
Table of Contents
1. General Project Information . 2

2. Why use Apache ActiveMQ Artemis? . 3

3. Messaging Concepts . 4

3.1. General Concepts . 4

3.2. Messaging styles . 4

3.3. Delivery guarantees . 6

3.4. Transactions. 6

3.5. Durability . 6

3.6. Messaging APIs . 6

3.7. High Availability . 7

3.8. Clusters . 7

3.9. Bridges and routing . 8

4. Core Architecture . 9

4.1. Standalone Broker . 10

4.2. Embedded Broker. 10

4.3. Integrated with a Java/Jakarta EE application server . 10

5. Protocols and Interoperability . 12

5.1. Supported Protocols. 12

5.2. Configuring Acceptors . 13

6. AMQP. 15

6.1. Examples. 15

6.2. Message Conversions. 15

6.3. Intercepting and changing messages. 16

6.4. AMQP and security. 16

6.5. AMQP and destinations. 16

6.6. AMQP and Multicast Addresses (Topics). 16

6.7. AMQP and Coordinations - Handling Transactions . 17

6.8. AMQP scheduling message delivery . 17

6.9. DLQ and Expiry transfer. 17

6.10. Filtering on Message Annotations . 18

6.11. Configuring AMQP Idle Timeout. 18

6.12. Web Sockets . 19

7. STOMP. 20

7.1. Limitations . 20

7.2. Mapping STOMP destinations to addresses and queues . 20

7.3. Logging . 20

7.4. Routing Semantics . 21

7.5. STOMP heart-beating and connection-ttl . 22

7.6. Selector/Filter expressions . 24

7.7. STOMP and JMS interoperability . 24

7.8. Durable Subscriptions . 25

7.9. Handling of Large Messages with STOMP . 25

7.10. Web Sockets . 26

7.11. Flow Control . 27

8. MQTT. 28

8.1. MQTT Quality of Service . 28

8.2. MQTT Retain Messages . 29

8.3. Will Messages . 29

8.4. Debug Logging. 29

8.5. Persistent Subscriptions . 30

8.6. Custom Client ID Handling . 30

8.7. Wildcard subscriptions . 31

8.8. Web Sockets . 31

8.9. Link Stealing . 32

8.10. Automatic Subscription Clean-up. 32

8.11. Flow Control . 33

8.12. Topic Alias Maximum . 33

8.13. Maximum Packet Size . 33

8.14. Server Keep Alive . 34

8.15. Enhanced Authentication. 34

8.16. Publish Authorization Failures . 34

9. OpenWire . 36

9.1. Connection Monitoring . 36

9.2. Disable/Enable Advisories . 36

9.3. OpenWire Destination Cache. 37

9.4. Virtual Topic Consumer Destination Translation . 37

9.5. Logging . 38

10. Using Core . 39

10.1. Core Messaging Concepts . 39

10.2. Core API . 40

10.3. A simple example of using Core . 41

11. Core Client Failover . 43

11.1. Reconnect to the same server . 43

11.2. Reconnect to the backup server . 43

11.3. Reconnect to other active servers . 44

11.4. Session reconnection. 44

11.5. Failing over on the initial connection . 44

11.6. Reconnection and failover attributes . 44

11.7. ExceptionListeners and SessionFailureListeners . 45

12. Mapping JMS Concepts to the Core API. 46

12.1. JMS Topic . 46

12.2. JMS Queue . 46

13. Using JMS or Jakarta Messaging . 47

13.1. A simple ordering system. 47

13.2. JNDI . 47

13.3. Directly instantiating JMS Resources without using JNDI . 52

13.4. Setting The Client ID . 53

13.5. Setting The Batch Size for DUPS_OK . 54

13.6. Setting The Transaction Batch Size . 54

13.7. Setting The Destination Cache. 54

14. Extra Acknowledge Modes. 55

14.1. Using PRE_ACKNOWLEDGE. 55

14.2. Individual Acknowledge. 55

14.3. Example . 56

15. PROXY Protocol. 57

15.1. Configuration. 57

15.2. Management . 58

16. Versions . 59

16.1. 2.43.0 . 59

16.2. 2.42.0 . 60

16.3. 2.41.0 . 61

16.4. 2.40.0 . 62

16.5. 2.39.0 . 63

16.6. 2.38.0 . 64

16.7. 2.37.0 . 65

16.8. 2.36.0 . 65

16.9. 2.35.0 . 66

16.10. 2.34.0 . 66

16.11. 2.33.0 . 67

16.12. 2.32.0 . 68

16.13. 2.31.2 . 69

16.14. 2.31.1 . 69

16.15. 2.31.0 . 69

16.16. 2.30.0 . 70

16.17. 2.29.0 . 70

16.18. 2.28.0 . 71

16.19. 2.27.1 . 72

16.20. 2.27.0 . 72

16.21. 2.26.0 . 74

