potential out-of-order consumption)

» Socks5h support

15.24. 2.14.0

Full release notes.

15.24.1. Highlights

* Management methods to update diverts

 Ability to "disable" a queue so that messages are not routed to it

Support JVM GC & thread metrics
» Support for resetting queue properties by unsetting them in broker.xml

* Undeploy diverts by removing them from broker.xml

Add addressMemoryUsagePercentage and addressSize as metrics

15.24.2. Upgrading from 2.13.0

This is likely a rare situation, but it’s worth mentioning here anyway. Prior to 2.14.0 if you
configured a parameter on a queue in broker.xml (e.g. max-consumers) and then later removed that
setting the configured value you set would remain. This has changed in 2.14.0 via ARTEMIS-2797.
Any value that is not explicitly set in broker.xml will be set back to either the static default or the
dynamic default configured in the address-settings (e.g. via default-max-consumers in this example).
Therefore, ensure any existing queues have all the needed parameters set in broker.xml values
before upgrading.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348568
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348290

15.25.2.13.0

Full release notes.

15.25.1. Highlights

* Management methods for an address' duplicate ID cache to check the cache’s size and clear it
* Support for min/max expiry-delay

» Per-acceptor security domains

* Command-line check tool for checking the health of a broker

» Support disabling metrics per address via the enable-metrics address setting

* Improvements to the audit logging

» Speed optimizations for the HierarchicalObjectRepository, an internal object used to store
address and security settings

15.25.2. Upgrading from 2.12.0

Version 2.13.0 added new audit logging which is logged at INFO level and can be very verbose. The
logging.properties shipped with this new version is set up to filter this out by default. If your
logging.properties isn’t updated appropriately this audit logging will likely appear in your console
and artemis.log file assuming you’re using a logging configuration close to the default. Add this to
your logging.properties:

to enable audit change the level to INFO
logger.org.apache.activemqg.audit.base.level=ERROR
logger.org.apache.activemq.audit.base.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.base.useParentHandlers=false

logger.org.apache.activemg.audit.resource.level=ERROR
logger.org.apache.activemq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false

logger.org.apache.activemq.audit.message.level=ERROR
logger.org.apache.activemg.audit.message.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.message.useParentHandlers=false

#Audit logger
handler.AUDIT_FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler
handler.AUDIT_FILE.level=INFO
handler.AUDIT_FILE.properties=suffix,append,autoFlush,fileName
handler.AUDIT_FILE.suffix=.yyyy-MM-dd

handler .AUDIT_FILE.append=true

handler.AUDIT _FILE.autoFlush=true
handler.AUDIT_FILE.fileName=${artemis.instance}/log/audit.log

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348088

handler .AUDIT_FILE.formatter=AUDIT_PATTERN

formatter.AUDIT_PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.AUDIT_PATTERN.properties=pattern
formatter.AUDIT_PATTERN.pattern=%d [AUDIT](%t) %s%E%n

15.26. 2.12.0

Full release notes.

15.26.1. Highlights

* Support for SOCKS proxy

» Real large message support for AMQP

* Automatic creation of dead-letter resources akin to ActiveMQ 5’s individual dead-letter strategy
» Automatic creation of expiry resources

» Improved API for queue creation

* Allow users to override JAVA_ARGS via environment variable

* Reduce heap usage during journal loading during broker start-up

* Allow server header in STOMP CONNECTED frame to be disabled

» Support disk store used percentage as an exportable metric (e.g. to be monitored by tools like
Prometheus, etc.)

* Ability to configure a "customizer" for the embedded web server

* Improved logging for errors when starting an acceptor to more easily identify the acceptor
which has the problem.

e The CLI will now read the broker.xml to find the default connector URL for commands which
require it (e.g. consumer, producer, etc.)

15.27.2.11.0

Full release notes.

15.27.1. Highlights

* Support retroactive addresses.
» Support downstream federated queues and addresses.

* Make security manager configurable via XML.

Support pluggable SSL TrustManagerFactory.

Add plugin support for federated queues/addresses.

» Support com.sun.jndi.ldap.read.timeout in LDAPLoginModule.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12346675
https://www.eclipse.org/jetty/javadoc/9.4.26.v20200117/org/eclipse/jetty/server/HttpConfiguration.Customizer.html
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12346258

15.28. 2.10.0

Full release notes.

This was mainly a bug-fix release with a notable dependency change impacting version upgrade.

15.28.1. Upgrading from 2.9.0

Due to the WildFly dependency upgrade the broker start scripts/configuration need to be adjusted
after upgrading.

On *nix

Locate this statement in bin/artemis:
WILDFLY_COMMON="$ARTEMIS_HOME/1ib/wildfly-common-1.5.1.Final.jar"
This needs to be replaced with this:

WILDFLY_COMMON="$ARTEMIS_HOME/1ib/wildfly-common-1.5.2.Final.jar"

On Windows

Locate this part of JAVA_ARGS in etc/artemis.profile.cmd respectively bin/artemis-service.xml:
%ARTEMIS_HOME%\1ib\wildfly-common-1.5.1.Final.jar
This needs to be replaced with this:

%ARTEMIS_HOME%\1ib\wildfly-common-1.5.2.Final.jar

15.29.2.9.0

Full release notes.

This was a light release. It included a handful of bug fixes, a few improvements, and one major new
feature.

15.29.1. Highlights

* Support exporting metrics.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345602
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345527

15.30. 2.8.1

Full release notes.

This was mainly a bug-fix release with a notable dependency change impacting version upgrade.

15.30.1. Upgrading from 2.8.0

Due to the dependency upgrade made on ARTEMIS-2319 the broker start scripts need to be adjusted
after upgrading.

On *nix
Locate this if statement in bin/artemis:
if [-z "$LOG_MANAGER"] ; then
this is the one found when the server was created

LOG_MANAGER="$ARTEMIS_HOME/1ib/jboss-1logmanager-2.0.3.Final.jar"
fi

This needs to be replaced with this block:

if [-z "$L0OG_MANAGER"] ; then

this is the one found when the server was created
LOG_MANAGER="$ARTEMIS_HOME/1ib/jboss-logmanager-2.1.10.Final.jar"
fq

WILDFLY_COMMON="1s $ARTEMIS_HOME/1ib/wildfly-common*jar 2>/dev/null’
if [-z "$WILDFLY_COMMON"] ; then
this is the one found when the server was created

WILDFLY_COMMON="$ARTEMIS_HOME/1ib/wildfly-common-1.5.1.Final.jar"
fi

Notice that the jboss-logmanager version has changed and there is also a new wildfly-common library.

Not much further down there is this line:
-Xbootclasspath/a: "$L0G_MANAGER" \
This line should be changed to be:

-Xbootclasspath/a:"$L0G_MANAGER: SWILDFLY_COMMON" \

On Windows

Locate this part of JAVA_ARGS in etc/artemis.profile.cmd respectively bin/artemis-service.xml:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345432
https://issues.apache.org/jira/browse/ARTEMIS-2319

-Xbootclasspath/a:%ARTEMIS_HOME%\1ib\jboss-logmanager-2.1.10.Final.jar

This needs to be replaced with this:

-Xbootclasspath/a:%ARTEMIS_HOME%\11ib\jboss-1logmanager
-2.1.10.Final.jar;%ARTEMIS_HOME%\1ib\wildfly-common-1.5.7.Final.jar

15.31. 2.8.0

Full release notes.

15.31.1. Highlights

Support ActiveMQ5 feature JMSXGroupFirstForConsumer.
Clarify handshake timeout error with remote address.

Support duplicate detection for AMQP messages the same as core.

15.32. 2.7.0

Full release notes.

15.32.1. Highlights

Support advanced destination options like consumersBeforeDispatchStarts and
timeBeforeDispatchStarts from 5.x.

Add support for delays before deleting addresses and queues via auto-delete-queues-delay and
auto-delete-addresses-delay Address Settings.

Support logging HTTP access.

Add a CLI command to purge a queue.

Support user and role manipulation for PropertiesLoginModule via management interfaces.
Docker images.

Audit logging.

Implementing consumer priority.

Support FQQN for producers.

Track routed and unrouted messages sent to an address.

Support connection pooling in LDAPLoginModule.

Support configuring a default consumer window size via default-consumer-window-size Address
Setting.

Support masking key-store-password and trust-store-password in management.xml.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345169
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342977
https://github.com/apache/activemq-artemis/tree/main/artemis-docker

Support JMSXGroupSeq -1 to close/reset message groups from 5.x.
» Allow configuration of RMI registry port.
* Support routing-type configuration on core bridge.

* Move artemis-native as its own project, as activemg-artemis-native.

Support federated queues and addresses.

15.33.2.6.4

Full release notes.

This was mainly a bug-fix release with a few improvements a couple notable new features:

15.33.1. Highlights

» Added the ability to set the text message content on the producer CLI command.

» Support reload logging configuration at runtime.

15.34. 2.6.3

Full release notes.

This was mainly a bug-fix release with a few improvements but no substantial new features.

15.35. 2.6.2

Full release notes.

This was a bug-fix release with no substantial new features or improvements.

15.36. 2.6.1

Full release notes.

This was a bug-fix release with no substantial new features or improvements.

15.37.2.6.0

Full release notes.

15.37.1. Highlights

» Support regular expressions for matching client certificates.
» Support SASL_EXTERNAL for AMQP clients.

* New examples showing virtual topic mapping and exclusive queue features.

https://github.com/apache/activemq-artemis-native
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12344010
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343472
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343404
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343356
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342903

15.38. 2.5.0

Full release notes.

15.38.1. Highlights

Exclusive consumers.

Equivalent ActiveMQ "Classic" Virtual Topic naming abilities.
SSL Certificate revocation list.

Last-value queue support for OpenWire.

Support masked passwords in bootstrap.xm and login.config

Configurable broker plugin implementation for logging various broker events (i.e.
LoggingActiveMQServerPlugin).

Option to use OpenSSL provider for Netty via the ss1Provider URL parameter.
Enable splitting of broker.xml into multiple files.

Enhanced message count and size metrics for queues.

15.38.2. Upgrading from 2.4.0

1.

Due to changes from ARTEMIS-1644 any acceptor that needs to be compatible with HornetQ
and/or Artemis 1.x clients needs to have anycastPrefix=jms.queuve.;multicastPrefix=jms.topic.
in the acceptor url. This prefix used to be configured automatically behind the scenes when the
broker detected these old types of clients, but that broke certain use-cases with no possible
work-around. See ARTEMIS-1644 for more details.

15.39.2.4.0

Full release notes.

15.39.1. Highlights

JMX configuration via XML rather than having to use system properties via command line or
start script.

Configuration of max frame payload length for STOMP web-socket.
Ability to configure HA using JDBC persistence.

Implement role-based access control for management objects.

15.39.2. Upgrading from 2.3.0

1

Create <ARTEMIS_INSTANCE>/etc/management.xml. At the very least, the file must contain this:

<management-context xmlns="http://activemq.apache.org/schema"/>

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342127
https://issues.apache.org/jira/browse/ARTEMIS-1644
https://issues.apache.org/jira/browse/ARTEMIS-1644
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12341540

This configures role based authorisation for JMX. Read more in the Management
documentation.

If configured, remove the Jolokia war file from the web element in
<ARTEMIS_INSTANCE>/etc/bootstrap.xml:

<app url="jolokia" war="jolokia.war"/>

This is no longer required as the Jolokia REST interface is now integrated into the console web
application.

If the following is absent and you desire to deploy the web console then add:

<app url="console" war="console.war"/>

o the Jolokia REST interface URL will now be at http://<host>:<port>/console/
jolokia

15.40. 2.3.0

Full release notes.

15.40.1. Highlights

Web admin console!
Critical Analysis and deadlock detection on broker
Support Netty native kqueue on Mac.

Last-value queue for AMQP

15.40.2. Upgrading from 2.2.0

1.

If you desire to deploy the web console then add the following to the web element in
<ARTEMIS_INSTANCE>/etc/bootstrap.xml:

<app url="console" war="console.war"/>

15.41. 2.2.0

Full release notes.

15.41.1. Highlights

Scheduled messages with the STOMP protocol.

http://<host>:<port>/console/jolokia
http://<host>:<port>/console/jolokia
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12341247
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12340541

» Support for JNDIReferenceFactory and JNDIStorable.
* Ability to delete queues and addresses when broker.xml changes.

* Client authentication via Kerberos TLS Cipher Suites (RFC 2712).

2.1.0

Full release notes.

15.41.2. Highlights

* Broker plugin support.
» Support Netty native epoll on Linux.
* Ability to configure arbitrary security role mappings.

* AMQP performance improvements.

15.42.2.0.0

Full release notes.

15.42.1. Highlights

* Huge update involving a significant refactoring of the addressing model yielding the following
benefits:

o Simpler and more flexible XML configuration.
o Support for additional messaging use-cases.

- Eliminates confusing JMS-specific queue naming conventions (i.e. "jms.queue." & "jms.topic."
prefixes).

* Pure encoding of messages so protocols like AMQP don’t need to convert messages to "core"
format unless absolutely necessary.

* "MAPPED" journal type for increased performance in certain use-cases.

15.43.1.5.6
Full release notes.
15.43.1. Highlights

* Bug fixes.

15.44.1.5.5

Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339963
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338813
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12340547
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339947

15.44.1. Highlights

* Bug fixes.

15.45.1.5.4

Full release notes.

15.45.1. Highlights

» Support Oracle12C for JDBC persistence.

* Bug fixes.

15.46.1.5.3

Full release notes.

15.46.1. Highlights

» Support "byte notation" (e.g. "K", "KB", "Gb", etc.) in broker XML configuration.
* CLI command to recalculate disk sync times.

* Bug fixes.

15.47.1.5.2

Full release notes.

15.47.1. Highlights

» Support for paging using JDBC.

* Bug fixes.

15.48.1.5.1

Full release notes.

15.48.1. Highlights

» Support outgoing connections for AMQP.

* Bug fixes.

15.49.1.5.0

Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339158
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339575
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338833
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338661
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338118

15.49.1. Highlights

* AMQP performance improvements.

* JUnit rule implementation so messaging resources like brokers can be easily configured in tests.

Basic CDI integration.

Store user’s password in hash form by default.

15.50.1.4.0

Full release notes.

15.50.1. Highlights

"Global" limit for disk usage.

Detect and reload certain XML configuration changes at runtime.

MQTT interceptors.

Support adding/deleting queues via CLI.

New "browse" security permission for clients who only wish to look at messages.
Option to populate JMSXUserlID.

"Dual authentication" support to authenticate SSL-based and non-SSL-based clients differently.

15.51.1.3.0

Full release notes.

15.51.1. Highlights

Better support of OpenWire features (e.g. reconnect, producer flow-control, optimized
acknowledgements)

SSL keystore reload at runtime.
Initial support for JDBC persistence.

Support scheduled messages on last-value queue.

15.52.1.2.0

Full release notes.

15.52.1. Highlights

Improvements around performance
OSGi support.

Support functionality equivalent to all 5.x JAAS login modules including:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12336052
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12328978
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12333274

o

Properties file
- LDAP
o SSL certificate

o "Guest"

15.53.1.1.0

Full release notes.

15.53.1. Highlights

* MQTT support.

» The examples now use the CLI programmatically to create, start, stop, etc. servers reflecting real
cases used in production.

* CLI improvements. There are new tools to compact the journal and additional improvements to
the user experience.

* Configurable resource limits.

Ability to disable server-side message load-balancing.

15.54.1.0.0

Full release notes.

15.54.1. Highlights

* First release of the donated code-base as ActiveMQ Artemis!
* Lots of features for parity with ActiveMQ "Classic" including:

o OpenWire support

o

AMQP 1.0 support

URL based connections

o

o Auto-create addresses/queues

> Jolokia integration

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12332642&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12328953
https://lists.apache.org/thread/7y4o61zzk5y9bdjqsho2p6k7860kmzbt

Chapter 16. Upgrading the Broker

Apache ActiveM(Q "Classic" (and previous versions) is runnable out of the box by executing the
command: ./bin/activemq run. The ActiveMQ Artemis broker follows a different paradigm where
the project distribution serves as the broker "home" and one or more broker "instances" are created
which reference the "home" for resources (e.g. jar files) which can be safely shared between broker
instances. Therefore, an instance of the broker must be created before it can be run. This may
seems like an overhead at first glance, but it becomes very practical when updating to a new
Artemis version for example.

To create an Artemis broker instance navigate into the Artemis home folder and run: ./bin/artemis
create /path/to/myBrokerInstance on the command line.

Because of this separation it’s very easy to upgrade Artemis in most cases.

It’s recommended to choose a folder different from where Apache Artemis was

o downloaded. This separation allows you run multiple broker instances with the
same Artemis "home" for example. It also simplifies updating to newer versions of
Artemis.

16.1. General Upgrade Procedure

Upgrading may require some specific steps noted in the versions, but the general process is as
follows:

1. Navigate to the etc folder of the broker instance that’s being upgraded

2. Open artemis.profile (artemis.profile.cmd on Windows). It contains a property which is
relevant for the upgrade:

ARTEMIS_HOME="/path/to/apache-artemis-version'

If you run Artemis as a service on windows you have to do the following additional steps:

1. Navigate to the bin folder of the broker instance that’s being upgraded

2. Open artemis-service.xml. It contains a property which is relevant for the upgrade:
<env name="ARTEMIS_HOME" value="/path/to/apache-artemis-version"/>

The ARTEMIS_HOME property is used to link the instance with the home. In most cases the instance can
be upgraded to a newer version simply by changing the value of this property to the location of the
new broker home. Please refer to the aforementioned versions document for additional upgrade
steps (if required).

It is also possible to do many of these update steps automatically as can be seen in the next section.

16.2. Upgrading tool

An upgrade helper tool from the new broker download can be used to refresh various
configuration files and scripts from an existing broker instance from a prior version, and thus
automate much of work to upgrade the instance to use the new version.

A You should back up your existing broker instance before running the command.

cd $NEW_ARTEMIS_DOWNLOAD/bin/
./artemis upgrade PATH_TO_UPGRADING_INSTANCE

The Dbroker instance bin/artemis script and etc/artemis.profile(artemis.cmd and
artemis.cmd.profile on Windows) will be updated to the new versions, setting its ARTEMIS_HOME
to refer to the new broker version home path. The tool will also create the new
<instance>/etc/log4j2.properties configuration file if needed (e.g if you are migrating from a
version prior to 2.27.0), and remove the old <instance>/etc/logging.properties file if present.

The broker.xml file and data are retained as-is.

Most existing customisations to the old configuration files and scripts will be lost
in the process of refreshing the files. As such you should compare the old
configuration files with the refreshed ones and then port any missing
A customisations you may have made as necessary. The upgrade command itself will
copy the older files it changes to an old-config-bkp. folder within the instance dir.

Similarly, if you had customised the old logging.properties file you may need to
prepare analogous changes for the new log4j2.properties file.

Chapter 17. Docker

One of the simplest ways to get started with ActiveMQ Artemis is by using one of our Docker
images.

17.1. Official Images

Official Docker images are available on dockerhub. Images are pushed along with all the other
distribution artifacts for every release. The fastest, simplest way to get started is with this command
which will create and start a detached container named mycontainer, expose the main messaging
port (i.e. 61616) and HTTP port (i.e. 8161), and remove it when it terminates:

$ docker run --detach --name mycontainer -p 61616:61616 -p 8161:8161 --rm
apache/activemg-artemis:latest-alpine

Once the broker starts you can open the web management console at http://localhost:8161 and log
in with the default username & password artemis.

You can also use the shell command to interact with the running broker using the default
username & password artemis, e.g.:

$ docker exec -it mycontainer /var/lib/artemis-instance/bin/artemis shell --user
artemis --password artemis

Using the shell command you can execute basic tasks like creating & deleting addresses and
queues, sending and browsing messages, viewing queue statistics, etc. See the Command Line
Interface chapter for more details.

You can view the container’s logs using:
$ docker logs -f mycontainer

Stop the container using:
$ docker stop mycontainer

The official Docker images are built using these scripts which you can also use to build your own
images. Read on for more details.