16.22. 2.25.0 . 74

16.23. 2.24.0 . 74

16.24. 2.23.1 . 75

16.25. 2.23.0 . 75

16.26. 2.22.0 . 75

16.27. 2.21.0 . 76

16.28. 2.20.0 . 77

16.29. 2.19.0 . 77

16.30. 2.18.0 . 77

16.31. 2.17.0 . 79

16.32. 2.16.0 . 79

16.33. 2.15.0 . 81

16.34. 2.14.0 . 81

16.35. 2.13.0 . 81

16.36. 2.12.0 . 82

16.37. 2.11.0 . 83

16.38. 2.10.0 . 83

16.39. 2.9.0 . 84

16.40. 2.8.1 . 84

16.41. 2.8.0 . 85

16.42. 2.7.0 . 86

16.43. 2.6.4 . 86

16.44. 2.6.3 . 87

16.45. 2.6.2 . 87

16.46. 2.6.1 . 87

16.47. 2.6.0 . 87

16.48. 2.5.0 . 87

16.49. 2.4.0 . 88

16.50. 2.3.0 . 89

16.51. 2.2.0 . 89

16.52. 2.0.0 . 90

16.53. 1.5.6 . 90

16.54. 1.5.5 . 90

16.55. 1.5.4 . 90

16.56. 1.5.3 . 91

16.57. 1.5.2 . 91

16.58. 1.5.1 . 91

16.59. 1.5.0 . 91

16.60. 1.4.0 . 91

16.61. 1.3.0 . 92

16.62. 1.2.0 . 92

16.63. 1.1.0 . 92

16.64. 1.0.0 . 93

17. Upgrading the Broker . 94

17.1. General Upgrade Procedure . 94

17.2. Upgrading tool. 95

18. Docker. 96

18.1. Official Images . 96

18.2. Build your own Image. 96

19. Using the Server . 100

19.1. Installation. 100

19.2. Creating a Broker Instance . 100

19.3. Starting and Stopping a Broker Instance . 106

19.4. Configuration Files. 106

19.5. Other Use-Cases . 108

20. Command Line Interface . 110

20.1. Getting Help. 110

20.2. Bash and Zsh auto complete . 115

20.3. Input required. 116

20.4. Artemis Shell . 116

21. The Client Classpath . 119

21.1. Maven dependencies. 119

21.2. Individual client dependencies. 119

21.3. Repackaged '-all' clients . 119

22. Address Model . 121

22.1. Address . 121

22.2. Queue . 121

22.3. Routing Type . 121

22.4. Automatic Configuration . 122

22.5. Basic Manual Configuration . 122

22.6. Advanced Manual Configuration . 125

22.7. How to filter messages . 129

22.8. Alternate Ways to Determine Routing Type . 130

23. Address Settings . 132

23.1. Literal Matches . 140

24. Wildcard Syntax. 142

24.1. Matching Any Word. 142

24.2. Matching a Single Word . 142

24.3. Customizing the Syntax . 143

25. Routing Messages With Wild Cards. 144

26. Diverting and Splitting Message Flows. 145

26.1. Exclusive Divert . 146

26.2. Non-exclusive Divert . 146

26.3. Composite Divert . 147

27. Transformers . 148

27.1. Configuration . 148

28. Filter Expressions . 149

28.1. XPath . 150

29. Management . 152

29.1. The Management API . 152

29.2. Management Via JMX . 156

29.3. Using Management Message API . 171

29.4. Management Notifications. 174

29.5. Message Counters. 177

30. Management Console . 180

30.1. Login . 180

30.2. Security. 180

30.3. Console . 181

30.4. Artemis Tab . 182

30.5. Artemis JMX Tab. 183

30.6. Status Logging . 184

31. Metrics . 185

31.1. Exported Metrics . 185

31.2. Configuration . 189

32. Core Bridges . 191

32.1. Configuring Core Bridges . 191

33. Clusters . 196

33.1. Overview . 196

33.2. Performance Considerations. 196

33.3. Server discovery. 197

33.4. Server-Side Message Load Balancing . 203

33.5. Client-Side Load balancing . 209

33.6. Specifying Members of a Cluster Explicitly . 210

33.7. Message Redistribution. 210

33.8. Cluster topologies . 212

34. High Availability and Failover . 215

34.1. Terminology . 215

34.2. HA Policies . 216

34.3. Failing Back to Primary Server . 227

34.4. Scaling Down. 233

34.5. Client Failover . 235

35. Network Isolation (Split Brain). 240

35.1. Pluggable Lock Manager . 240

35.2. Quorum Voting . 241

35.3. Pinging the network . 241

36. Restart Sequence . 245

36.1. Restarting 1 broker at a time. 245

36.2. Completely shutting down the brokers and starting . 245

36.3. Split-brain situation. 245

37. Activation Sequence Tools . 247

37.1. ZooKeeper cluster disaster. 247

38. Broker Connections . 248