17.2. Build your own Image

In order to build an image you need an ActiveMQ Artemis binary distribution. This can be sourced
locally (in which case you need to build the project first) or remotely based on an official Apache
release.

https://www.docker.com/
https://hub.docker.com/r/apache/activemq-artemis/tags
http://localhost:8161
https://github.com/apache/activemq-artemis/tree/main/artemis-docker

17.2.1. Using a Local Release

If you want to use a local binary distribution then build it from the root of the ActiveMQ source
tree, e.g.:

$ mvn -Prelease package -DskipTests

Following the build the distribution files will be in your local distribution directory. Here <version>
is the version of the distribution that you built.

artemis-distribution/target/apache-artemis-<version>-bin/apache-artemis-<version>

Then switch to the artemis-docker directory and use the prepare-docker.sh script with the proper
parameters to copy the Docker files into your local binary distribution, e.g.:

$ cd artemis-docker
$./prepare-docker.sh --from-local-dist --local-dist-path ../artemis-
distribution/target/apache-artemis-<version>-bin/apache-artemis-<version>/

This will copy all the files necessary to build any of the pre-configured Docker images and provide
you with additional instructions. Follow these instructions to finish building the image you want
based on one of the provided Docker files or even one of your own.

17.2.2. Using an Official Apache Release

If you would rather use an official Apache release in your image rather than a local release then
run the following command from the artemis-docker directory where <version> is the release
version you wish to use (e.g. 2.30.0):

$./prepare-docker.sh --from-release --artemis-version <version>

This will copy all the files necessary to build any of the pre-configured Docker images and provide
you with additional instructions. Follow these instructions to finish building the image you want
based on one of the provided Docker files or even one of your own.

17.2.3. Customizing the Image

Environment Variables

Environment variables determine the options configured for the artemis create command when
running docker build. The available options are:

ARTEMIS_USER

The administrator username. The default is artemis.

ARTEMIS_PASSWORD

The administrator password. The default is artemis.

ANONYMOUS_LOGIN

Set to true to allow anonymous logins. The default is false.

EXTRA_ARGS

Additional arguments sent to the artemis create command. The default is --http-host 0.0.0.0
--relax-jolokia. Setting this value will override the default. See the documentation on artemis
create for available options.

The combination of the above environment variables results in the docker-run.sh script calling the
following command to create the broker instance the first time the Docker container runs:

${ARTEMIS_HOME}/bin/artemis create --user ${ARTEMIS_USER} --password
${ARTEMIS_PASSWORD} --silent ${LOGIN OPTION} ${EXTRA_ARGS}

Note: LOGIN_OPTION is either --allow-anonymous or --require-login depending on the value of
ANONYMOUS _LOGIN.

These variables can be set in the relevant Dockerfile or, for example, on the command-line, e.g.:

$ docker run -e ARTEMIS_USER=myUser -e ARTEMIS_PASSWORD=myPass --name mycontainer -it
-p 61616:61616 -p 8161:8161 apache/activemq-artemis:latest-alpine

Mapping point

The image will use the directory /var/lib/artemis-instance to hold the configuration and the data
of the running broker. You can map this to a folder on the host for when you want the
configuration and data persisted outside of a container, e.g.:

docker run -it -p 61616:61616 -p 8161:8161 -v <broker folder on
host>:/var/lib/artemis-instance apache/activemg-artemis:latest-alpine

In this case the value <broker folder on host> is a directory where the broker instance is supposed
to be saved and reused on each run.

Overriding files in etc folder

You can use customized configuration for the ActiveMQ Artemis instance by replacing the files
residing in the etc folder with the custom ones, e.g. broker.xml or artemis.profile. Put the
replacement files inside a folder and map it as a volume to:

/var/lib/artemis-instance/etc-override

The contents of etc-override folder will be copied over to etc folder after the instance creation so
that the broker will always start with user-supplied configuration.

It you are mapping the whole var/lib/artemis-instance to an outside folder for persistence then
you can place an etc-override folder inside the mapped one. Its contents will again be copied over
etc folder after creating the instance.

Chapter 18. Using the Server

This chapter will familiarise you with how to use the Apache ActiveMQ Artemis server.

We’ll show where it is, how to start and stop it, and we’ll describe the directory layout and what all
the files are and what they do.

This document will refer to the full path of the directory where the ActiveMQ distribution has been
extracted to as ${ARTEMIS_HOME}.

18.1. Installation

You can get the latest release from the Download page.

The following highlights some important folders on the distribution:

|___ bin

|
|___ 1ib

| ___ schema

|___ web

bin

binaries and scripts needed to run ActiveMQ Artemis.
lib

jars and libraries needed to run ActiveMQ Artemis

schema

XML Schemas used to validate ActiveMQ Artemis configuration files

web

The folder where the web context is loaded when the broker runs.

18.2. Creating a Broker Instance

A broker instance is the directory containing all the configuration and runtime data, such as logs
and message journal, associated with a broker process. It is recommended that you do not create
the instance directory under ${ARTEMIS_HOME}. This separation is encouraged so that you can more
easily upgrade when the next version of ActiveMQ Artemis is released.

On Unix systems, it is a common convention to store this kind of runtime data under the /var/1ib
directory. For example, to create an instance at /var/lib/mybroker, run the following commands in
your command line shell:

https://activemq.apache.org/components/artemis/download/

Before the broker is used, a broker instance must be created. This process requires the use of the
Command Line Interface which is better explained in its own chapter.

In the following example a broker instance named mybroker will be created:

$ cd /var/1lib
$ ${ARTEMIS_HOME}/bin/artemis create mybroker

A broker instance directory will contain the following sub directories:

bin

holds execution scripts associated with this instance.

data

holds the data files used for storing persistent messages

etc

hold the instance configuration files

lib

holds any custom runtime Java dependencies like transformers, plugins, interceptors, etc.

log
holds rotating log files

tmp

holds temporary files that are safe to delete between broker runs

At this point you may want to adjust the default configuration located in the etc directory.

18.2.1. Options

There are several options you can use when creating an instance. For a full list of options use the
help command:

$./artemis help create

Usage: artemis create [--aio] [--allow-anonymous] [--autocreate] [--autodelete]
[--backup] [--blocking] [--clustered]
[--disable-persistence] [--failover-on-shutdown]
[--force] [--jdbc] [--1linux] [--mapped] [--nio]
[--no-amgp-acceptor] [--no-autocreate] [--no-autotune]
[--no-fsync] [--no-hornetq-acceptor] [--no-mqtt-acceptor]
[--no-stomp-acceptor] [--no-web] [--paging]
[--relax-jolokia] [--replicated] [--require-login]
[--shared-store] [--silent] [--slave]
[--support-advisory]
[--suppress-internal-management-objects]
[--use-client-auth] [--verbose] [--windows]

[--addresses=<addresses>]
[--cluster-password=<clusterPassword>]
[--cluster-user=<clusterUser>] [--data=<data>]
[--default-port=<defaultPort>] [--encoding=<encoding>]
[--etc=<etc>] [--global-max-messages=<globalMaxMessages>]
[--global-max-size=<globalMaxSize>] [--home=<home>]
[--host=<host>] [--http-host=<httpHost>]
[--http-port=<httpPort>] [--java-memory=<javaMemory>]
[--jdbc-bindings-table-name=<jdbcBindings>]
[--jdbc-connection-url=<jdbcURL>]
[--jdbc-driver-class-name=<jdbcClassName>]
[--jdbc-1large-message-table-name=<jdbcLargeMessages>]
[--jdbc-lock-expiration=<jdbcLockExpiration>]
[--jdbc-lock-renew-period=<jdbcLockRenewPeriod>]
[--jdbc-message-table-name=<jdbcMessages>]
[--jdbc-network-timeout=<jdbcNetworkTimeout>]
[--jdbc-node-manager-table-name=<jdbcNodeManager>]
[--jdbc-page-store-table-name=<jdbcPageStore>]
[--journal-device-block-size=<journalDeviceBlockSize>]
[--journal-retention=<retentionDays>]
[--journal-retention-max-bytes=<retentionMaxBytes>]
[--max-hops=<maxHops>]
[--message-load-balancing=<messageloadBalancing>]
[--name=<name>] [--password=<password>] [--ping=<ping>]
[--port-offset=<portOffset>] [--queues=<queues>]
[--role=<role>] [--security-manager=<securityManager>]
[--ss1-key=<ss1Key>]
[--ss1-key-password=<sslKeyPassword>]
[--ssl-trust=<sslTrust>]
[--ssl-trust-password=<sslTrustPassword>]
[--staticCluster=<staticNode>] [--user=<user>]
[--java-options=<javalptions>]... <directory>
Create a new broker instance.
<directory> The instance directory to hold the broker's
configuration and data. Path must be writable.
--addresses=<addresses>
A comma separated list of addresses with the
option to specify a routing type, e.qg.
--addresses myAddress1,myAddress2:anycast.
Routing-type default: multicast.
--aio Set the journal as asyncio.
--allow-anonymous Allow connections from users with no security
credentials. Opposite of --require-login.
Default: input.

--autocreate Allow automatic creation of addresses & queues.
Default: true.

--autodelete Allow automatic deletion of addresses & queues.
Default: false.

--backup Be a backup broker. Valid for shared store or
replication.

--blocking Block producers when address becomes full.

Opposite of --paging. Default: false.

--cluster-password=<clusterPassword>

The password to use for clustering. Default: input.

--cluster-user=<clusterUser>

The user to use for clustering. Default: input.

--clustered Enable clustering.

--data=<data> Directory where ActiveMQ data are stored. Paths
can be absolute or relative to artemis.instance
directory. Default: data.

--default-port=<defaultPort>

The port number to use for the main 'artemis'
acceptor. Default: 61616.

--disable-persistence Disable message persistence to the journal

--encoding=<encoding> The encoding that text files should use. Default:
UTF-8.

--ete=<etce> Directory where ActiveMQ configuration is located.
Paths can be absolute or relative to artemis.
instance directory. Default: etc.

--failover-on-shutdown Whether broker shutdown will trigger failover for
clients using the core protocol. Valid only for
shared store. Default: false.

--force Overwrite configuration at destination directory.

--global-max-messages=<globalMaxMessages>

Maximum number of messages that will be accepted
in memory before using address full policy mode.
Default: undefined.
--global-max-size=<globalMaxSize>
Maximum amount of memory which message data may
consume. Default: half of the JVM's max memory.

--home=<home> Directory where ActiveMQ Artemis is installed.

--host=<host> Broker's host name. Default: 0.0.0.0 or input if
clustered).

--http-host=<httpHost> Embedded web server's host name. Default:
localhost.

--http-port=<httpPort> Embedded web server's port. Default: 8161.
--java-memory=<javaMemory>

Define the -Xmx memory parameter for the broker.

Default: 2G.

--java-options=<javalptions>

Extra Java options to be passed to the profile.
--jdbc Store message data in JDBC instead of local files.
--jdbc-bindings-table-name=<jdbcBindings>

Name of the jdbc bindings table.
--jdbc-connection-url=<jdbcURL>

The URL used for the database connection.
--jdbc-driver-class-name=<jdbcClassName>

JDBC driver classname.
--jdbc-1large-message-table-name=<jdbclLargeMessages>

Name of the large messages table.
--jdbc-lock-expiration=<jdbcLockExpiration>

Lock expiration (in milliseconds).

--jdbc-lock-renew-period=<jdbcLockRenewPeriod>

Lock Renew Period (in milliseconds).

--jdbc-message-table-name=<jdbcMessages>

Name of the jdbc messages table.

--jdbc-network-timeout=<jdbcNetworkTimeout>

Network timeout (in milliseconds).

--jdbc-node-manager-table-name=<jdbcNodeManager>

Name of the jdbc node manager table.

--jdbc-page-store-table-name=<jdbcPageStore>

Name of the page store messages table.

--journal-device-block-size=<journalDeviceBlockSize>

The block size of the journal's storage device.
Default: 4096.

--journal-retention=<retentionDays>

Configure journal retention in days. If > @ then
enable journal-retention-directory from broker.
xml allowing replay options.

--journal-retention-max-bytes=<retentionMaxBytes>

--linux, --cygwin

--mapped
--max-hops=<maxHops>

Maximum number of bytes to keep in the retention
directory.

Force Linux or Cygwin script creation. Default:
based on your actual system.

Set the journal as mapped.

Number of hops on the cluster configuration.

--message-1load-balancing=<messagelLoadBalancing>

--name=<name>
--nio
--no-amgp-acceptor
--no-autocreate
--no-autotune

--no-fsync
--no-hornetq-acceptor
--no-mqtt-acceptor

--no-stomp-acceptor
--no-web

--paging

--password=<password>
--ping=<ping>

Message load balancing policy for cluster.
Default: ON _DEMAND. Valid values: ON_DEMAND,
STRICT, OFF, OFF_WITH_REDISTRIBUTION.

The name of the broker. Default: same as host name.

Set the journal as nio.

Disable the AMQP specific acceptor.

Disable auto creation for addresses & queues.

Disable auto tuning of the journal-buffer-timeout
in broker.xml.

Disable usage of fdatasync (channel.force(false)
from Java NIO) on the journal.

Disable the HornetQ specific acceptor.

Disable the MQTT specific acceptor.

Disable the STOMP specific acceptor.

Whether to omit the web-server definition from
bootstrap.xml.

Page messages to disk when address becomes full.
Opposite of --blocking. Default: true.

The user's password. Default: input.

A comma separated string to be passed on to the
broker config as network-check-1list. The broker
will shutdown when all these addresses are
unreachable.

--port-offset=<portOffset>

--queues=<queues>

How much to off-set the ports of every acceptor.
A comma separated list of queues with the option

to specify a routing type, e.g. --queues
myQueuel,myQueue2:multicast. Routing-type
default: anycast.

--relax-jolokia Disable strict checking in jolokia-access.xml.

--replicated Enable broker replication.

--require-login Require security credentials from users for
connection. Opposite of --allow-anonymous.

--role=<role> The name for the role created. Default: amg.

--security-manager=<securityManager>
Which security manager to use - jaas or basic.
Default: jaas.

--shared-store Enable broker shared store.

--silent Disable all the inputs, and make a best guess for
any required input.

--slave Deprecated for removal. Use 'backup' instead.

--ssl-key=<ss1Key> Embedded web server's key store path.

--ssl-key-password=<ss1KeyPassword>
The key store's password.
--ssl-trust=<sslTrust> The trust store path in case of client
authentication.
--ssl-trust-password=<sslTrustPassword>
The trust store's password.
--staticCluster, --static-cluster=<staticNode>
Cluster node connectors list separated by comma, e.
g. "tcp://server:61616,tcp://server2:61616,tcp:
//server3:61616".
--support-advisory Support advisory messages for the OpenWire
protocol.
--suppress-internal-management-objects
Do not register any advisory addresses/queues for
the OpenWire protocol with the broker's
management service.

--use-client-auth Require client certificate authentication when
connecting to the embedded web server.

--user=<user> The username. Default: input.

--verbose Print additional information.

--windows Force Windows script creation. Default: based on

your actual system.

Some of these options may be mandatory in certain configurations and the system may ask you for
additional input, e.g.:

$./artemis create /usr/server
Creating ActiveMQ Artemis instance at: /usr/server

--user:
What is the default username?

admin

--password: is mandatory with this configuration:

What is the default password?

--allow-anonymous | --require-login:
Allow anonymous access?, valid values are Y, N, True, False
y

Auto tuning journal ...
done! Your system can make 250 writes per millisecond, your journal-buffer-timeout
will be 4000
You can now start the broker by executing:
"/usr/server" run

Or you can run the broker in the background using:

"/usr/server" start

18.3. Starting and Stopping a Broker Instance

Assuming you created the broker instance under /var/1lib/mybroker all you need to do start running
the broker instance is execute:

/var/1lib/mybroker/bin/artemis run

To stop the Apache ActiveMQ Artemis instance you will use the same artemis script, but with the
stop argument. Example:

/var/lib/mybroker/bin/artemis stop

Please note that Apache ActiveMQ Artemis requires a Java 11 or later.

By default the etc/bootstrap.xml configuration is used. The configuration can be changed e.g. by
running ./artemis run -- xml:path/to/bootstrap.xml or another config of your choosing.

Environment variables are used to provide ease of changing ports, hosts and data directories used
and can be found in etc/artemis.profile onlinux and etc\artemis.profile.cmd on Windows.

18.4. Configuration Files

These are the files you’re likely to find in the etc directory of a default broker instance with a short
explanation of what they configure. Scroll down further for additional details as appropriate.

artemis.profile

system properties and JVM arguments (e.g. Xmx, Xms, etc.)

artemis-roles.properties

user/role mapping for the default properties-based JAAS login module

artemis-users.properties

user/password for the default properties-based JAAS login module

bootstrap.xml

embedded web server, security, location of broker.xml

broker.xml

core broker configuration, e.g. acceptors, addresses, queues, diverts, clustering; full reference

jolokia-access.xml

security for Jolokia, specifically Cross-Origin Resource Sharing (CORS)

log4j2.properties
logging config like levels, log file locations, etc.

login.config

standard Java configuration for JAAS security

management.xml

remote connectivity and security for JMX MBeans

18.4.1. Bootstrap Configuration File

The bootstrap.xml file is very simple. Let’s take a look at an example:

<broker xmlns="http://activemq.apache.org/schema">
<jaas-security domain="activemq"/>
<server configuration="file:/path/to/broker.xml"/>

<web path="web">
<binding uri="http://localhost:8161">
<app url="activemq-branding" war="activemq-branding.war"/>
<app url="artemis-plugin" war="artemis-plugin.war"/>
<app url="console" war="console.war"/>
</binding>
</web>
</broker>

jaas-security
Configures JAAS-based security for the server. The domain attribute refers to the relevant login
module entry in login.config. If different behavior is needed then a custom security manager
can be configured by replacing jaas-security with security-manager. See the "Custom Security
Manager" section in the security chapter for more details.

https://jolokia.org/reference/html/security.html

server

Instantiates a core server using the configuration file from the configuration attribute. This is
the main broker POJO necessary to do all the real messaging work.

web
Configures an embedded web server for things like the admin console.
18.4.2. Broker configuration file
The configuration for the Apache ActiveMQ Artemis core broker is contained in broker.xml.

There are many attributes which you can configure for Apache ActiveMQ Artemis. In most cases
the defaults will do fine, in fact every attribute can be defaulted which means a file with a single
empty configuration element is a valid configuration file. The different configuration will be
explained throughout the manual or you can refer to the configuration reference here.

18.5. Other Use-Cases

18.5.1. System Property Substitution
It is possible to use system property substitution in all the configuration files. by replacing a value

with the name of a system property. Here is an example of this with a connector configuration:

<connector name="netty"
>tcp://${activemq.remoting.netty.host:localhost}:${activemq.remoting.netty.port:61616}
</connector>

Here you can see we have replaced 2 values with system properties activemq.remoting.netty.host
and activemg.remoting.netty.port. These values will be replaced by the value found in the system
property if there is one, if not they default back to localhost or 61616 respectively. It is also possible
to not supply a default (i.e. ${activemq.remoting.netty.host}), however the system property must be
supplied in that case.

18.5.2. Windows Server

On windows you will have the option to run ActiveMQ Artemis as a service. Just use the following
command to install it:

$./artemis-service.exe install

The create process should give you a hint of the available commands available for the artemis-
service.exe

18.5.3. Adding Bootstrap Dependencies

Bootstrap dependencies like logging handlers must be accessible by the log manager at boot time.

Package the dependency in a jar and put it on the boot classpath before of log manager jar. This can
be done appending the jar at the variable JAVA_ARGS, defined in artemis.profile, with the option
-Xbootclasspath/a.

o the environment variable JAVA_ARGS_APPEND can be used to append or override
options.