38.1. AMQP Server Connections . 248

38.2. AMQP Server Connection Operations . 249

38.3. Reconnecting and Failover . 250

38.4. Mirroring . 251

38.5. Dual Mirror (Disaster Recovery) . 253

38.6. Senders and Receivers . 254

38.7. Peers . 256

38.8. Address Consideration . 257

38.9. Federation . 257

38.10. Bridges . 260

39. Federation . 266

39.1. Benefits . 266

39.2. Address Federation . 266

39.3. Queue Federation. 267

39.4. WAN Full Mesh . 268

39.5. Configuring Federation. 269

40. Address Federation . 271

40.1. Topology Patterns. 271

40.2. Configuring Address Federation. 276

40.3. Configuring Downstream Federation . 280

41. Queue Federation. 282

41.1. Use Cases . 282

41.2. Configuring Queue Federation . 283

41.3. Configuring Downstream Federation . 287

42. Connection Routers . 289

42.1. Target Broker . 289

42.2. Keys . 289

42.3. Pools . 289

42.4. Policies . 291

42.5. Cache . 292

42.6. Defining connection routers . 292

42.7. Key values . 293

42.8. Connection Router Workflow . 293

42.9. Data gravity . 296

42.10. Redirection . 296

43. The JMS Bridge . 299

43.1. JMS Bridge Parameters . 299

43.2. Source and Target Connection Factories . 302

43.3. Source and Target Destination Factories . 302

43.4. Quality Of Service. 302

44. Authentication & Authorization . 304

44.1. Basic Configuration . 304

44.2. Caching Security Operations . 304

44.3. Tracking the Validated User. 304

44.4. Role based security for addresses . 304

44.5. Security Setting Plugin . 308

44.6. Secure Sockets Layer (SSL) Transport . 312

44.7. User credentials . 312

44.8. Mapping external roles. 332

44.9. SASL. 332

44.10. Changing the username/password for clustering . 332

44.11. Securing the console . 332

44.12. Controlling JMS ObjectMessage deserialization . 334

44.13. Masking Passwords . 336

44.14. Custom Security Manager . 336

44.15. Per-Acceptor Security Domains . 336

44.16. UUID Resources . 336

45. Masking Passwords . 338

45.1. Generating a Masked Password . 338

45.2. Masking Configuration . 339

45.3. Choosing a codec for password masking . 344

46. Resource Limits . 347

46.1. Configuring Limits Via Resource Limit Settings . 347

47. Performance Tuning . 349

47.1. Tuning persistence. 349

47.2. Tuning JMS. 349

47.3. Other Tunings . 350

47.4. Tuning Transport Settings . 351

47.5. Tuning the VM. 351

47.6. Avoiding Anti-Patterns . 352

47.7. Troubleshooting . 352

48. Performance Tools. 354

48.1. Case 1: Single producer Single consumer over a queue . 354

48.2. Case 2: Target Rate Single producer Single consumer over a queue . 359

48.3. Case 3: Target Rate load on 10 durable topics, each with 3 producers and 2 unshared

consumers . 362

49. Thread management. 365

49.1. Server-Side Thread Management. 365

49.2. Client-Side Thread Management . 367

50. Scheduled Messages . 368

50.1. Scheduled Delivery Property. 368

50.2. Example . 368

51. Last-Value Queues . 369

51.1. Configuration . 369

51.2. Last-Value Property . 370

51.3. Forcing all consumers to be non-destructive . 371

51.4. Clustering . 371

51.5. Example . 371

52. Non-Destructive Queues. 372

52.1. Limiting the Size of the Queue . 372

53. Ring Queue . 373

53.1. Configuration . 374

53.2. Messages in Delivery & Rollbacks . 374

53.3. Scheduled Messages . 375

53.4. Paging . 376

54. Retroactive Addresses. 377

54.1. Internal Retroactive Resources. 377

54.2. Configuration . 378

55. Exclusive Queues . 379

55.1. Configuring Exclusive Queues . 379

55.2. Example . 379

56. Message Grouping . 381

56.1. Using Core API. 381

56.2. Using JMS . 381

56.3. Closing a Message Group . 382

56.4. Notifying Consumer of Group Ownership change. 382