18.5.4. Adding Runtime Dependencies

Runtime dependencies like transformers, broker plugins, JDBC drivers, password decoders, etc.
must be accessible by the broker at runtime. Package the dependency in a jar, and put it on the
broker’s classpath. This can be done by placing the jar file in the 1ib directory of the broker
distribution itself, by placing the jar file in the 1ib directory of the broker instance, by setting the
system property artemis.extra.libs with the directory that contains the jar file, or by setting the
environment variable ARTEMIS_EXTRA_LIBS with the directory that contains the jar file, A broker
instance does not have a 1ib directory by default so it may need to be created. It should be on the
"top" level with the bin, data, log, etc. directories. The system property artemis.extra.libs is a
comma separated list of directories that contains jar files, i.e.

-Dartemis.extra.libs=/usr/local/share/java/1ib1,/usr/local/share/java/1lib2

The environment variable ARTEMIS_EXTRA_LIBS is a comma separated list of directories that contains
jar files and is ignored if the system property artemis.extra.libs is defined, i.e.

export ARTEMIS_EXTRA_LIBS=/usr/local/share/java/lib1,/usr/local/share/java/lib2

18.5.5. Library Path

If you’re using the Asynchronous IO Journal on Linux, you need to specify java.library.path as a
property on your Java options. This is done automatically in the scripts.

If you don’t specify java.library.path at your Java options then the JVM will use the environment
variable LD_LIBRARY_PATH.

You will need to make sure libaio is installed on Linux. For more information refer to the libaio
chapter.

Chapter 19. Command Line Interface

ActiveMQ Artemis has a Command Line Interface (CLI) that can used to manage a few aspects of the
broker like instance creation, basic user management, queue & address management, etc.

There are two ways the CLI can be used:

» Traditional CLI commands, e.g.: ./artemis [COMMAND] [PARAMETERS]

* A custom shell that is accesssed using the ./artemis or ./artemis shell commands.

All commands available through the traditional CLI commands are also available through the shell
interface.

One benefit of the traditional CLI commands is that they can be used in your own bash scripts for
automation, etc.

One benefit of the shell is that it will reuse some information as you repeat commands. For
example, once you supply the broker URI and username & password to one command those values
will be transparently applied other commands in the same shell session. Of course, the shell also
allows you to avoid retyping ./artemis for every command.

19.1. Getting Help

You can get a complete list of available commands by typing:

$./artemis help
Usage: artemis [COMMAND]
ActiveMQ Artemis Command Line

Commands:
help use 'help <command>"' for more information
auto-complete Generates the auto complete script file to be used in bash or
zsh.
shell JLine3 shell helping using the CLI
producer Send message(s) to a broker.
transfer Move messages from one destination towards another destination.
consumer Consume messages from a queue.
browser Browse messages on a queue.
mask Mask a password and print it out.
version Print version information.
perf use 'help perf' for sub commands list
check use "help check' for sub commands list
queue use 'help check' for sub commands list
address use 'help address' for sub commands list
data use 'help data' for sub commands list
create Create a new broker instance.
upgrade Update a broker instance to the current artemis.home, keeping

all the data and broker.xml. Warning: backup your instance
before using this command and compare the files.

It is also possible to use help at a specific command or sub-command for more information. For
example, to get a list of sub-commands for data you type ./artemis help data:

$./artemis help data
Usage: artemis data [COMMAND]
use 'help data' for sub commands list
Commands:
recover Recover (undelete) every message on the journal by creating a new
output journal. Rolled back and acked messages will be sent out to
the output as much as possible.
print Print data records information. WARNING: don't use while a
production server 1is running.

exp Export all message-data using an XML that could be interpreted by
any system.

imp Import all message-data using an XML that could be interpreted by
any system.

decode Decode a journal's internal format into a new set of journal files.
encode Encode a set of journal files into an internal encoded data format.
compact Compact the journal of a non running server.

Or you can get help for a particular command. For example, ./artemis help create:

Usage: artemis create [--aio] [--allow-anonymous] [--autocreate] [--autodelete]
[--backup] [--blocking] [--clustered]
[--disable-persistence] [--failover-on-shutdown]
[--force] [--jdbc] [--linux] [--mapped] [--nio]
[--no-amgp-acceptor] [--no-autocreate] [--no-autotune]
[--no-fsync] [--no-hornetqg-acceptor] [--no-mqtt-acceptor]
[--no-stomp-acceptor] [--no-web] [--paging]
[--relax-jolokia] [--replicated] [--require-login]
[--shared-store] [--silent] [--slave]
[--support-advisory]
[--suppress-internal-management-objects]
[--use-client-auth] [--verbose] [--windows]
[--addresses=<addresses>]
[--cluster-password=<clusterPassword>]
[--cluster-user=<clusterUser>] [--data=<data>]
[--default-port=<defaultPort>] [--encoding=<encoding>]
[--etc=<etc>] [--global-max-messages=<globalMaxMessages>]
[--global-max-size=<globalMaxSize>] [--home=<home>]
[--host=<host>] [--http-host=<httpHost>]
[--http-port=<httpPort>] [--java-memory=<javaMemory>]
[--jdbc-bindings-table-name=<jdbcBindings>]
[--jdbc-connection-url=<jdbcURL>]
[--jdbc-driver-class-name=<jdbcClassName>]
[--jdbc-1large-message-table-name=<jdbcLargeMessages>]
[--jdbc-lock-expiration=<jdbcLockExpiration>]
[--jdbc-lock-renew-period=<jdbcLockRenewPeriod>]
[--jdbc-message-table-name=<jdbcMessages>]

[--jdbc-network-timeout=<jdbcNetworkTimeout>]
[--jdbc-node-manager-table-name=<jdbcNodeManager>]
[--jdbc-page-store-table-name=<jdbcPageStore>]
[--journal-device-block-size=<journalDeviceBlockSize>]
[--journal-retention=<retentionDays>]
[--journal-retention-max-bytes=<retentionMaxBytes>]
[--max-hops=<maxHops>]
[--message-load-balancing=<messageloadBalancing>]
[--name=<name>] [--password=<password>] [--ping=<ping>]
[--port-offset=<portOffset>] [--queues=<queues>]
[--role=<role>] [--security-manager=<securityManager>]
[--ss1-key=<ss1Key>]
[--ssl-key-password=<ss1KeyPassword>]
[--ssl-trust=<sslTrust>]
[--ssl-trust-password=<sslTrustPassword>]
[--staticCluster=<staticNode>] [--user=<user>]
[--java-options=<javalptions>]... <directory>
Create a new broker instance.
<directory> The instance directory to hold the broker's
configuration and data. Path must be writable.
--addresses=<addresses>
A comma separated list of addresses with the
option to specify a routing type, e.g.
--addresses myAddress1,myAddress2:anycast.
Routing-type default: multicast.
--3i0 Set the journal as asyncio.
--allow-anonymous Allow connections from users with no security
credentials. Opposite of --require-login.
Default: input.

--autocreate Allow automatic creation of addresses & queues.
Default: true.

--autodelete Allow automatic deletion of addresses & queues.
Default: false.

--backup Be a backup broker. Valid for shared store or
replication.

--blocking Block producers when address becomes full.

Opposite of --paging. Default: false.

--cluster-password=<clusterPassword>

The password to use for clustering. Default: input.

--cluster-user=<clusterUser>

The user to use for clustering. Default: input.

--clustered Enable clustering.

--data=<data> Directory where ActiveMQ data are stored. Paths
can be absolute or relative to artemis.instance
directory. Default: data.

--default-port=<defaultPort>

The port number to use for the main 'artemis'
acceptor. Default: 61616.

--disable-persistence Disable message persistence to the journal

--encoding=<encoding> The encoding that text files should use. Default:
UTF-8.

--ete=<etc> Directory where ActiveMQ configuration is located.

Paths can be absolute or relative to artemis.
instance directory. Default: etc.

--failover-on-shutdown Whether broker shutdown will trigger failover for

--force

clients using the core protocol. Valid only for
shared store. Default: false.
Overwrite configuration at destination directory.

--global-max-messages=<globalMaxMessages>

Maximum number of messages that will be accepted
in memory before using address full policy mode.
Default: undefined.

--global-max-size=<globalMaxSize>

--home=
--host=

--http-
--http-

--java-

--java-

--jdbe

==9jal)g=
--jdbce-
--jdbce-
--jdbce-
--jdbe-
--jdbe-
--jdbe-
--jdbce-
--jdbce-

--jdbe-

Maximum amount of memory which message data may
consume. Default: half of the JVM's max memory.

<home> Directory where ActiveMQ Artemis is installed.

<host> Broker's host name. Default: 0.0.0.0 or input if
clustered).

host=<httpHost> Embedded web server's host name. Default:
localhost.

port=<httpPort> Embedded web server's port. Default: 8161.

memory=<javaMemory>

Define the -Xmx memory parameter for the broker.

Default: 2G.

options=<javalptions>

Extra Java options to be passed to the profile.

Store message data in JDBC instead of local files.
bindings-table-name=<jdbcBindings>

Name of the jdbc bindings table.
connection-url=<jdbcURL>

The URL used for the database connection.
driver-class-name=<jdbcClassName>

JDBC driver classname.
large-message-table-name=<jdbcLargeMessages>

Name of the large messages table.
lock-expiration=<jdbcLockExpiration>

Lock expiration (in milliseconds).
lock-renew-period=<jdbcLockRenewPeriod>

Lock Renew Period (in milliseconds).
message-table-name=<jdbcMessages>

Name of the jdbc messages table.
network-timeout=<jdbcNetworkTimeout>

Network timeout (in milliseconds).
node-manager-table-name=<jdbcNodeManager>

Name of the jdbc node manager table.
page-store-table-name=<jdbcPageStore>

Name of the page store messages table.

--journal-device-block-size=<journalDeviceBlockSize>

The block size of the journal's storage device.
Default: 4096.

--journal-retention=<retentionDays>

Configure journal retention in days. If > @ then

enable journal-retention-directory from broker.
xml allowing replay options.

--journal-retention-max-bytes=<retentionMaxBytes>

--linux, --cygwin

--mapped
--max-hops=<maxHops>

Maximum number of bytes to keep in the retention
directory.

Force Linux or Cygwin script creation. Default:
based on your actual system.

Set the journal as mapped.

Number of hops on the cluster configuration.