56.5. Rebalancing Message Groups . 383

56.6. Group Buckets . 384

56.7. Example . 385

56.8. Clustered Grouping . 385

57. Consumer Priority . 388

57.1. Core . 388

57.2. OpenWire . 388

57.3. AMQP. 388

58. Message Expiry. 390

58.1. Core API . 390

58.2. JMS API . 390

58.3. Expired Message Properties . 390

58.4. Configuring Expiry Addresses. 390

58.5. Dropping Expired Messages . 391

58.6. Configuring Expiry Delay . 391

58.7. Expiring Expired Messages . 393

58.8. Configuring Automatic Creation of Expiry Resources. 393

58.9. Configuring The Expiry Reaper Thread . 394

58.10. Example . 394

59. Large Messages. 395

59.1. Configuring the server . 395

59.2. Configuring the Core Client . 396

59.3. Compressed Large Messages on Core Protocol . 396

59.4. Streaming large messages from Core Protocol . 397

59.5. Configuring AMQP Acceptor . 399

59.6. Large message example . 400

60. Paging . 401

60.1. Page Files . 401

60.2. Paging Mode . 401

60.3. Global Max Size . 404

60.4. Global Max Messages . 405

60.5. Dropping messages . 405

60.6. Dropping messages and throwing an exception to producers . 405

60.7. Blocking producers . 405

60.8. Caution with Addresses with Multiple Multicast Queues. 406

60.9. Monitoring Disk . 406

60.10. Page Sync Timeout. 407

60.11. Memory usage from Paged Messages. 407

60.12. Page Limits and Page Full Policy . 407

60.13. Example . 407

61. Duplicate Message Detection . 408

61.1. Using Duplicate Detection for Message Sending. 408

61.2. Duplicate Detection Semantics . 409

61.3. Configuring the Duplicate ID Cache. 410

61.4. Duplicate Detection and Bridges . 411

61.5. Duplicate Detection and Cluster Connections . 411

61.6. Performance Considerations. 412

62. Message Redelivery and Undelivered Messages . 413

62.1. Delayed Redelivery . 413

62.2. Dead Letter Addresses . 415

62.3. Delivery Count Persistence . 417

63. Persistence. 418

63.1. File Journal (Default) . 418

63.2. JDBC Persistence. 424

63.3. Zero Persistence . 428

64. Data Tools . 429

65. Libaio Native Libraries. 438

65.1. Runtime dependencies . 438

65.2. Compiling the native libraries . 439

65.3. Compilation dependencies. 439

65.4. Invoking the compilation . 439

66. Detecting Dead Connections . 440

66.1. Cleaning up Resources on the Server . 440

66.2. Closing Forgotten Resources . 442

66.3. Detecting Failure from the Client . 442

66.4. Configuring Asynchronous Connection Execution . 442

67. Configuring the Transport . 444

67.1. Acceptors . 444

67.2. Connectors . 444

67.3. Configuring the Transport Directly from the Client . 445

67.4. Configuring the Netty transport . 445

68. Flow Control . 456

68.1. Consumer Flow Control . 456

68.2. Producer flow control . 457

69. Plugin Support . 461

69.1. Registering a Plugin . 461

69.2. Registering a Plugin Programmatically . 461

69.3. Using the LoggingActiveMQServerPlugin. 462

69.4. Using the NotificationActiveMQServerPlugin . 463

69.5. Using the BrokerMessageAuthorizationPlugin . 463

69.6. Using the ConnectionPeriodicExpiryPlugin. 464

70. Intercepting Operations . 466

70.1. Implementing The Interceptors . 466

70.2. Configuring The Interceptors . 467

70.3. Interceptors on the Client Side . 467

70.4. Examples . 467

71. Configuration Reload . 469

71.1. Reloadable Parameters . 470

71.2. Broker Properties . 480

72. Detecting Slow Consumers . 481

72.1. Required Configuration . 481

72.2. Example . 481

73. Critical Analysis of the broker . 482

73.1. What to Expect . 482

74. Resource Manager Configuration . 485

75. Guarantees of Sends and Commits . 486

75.1. Transaction Completion . 486

75.2. Non Transactional Message Sends . 486

75.3. Non Transactional Acknowledgements . 487