--message-1load-balancing=<messagelLoadBalancing>

--name=<name>
--nio
--no-amgp-acceptor
--no-autocreate
--no-autotune

--no-fsync
--no-hornetq-acceptor
--no-mqtt-acceptor

--no-stomp-acceptor
--no-web

--paging

--password=<password>
--ping=<ping>

Message load balancing policy for cluster.
Default: ON_DEMAND. Valid values: ON_DEMAND,
STRICT, OFF, OFF_WITH_REDISTRIBUTION.

The name of the broker. Default: same as host name.

Set the journal as nio.

Disable the AMQP specific acceptor.

Disable auto creation for addresses & queues.

Disable auto tuning of the journal-buffer-timeout
in broker.xml.

Disable usage of fdatasync (channel.force(false)
from Java NIO) on the journal.

Disable the HornetQ specific acceptor.

Disable the MQTT specific acceptor.

Disable the STOMP specific acceptor.

Whether to omit the web-server definition from
bootstrap.xml.

Page messages to disk when address becomes full.
Opposite of --blocking. Default: true.

The user's password. Default: input.

A comma separated string to be passed on to the
broker config as network-check-list. The broker
will shutdown when all these addresses are
unreachable.

--port-offset=<portOffset>

--queues=<queues>

--relax-jolokia
--replicated
--require-login

--role=<role>

How much to off-set the ports of every acceptor.

A comma separated list of queues with the option
to specify a routing type, e.g. --queues
myQueuel,myQueue2:multicast. Routing-type
default: anycast.

Disable strict checking in jolokia-access.xml.

Enable broker replication.

Require security credentials from users for
connection. Opposite of --allow-anonymous.

The name for the role created. Default: amq.

--security-manager=<securityManager>

--shared-store
--silent

--slave

Which security manager to use - jaas or basic.
Default: jaas.

Enable broker shared store.

Disable all the inputs, and make a best guess for
any required input.

Deprecated for removal. Use 'backup' instead.

--ssl-key=<ss1lKey> Embedded web server's key store path.
--ssl-key-password=<ss1KeyPassword>
The key store's password.
--ssl-trust=<sslTrust> The trust store path in case of client
authentication.
--ssl-trust-password=<sslTrustPassword>
The trust store's password.
--staticCluster, --static-cluster=<staticNode>
Cluster node connectors list separated by comma, e.
g. "tcp://server:61616,tcp://server2:61616,tcp:
//server3:61616".
--support-advisory Support advisory messages for the OpenWire
protocol.
--suppress-internal-management-objects
Do not register any advisory addresses/queues for
the OpenWire protocol with the broker's
management service.

--use-client-auth Require client certificate authentication when
connecting to the embedded web server.

--user=<user> The username. Default: input.

--verbose Print additional information.

--windows Force Windows script creation. Default: based on

your actual system.

19.2. Bash and Zsh auto complete

Bash and Zsh provide ways to auto-complete commands. To integrate with that functionality you
have the option to generate the auto-complete script, i.e.:

$./artemis auto-complete
This will generate a file named auto-complete-artemis.sh that can be installed using:
$ source ./auto-complete-artemis.sh

After the auto-completion is installed you can view auto-completion information by pressing TAB:

$./artemis

activation browser create kill perf-journal run
transfer version

address check data mask producer shell
upgrade

auto-complete consumer help perf queue stop
user

In order to see the various parameters available you must type -- then press TAB:

$./artemis create --

--addresses --jdbc-bindings-table-name

--paging

--aio --jdbc-connection-url

--password

--allow-anonymous --jdbc-driver-class-name --ping
--autocreate --jdbc-1large-message-table-name --port
-offset

--autodelete --jdbc-lock-expiration

--queues

--blocking --jdbc-1lock-renew-period

--relax-jolokia

--cluster-password --jdbc-message-table-name

--replicated

--cluster-user --jdbc-network-timeout

--require-login

--clustered --jdbc-node-manager-table-name --role

19.3. Input required

Some functionality may require interactive user input if not explicitly provided through a
parameter. For example, in cases like connecting to a broker or creating the broker instance:

$./artemis queue stat

Connection brokerURL = tcp://localhost:61616

Connection failed::AMQ229031: Unable to validate user from /127.0.0.1:56320. Username:
null; SSL certificate subject DN: unavailable

--user:
Type the username for a retry

myUser

--password: is mandatory with this configuration:
Type the password for a retry

19.4. Artemis Shell

To initialize the shell session, type ./artemis shell (or just ./artemis if you prefer):
$./artemis

The ActiveMQ Artemis shell provides an interface that can be used to execute commands directly
without leaving the Java Virtual Machine.

/N e ()
/NN /NN
/NN I N\

/-7 NN ONC N
Apache ActiveMQ Artemis

For a list of commands, type help or press <TAB>:
Type exit or press <CTRL-D> to leave the session:
Apache ActiveMQ Artemis >

19.4.1. Connecting Interactively

It is possible to authenticate your CLI client once to the server and reuse the connection
information for additional commands:

Apache ActiveMQ Artemis > connect --user=myUser --password=myPass --url
tep://localhost: 61616

Connection brokerURL = tcp://localhost:61616

Connection Successful!

Now any command requiring authentication will reuse these parameters.

For example the sub-command queuve stat will reuse previous information to perform its
connection to the broker.

Apache ActiveMQ Artemis > queue stat
Connection brokerURL = tcp://localhost:61616
| NAME | ADDRESS

| CONSUMER_COUNT | MESSAGE _COUNT |MESSAGES_ADDED | DELIVERING_COUNT |MESSAGES_ACKED | SCHEDULED
_COUNT |ROUTING_TYPE |

|DLQ |DLQ |0 |0 |0

|0 @ 0 | ANYCAST

|ExpiryQueue |ExpiryQueue |0 |0 |0

|0 |0 |0 | ANYCAST |

|Order |Order |0 |4347 | 4347
|0 |0 |0 | ANYCAST |
|activemq.management.@b...|activemg.management.@b... |1 |0 |0

|0 @ @ IMULTICAST |

19.4.2. Connecting Statically

It is possible to start the shell with an initial connection configured statically, e.g.:

$./artemis shell --user <username> --password <password> --url tcp://<hostname
>:<port>

The CLI should not ask for a the broker URL or user/password for any further commands, e.g.:

$./artemis shell --user myUser --password myPass

Apache ActiveMQ Artemis > queue stat
Connection brokerURL = tcp://localhost:61616

|NAME

| ADDRESS

| CONSUMER_COUNT | MESSAGE _COUNT | MESSAGES_ADDED | DELIVERING_COUNT | MESSAGES_ACKED | SCHEDULED

_COUNT [ROUTING_TYPE|

|DLQ

|0 |0
|ExpiryQueue

|0 |0
| TEST

|0 |0

|activemq.management.2a. .

|0 |0

|DLQ |0
|0 | ANYCAST

|ExpiryQueue |0
@ | ANYCAST

| TEST |0
@ | ANYCAST

. |activemq.management.2a...|1

|0 |MULTICAST

Chapter 20. The Client Classpath

20.1. Maven dependencies

The recommended way to define a client dependency for your java application is through a Maven
dependency declaration.

There are two dependencies you can choose from, org.apache.activemg:artemis-jms-client for JMS
2.0 or org.apache.activemq:artemis-jakarta-client for Jakarta Messaging 3.x.

For JMS:

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>artemis-jms-client</artifactId>
<version>2.33.0</version>

</dependency>

For Jakarta:

<dependency>
<groupId>org.apache.activemq</groupIld>
<artifactId>artemis-jakarta-client</artifactId>
<version>2.33.0</version>

</dependency>

20.2. Individual client dependencies

If you don’t wish to use a build tool such as Maven which manages the dependencies for you, you
may also choose to add the specific dependency jars to your classpath, which are all included under
Jlib on the main distribution.

For more information of the clients individual dependencies, see:

* JMS client dependencies

 Jakarta client dependencies

20.3. Repackaged '-all' clients

Even though it is highly recommend to use the maven dependencies, in cases this isnt a possibility
and neither is using the individual dependencies as detailed above then the all-inclusive

client-classpath-jms.pdf#artemis-jms-client-dependencies
client-classpath-jakarta.pdf#artemis-jakarta-client-dependencies

repackaged jar could be used as an alternative.
These jars are available at Maven Central:

* artemis-jms-client-all-2.33.0.jar

* artemis-jakarta-client-all-2.33.0.jar

Whether you are using JMS or just the Core API simply add the artemis-jms-client-all jar to your
client classpath. For Jakarta Messaging add the artemis-jakarta-client-all jar instead.

These repackaged jars include all the client’s dependencies. Be careful with mixing

A other components jars in your application as they may clash with each other. Note
also that the "-all' clients cant be embedded in the same JVM as the broker, for that
you must use artemis-jms-client or artemis-jakarta-client as appropriate.

https://repo.maven.apache.org/maven2/org/apache/activemq/artemis-jms-client-all/2.33.0/
https://repo.maven.apache.org/maven2/org/apache/activemq/artemis-jakarta-client-all/2.33.0/
client-classpath-jms.pdf#artemis-jms-client-dependencies

Chapter 21. Address Model

Every messaging protocol and API that Apache ActiveMQ Artemis supports defines a different set of
messaging resources.

* JMS uses queues and topics

» STOMP uses generic destinations

* MQTT uses topics

* AMQP uses generic nodes
In order to deal the the unique semantics and use-cases for each of these the broker has a flexible
and powerful address model based on the following core set of resources:

* address

* queue

* routing type

21.1. Address

Messages are sent to an address. An address is given a unique name, a routing type, and zero or
more queues.

21.2. Queue

Messages are consumed from a queue. A queue is bound to an address. It is given a unique name
and a routing type. There can be zero or more queues bound to one address. When a message is
sent to an address it is routed to one or more of its queues based on the configured routing type.

The name of the queue must be globally unique. For example, you can’t have a queue named q1 on
address al and also a queue named q1 address a2.

21.3. Routing Type

A routing type determines how messages are routed from an address to the queue(s) bound to that
address. Two different routing types are supported, anycast and multicast.

If you want your messages routed to... Use this routing type...
a single queue on the address anycast
every queue on the address multicast

a It is possible to define queues with a different routing type for the same address,
but this typically results in an anti-pattern and is therefore not recommended.

21.4. Automatic Configuration

By default Apache ActiveMQ Artemis will automatically create addresses and queues to support the
semantics of whatever protocol you’re using. The broker understands how to support each
protocol’s functionality with the core resources so that in most cases no manual configuration is
required. This saves you from having to preconfigure each address and queue before a client can
connect to it.

The broker can optionally be configured to automatically delete addresses and queues when they
are no longer in use.

Automatic creation and deletion is configured on a per address basis and is controlled by the
following address-setting elements:

e guto-create-addresses

¢ auto-delete-addresses

default-address-routing-type
* guto-create-queues
* auto-delete-queues

» default-queue-routing-type
See the documentation on address settings for more details on these elements.

Of course, automatic configuration can be disabled and everything can be configured manually.
Read on for more details about manual configuration.

21.5. Basic Manual Configuration

The following examples show how to configure resources for basic anycast and multicast use-cases.

Many of the details of these use-cases are protocol agnostic. The goal here is to
o demonstrate and explain the basic configuration elements and how the address
model works fundamentally.

21.5.1. Anycast

The most common use-case for anycast semantics, sometimes referred to as point-to-point, involves
applications following a "competing consumer" pattern to receive messages from a shared queue.
The more consumers receiving messages the greater the overall message throughput. Multiple Java
applications sharing a JMS queue is a classic example of this use-case.

In this use-case the broker is configured, for example, with an address, address.foo using the
anycast routing type with just one queue, q1. When a producer sends a message to address.foo it is
then routed to q1 and finally dispatched to one of the consumers.

APACHE

‘:‘9’ " A,
&3 ACTIVEMQ B
T -/

" q1 - Consumer 1
B anycast ql
Producer— | () & ,
address.foo \ 2z
~|address.foo ‘
anycast > consumer

ql

Figure 1. Anycast

This is what the configuration for this use-case would look like in etc/broker.xml:

<addresses>
<address name="address.foo">
<anycast>
<queue name="q1"/>
</anycast>
</address>
</addresses>

For most protocols and APIs which support this kind of use-case (e.g. JMS, AMQP, etc.) it is
customary to use the same name when sending and consuming messages. In that case you’d use a
configuration like this:

<addresses>
<address name="orderQueue">
<anycast>
<queue name="orderQueue"/>
</anycast>
</address>
</addresses>

21.5.2. Multicast

The most common use-case for multicast semantics, sometimes referred to as publish/subscribe or
"pub/sub”, involves each application receiving every message sent to an address. Multiple
applications consuming from a JMS topic is a classic example of this use-case. MQTT subscriptions
is another supported example of multicast semantics.

In this use-case the broker is configured with an address, address.foo using the multicast routing
type with two queues, q1 & g2. When a producer sends a message to address.foo it is then routed to
both q1 & q2 so that ultimately both consumers receive the same messages.

€3 AETIVEMQ 1
6‘_’; Q ﬂlu!ﬁcast -;1;\
P . 42)1—~Consumer 1
Q<D | ¢
Producer address.foo
address.foo multicast . q2
multicast \1
() & "z-%—»gzonsumer

Figure 2. Multicast

This is what the configuration for this use-case would look like in etc/broker.xml:

<addresses>
<address name="address.foo">
<multicast>
<queue name="q1"/>
<queue name="q2"/>
</multicast>
</address>
</addresses>

This basic configuration is simple and straight-forward, but there’s a problem. In a normal pub/sub
use-case like with a JMS topic or with MQTT the number of subscribers isn’t known ahead of time. In
that case, this is the recommended configuration:

<addresses>
<address name="address.foo">
<multicast/>
</address>
</addresses>

Define <multicast/> with no queues and the broker will automatically create queues for each
subscription when the consumers connect to address.foo. Then when a message is sent to
address. foo it will be routed to each queue for each subscriber and therefore each subscriber will
get every message. These queues are often referred to as subscription queues for obvious reasons.

These subscription queues are typically named based on the semantics of the protocol used to
create them. For example, JMS supports durable and non-durable subscriptions. The queue for a
non-durable subscription is named with a UUID, but the queue used for a durable subscription is
named according to the JMS "client ID" and "subscription name." Similar conventions are used for
AMQP, MQTT, STOMP, etc.

21.6. Advanced Manual Configuration

21.6.1. Fully Qualified Queue Names

In most cases it’s not necessary or desirable to statically configure the aforementioned subscription
queues. However, there are scenarios where a user may want to statically configure a subscription
queue and later connect to that queue directly using a Fully Qualified Queue Name (FQQN).

An FQQN uses a special syntax to specify both the address and the queue so that applications using
protocols and APIs which don’t natively understand the address/queue separation (e.g. AMQP, JMS,
etc.) can send messages or subscribe directly to a queue rather than being limited to the address.
Applications simply need to use the address name and the queue name separated by :: (e.g.
address::queue).

In this example, the address a1 is configured with two queues: q1, g2 as shown in the configuration
below.

<addresses>
<address name="a1">
<multicast>
<queue name="q1" />
<queue name="q2" />
</multicast>
</address>
</addresses>

Here’s a snippet of Java code using JMS which demonstrates the FQQN syntax:

Queue q1 session.createQueue("al::q1");
MessageConsumer consumer = session.createConsumer(ql);

o The string :: should only be used for FQQN and not in any other context in
address or queue names.

The examples below show how to use broker side configuration to statically configure a queue with
publish subscribe behavior for shared, non-shared, durable and non-durable subscription
behavior.

Shared, Durable Subscription Queue using max-consumers

The default behavior for queues is to not limit the number connected queue consumers. The max-
consumers parameter of the queue element can be used to limit the number of connected consumers
allowed at any one time.

Open the file etc/broker.xml for editing.
<addresses>

<address name="durable.foo">
<multicast>

<!-- pre-confiqured shared durable subscription queue -->
<queue name="q1" max-consumers="10">
<durable>true</durable>
</queue>
</multicast>
</address>
</addresses>

Non-shared, Durable Subscription Queue

The broker can be configured to prevent more than one consumer from connecting to a queue at
any one time. The subscriptions to queues configured this way are therefore "non-shared". To do
this simply set the max-consumers parameter to 1:

<addresses>
<address name="durable.foo">
<multicast>
<!-- pre-configured non shared durable subscription queue -->
<queue name="q1" max-consumers="1">
<durable>true</durable>
</queue>
</multicast>
</address>
</addresses>

Non-durable Subscription Queue

Non-durable subscriptions are again usually managed by the relevant protocol manager, by
creating and deleting temporary queues.

If a user requires to pre-create a queue that behaves like a non-durable subscription queue the
purge-on-no-consumers flag can be enabled on the queue. When purge-on-no-consumers is set to true.
The queue will not start receiving messages until a consumer is attached. When the last consumer
is detached from the queue. The queue is purged (its messages are removed) and will not receive
any more messages until a new consumer is attached.

Open the file etc/broker.xml for editing.

<addresses>
<address name="non.shared.durable.foo">
<multicast>
<queue name="orders1" purge-on-no-consumers="true"/>
</multicast>
</address>
</addresses>

21.6.2. Disabled Queue

If a user requires to statically configure a queue and disable routing to it, for example where a
queue needs to be defined so a consumer can bind, but you want to disable message routing to it
for the time being.

Or you need to stop message flow to the queue to allow investigation keeping the consumer bound,
but don’t wish to have further messages routed to the queue to avoid message build up.

When enabled is set to true the queue will have messages routed to it. (default)
When enabled is set to false the queue will NOT have messages routed to it.

Open the file etc/broker.xml for editing.

<addresses>
<address name="foo.bar">
<multicast>
<queue name="orders1" enabled="false"/>
</multicast>
</address>
</addresses>
A Disabling all the queues on an address means that any message sent to that
address will be silently dropped.

21.6.3. Temporary Queues

For some protocols and APIs which only support monolithic "destinations" without the
address/queue separation (e.g. AMQP, JMS, etc.) temporary queues are created by the broker using a
UUID (i.e universally unique identifier) as the name for both the address and the queue. Because
the name is a UUID it is impossible to create an address-setting for it whose match is anything but #.

To solve this problem one can specify the temporary-queue-namespace in broker.xml and then create
an address-setting whose match value corresponds to the configured temporary-queue-namespace.
When the temporary-queue-namespace is set and a temporary queue is created then the broker will
prepend the temporary-queue-namespace value along with the delimiter value configured in
wildcard-addresses (defaults to .) to the address name and use that to lookup the associated
address-setting values.

Here’s a simple example configuration:

<temporary-queue-namespace>temp</temporary-queue-namespace>

<address-settings>
<address-setting match="temp.#">
<enable-metrics>false</enable-metrics>
</address-setting>

</address-settings>

Using this configuration any temporary queue will have metrics disabled.

o This setting does not change the actual name of the temporary queue. It only
changes the name used to lookup the address-settings.

21.6.4. Other Advanced Configurations

Each of the following advanced configurations have their own chapter so their details are not
repeated here:

* Exclusive queues

» Last Value queues

* Non-Destructive queues

* Ring queues

e Retroactive addresses

21.7. How to filter messages

Apache ActiveMQ Artemis supports the ability to filter messages using Filter Expressions.
Filters can be applied in two places - on a queue and on a consumer.

Filtering messages on a queue increases performance vs. filtering on the consumer because the
messages don’t need to be scanned. However, a queue filter is often not as flexible.

21.7.1. Queue Filter

When a filter is applied to a queue, messages are filtered before they are routed to the queue. To
add a filter use the filter element when configuring a queue, e.g.:

<addresses>
<address name="filter">
<anycast>
<queue name="filter">
<filter string="color="red'"/>
</queue>
</anycast>
</address>
</addresses>

The filter defined above ensures that only messages with an attribute "color="red"" is sent to this
queue.

21.7.2. Consumer Filters

Consumer filters are applied after messages have routed to the queue and are defined using the
appropriate client APIs. The following JMS example shows how consumer filters work.

Define an address with a single queue, with no filter applied in etc/broker.xml.

<addresses>
<address name="filter">
<anycast>
<queue name="filter"/>
</anycast>
</address>
</addresses>

Then send some messages to the queue.

// Send some messages

for (int i =0; 1 <3; i ++) {
TextMessage redMessage = senderSession.createTextMessage("Red");
redMessage.setStringProperty("color", "red");
producer.send(redMessage)
TextMessage greenMessage = senderSession.createTextMessage("Green");

greenMessage.setStringProperty("color", "green");
producer.send(greenMessage)

At this point the queue would have 6 messages: red, green, red, green, red, green.

Create a consumer with the filter color="red".
MessageConsumer redConsumer = redSession.createConsumer(queue, "color='red'");

The redConsumer has a filter that only matches "red" messages. The redConsumer will receive 3
messages.

red, red, red
The resulting queue would now be

green, green, green

21.8. Alternate Ways to Determine Routing Type

Typically the routing type is determined either by the static XML configuration or by the default-
address-routing-type and default-queue-routing-type address-setting elements used for automatic
address and queue creation. However, there are two other ways to specify routing type:

» a configurable prefix which client applications can use when sending messages or creating
consumers

* a property client applications can set on the messages they send

21.8.1. Using a Prefix to Determine Routing Type

These prefixes are configured using the anycastPrefix and multicastPrefix parameters within the
URL of the acceptor which the client is using. When multiple values are needed, these can be
separated by a comma.

Configuring an Anycast Prefix

In etc/broker.xml, add the anycastPrefix to the URL of the desired acceptor. In the example below,
the acceptor is configured to use queue/ for the anycastPrefix. Client code can specify queue/foo/ if
the client wants anycast routing.

<acceptor name="artemis">
tcp://0.0.0.0:616167protocols=AMQP; anycastPrefix=queue/</acceptor>

Consider, for example, a STOMP client that wants to send a message using anycast semantics to a
queue that doesn’t exist. Consider also that the broker is configured to auto-create addresses and
queues, but the default-address-routing-type and default-queue-routing-type are both MULTICAST.
Since the anycastPrefix is queue/ it can just send a message to queue/foo and the broker will
automatically create an address named foo with an anycast queue also named foo.

Configuring a Multicast Prefix

In etc/broker.xml, add the multicastPrefix to the URL of the desired acceptor. In the example below,
the acceptor is configured to use topic/ for the multicastPrefix. Client code can specify topic/foo/ if
the client wants multicast routing.

<acceptor name="artemis">
tcp://0.0.0.0:616167protocols=AMQP;multicastPrefix=topic/</acceptor>

Consider, for example, a STOMP client that wants to create a subscription with multicast semantics
on an address that doesn’t exist. Consider also that the broker is configured to auto-create
addresses and queues, but the default-address-routing-type and default-queue-routing-type are
both ANYCAST. Since the multicastPrefix is topic/ it can just subscribe to topic/foo and the broker
will automatically create an address named foo with a multicast queue for the subscription. Any
messages sent to foo will then be routed to the subscription queue.

21.8.2. Using a Message Property to Determine Routing Type

The AMQ_ROUTING_TYPE property represents a byte value which will be used by the broker to

determine the routing type when a message is _sent. Use @ for anycast routing or 1 for multicast
routing.

A message will only be routed to queues which match its _AMQ_ROUTING_TYPE
property value (if any). For example, if a message with an _AMQ_ROUTING_TYPE value

o of 1 (i.e. multicast) is sent to an address that only has anycast queues then the
message won’t actually be routed to any of the queues since the routing types don’t
match. If no _AMQ_ROUTING_TYPE is set then the message will be routed to all the
queues on the address according to the queues' routing semantics.

Chapter 22. Address Settings

With address settings you can provide a block of settings which will be applied to any addresses
that match the string in the match attribute. In the below example the settings would only be applied
to the address order.foo address, but it is also possible to use wildcards to apply settings.

For example, if you used the match string queue.# the settings would be applied to all addresses
which start with queue..

Address settings are hierarchical. Therefore, if more than one address-setting would match then
the settings are applied in order of their specificity with the more specific match taking priority. A
match on the any-words delimiter (# by default) is considered less specific than a match without it.
A match with a single word delimiter (* by default) is considered less specific than a match on an
exact queue name. In this way settings can be "layered" so that configuration details don’t need to
be repeated.

Address setting matches can also be "literal" which can be used to match wildcards literally, for
further details see literal matches.

The meaning of the specific settings are explained fully throughout the user manual, however here
is a brief description with a link to the appropriate chapter if available.

Here an example of an address-setting entry that might be found in the broker.xml file.

<address-settings>
<address-setting match="order.foo">

<dead-letter-address>DLA</dead-letter-address>
<auto-create-dead-letter-resources>false</auto-create-dead-letter-resources>
<dead-letter-queue-prefix></dead-letter-queuve-prefix>
<dead-letter-queue-suffix></dead-letter-queuve-suffix>
<expiry-address>ExpiryQueue</expiry-address>
<auto-create-expiry-resources>false</auto-create-expiry-resources>
<expiry-queue-prefix></expiry-queue-prefix>
<expiry-queue-suffix></expiry-queue-suffix>
<expiry-delay>123</expiry-delay>
<redelivery-delay>5000</redelivery-delay>
<redelivery-delay-multiplier>1.0</redelivery-delay-multiplier>
<redelivery-collision-avoidance-factor>0.0</redelivery-collision-avoidance-

factor>
<max-redelivery-delay>10000</max-redelivery-delay>
<max-delivery-attempts>3</max-delivery-attempts>
<max-size-bytes>-1</max-size-bytes>
<max-size-messages>-1</max-size-messages>
<max-size-bytes-reject-threshold>-1</max-size-bytes-reject-threshold>
<page-size-bytes>10MB</page-size-bytes>
<address-full-policy>PAGE</address-full-policy>
<message-counter-history-day-limit></message-counter-history-day-limit>
<last-value-queue>false</last-value-queue> <!-- deprecated! see default-last-

value-queue -->

<default-last-value-queue>false</default-last-value-queue>
<default-non-destructive>false</default-non-destructive>
<default-exclusive-queue>false</default-exclusive-queue>
<default-consumers-before-dispatch>0</default-consumers-before-dispatch>
<default-delay-before-dispatch>-1</default-delay-before-dispatch>
<redistribution-delay>-1</redistribution-delay>
<send-to-dla-on-no-route>false</send-to-dla-on-no-route>
<slow-consumer-threshold>-1</slow-consumer-threshold>
<slow-consumer-threshold-measurement-unit>MESSAGES PER_SECOND</slow-consumer -

threshold-measurement-unit>
<slow-consumer-policy>NOTIFY</slow-consumer-policy>
<slow-consumer-check-period>5</slow-consumer-check-period>
<auto-create-queues>true</auto-create-queues>
<auto-delete-queues>true</auto-delete-queues>
<auto-delete-created-queues>false</auto-delete-created-queuves>
<auto-delete-queues-delay>0</auto-delete-queues-delay>
<auto-delete-queues-message-count>0</auto-delete-queues-message-count>
<auto-delete-queues-skip-usage-check>false</auto-delete-queues-skip-usage-check>
<config-delete-queues>0FF</config-delete-queues>
<config-delete-diverts>0FF</config-delete-diverts>
<auto-create-addresses>true</auto-create-addresses>
<auto-delete-addresses>true</auto-delete-addresses>
<auto-delete-addresses-delay>0</auto-delete-addresses-delay>
<auto-delete-addresses-skip-usage-check>false</auto-delete-addresses-skip-usage-

check>
<config-delete-addresses>0FF</config-delete-addresses>
<management-browse-page-size>200</management-browse-page-size>
<management-message-attribute-size-limit>256</management-message-attribute-size-

limit>
<default-purge-on-no-consumers>false</default-purge-on-no-consumers>
<default-max-consumers>-1</default-max-consumers>
<default-queue-routing-type>MULTICAST</default-queue-routing-type>
<default-address-routing-type>MULTICAST</default-address-routing-type>
<default-consumer-window-size>1048576</default-consumer-window-size>
<default-ring-size>-1</default-ring-size>
<retroactive-message-count>0</retroactive-message-count>
<enable-metrics>true</enable-metrics>
<enable-ingress-timestamp>false</enable-ingress-timestamp>
<id-cache-size>500</id-cache-size>

</address-setting>
</address-settings>

dead-letter-address

Is the address to which messages are sent when they exceed max-delivery-attempts. If no address
is defined here then such messages will simply be discarded. Read more about undelivered
messages.

auto-create-dead-letter-resources

Whether the broker will automatically create the defined dead-letter-address and a
corresponding dead-letter queue when a message is undeliverable. Read more in the chapter

about undelivered messages.

dead-letter-queue-prefix

The prefix used for automatically created dead-letter queues. Default is empty. Read more in the
chapter about undelivered messages.

dead-letter-queue-suffix

The suffix used for automatically created dead-letter queues. Default is empty. Read more in the
chapter about undelivered messages.

expiry-address

Where to send a message that has expired. If no address is defined here then such messages will
simply be discarded. Read more about message expiry.

auto-create-expiry-resources

Determines whether or not the broker will automatically create the defined expiry-address and
a corresponding expiry queue when a message expired. Read more in the chapter about
undelivered messages.

expiry-queue-prefix
The prefix used for automatically created expiry queues. Default is empty. Read more in the
chapter about message expiry.

expiry-queue-suffix
The suffix used for automatically created expiry queues. Default is empty. Read more in the
chapter about message expiry.

expiry-delay
The expiration time that will be used for messages which are using the default expiration time
(i.e. 0). For example, if expiry-delay is set to "10" and a message which is using the default
expiration time (i.e. 0) arrives then its expiration time of "0" will be changed to "10." However, if
a message which is using an expiration time of "20" arrives then its expiration time will remain
unchanged. Setting expiry-delay to "-1" will disable this feature. The default is "-1". Read more
about message expiry.

max-delivery-attempts

defines how many time a cancelled message can be redelivered before sending to the dead-
letter-address. Read more about undelivered messages.

redelivery-delay

defines how long to wait before attempting redelivery of a cancelled message. Default is 0.