75.4. Asynchronous Send Acknowledgements . 487

76. Graceful Server Shutdown. 489

77. Embedded Web Server . 490

77.1. Configuration . 490

77.2. Request Log . 492

77.3. Proxy Forwarding . 494

77.4. Management . 494

78. Logging . 495

78.1. Configuring a Specific Level for a Logger . 495

78.2. Configuration Reload. 495

78.3. Logging in a client application . 496

78.4. Configuring Broker Audit Logging . 497

78.5. More on Log4J2 configuration: . 498

79. Embedding Apache ActiveMQ Artemis . 499

79.1. Embedding with XML configuration . 499

79.2. Embedding with programmatic configuration . 500

80. Artemis on Apache Karaf . 502

80.1. Installation. 502

80.2. Configuration . 502

81. Apache Tomcat Support . 504

81.1. Resource Context Client Configuration. 504

81.2. Example Tomcat App . 504

82. CDI Integration . 505

82.1. Configuring a connection . 505

83. Properties for Copied Messages . 506

84. Maven Plugins . 507

84.1. When to use it . 507

84.2. Goals . 507

84.3. Declaration. 507

84.4. create goal . 507

84.5. cli goal . 508

85. Unit Testing . 512

85.1. Examples . 512

85.2. Ordering rules / extensions . 513

85.3. Available Rules / Extensions . 514

86. JCA Resource Adapter . 515

86.1. Versions . 515

86.2. Building the RA . 515

86.3. Configuration . 516

86.4. Logging . 518

87. Configuration Reference . 519

87.1. Broker Configuration . 519

87.2. The core configuration . 522

87.3. address-setting type. 532

87.4. bridge type . 535

87.5. broadcast-group type . 536

87.6. cluster-connection type . 537

87.7. discovery-group type. 538

87.8. divert type . 538

87.9. address type. 539

87.10. queue type . 539

87.11. security-setting type . 540

87.12. broker-plugin type . 540

87.13. metrics-plugin type . 540

87.14. resource-limit type. 540

87.15. grouping-handler type . 541

87.16. amqp-connection type . 541

88. Examples . 542

88.1. Running the Examples . 542

88.2. Application-Layer Failover . 546

88.3. Core Bridge Example. 546

88.4. Browser . 546

88.5. Camel. 547

88.6. Client Kickoff . 547

88.7. Client side failover listener . 547

88.8. Client-Side Load-Balancing . 547

88.9. Clustered Durable Subscription . 547

88.10. Clustered Grouping . 547

88.11. Clustered Queue . 547

88.12. Clustering with JGroups . 547

88.13. Clustered Standalone . 548

88.14. Clustered Static Discovery . 548

88.15. Clustered Static Cluster One Way. 548

88.16. Clustered Topic . 548

88.17. Message Consumer Rate Limiting . 548

88.18. Dead Letter . 548

88.19. Delayed Redelivery . 549

88.20. Divert . 549

88.21. Durable Subscription . 549

88.22. Embedded . 549

88.23. Embedded Simple . 549

88.24. Exclusive Queue . 549

88.25. Message Expiration . 549

88.26. Apache ActiveMQ Artemis Resource Adapter example . 550

88.27. HTTP Transport . 550

88.28. Instantiate JMS Objects Directly . 550

88.29. Interceptor. 550

88.30. Interceptor AMQP . 550

88.31. Interceptor Client. 550

88.32. Interceptor MQTT . 550

88.33. JAAS. 551

88.34. JMS Auto Closable . 551

88.35. JMS Completion Listener . 551

88.36. JMS Bridge . 551

88.37. JMS Context . 551

88.38. JMS Shared Consumer . 551

88.39. JMX Management. 551

88.40. Large Message. 551

88.41. Last-Value Queue . 552

88.42. Management . 552

88.43. Management Notification . 552

88.44. Message Counter . 552

88.45. Message Group . 552

88.46. Message Group . 552

88.47. Message Priority. 553

88.48. Multiple Failover . 553

88.49. Multiple Failover Failback . 553

88.50. No Consumer Buffering . 553

88.51. Non-Transaction Failover With Server Data Replication . 553

88.52. OpenWire. 554

88.53. Paging . 554

88.54. Pre-Acknowledge . 554

88.55. Message Producer Rate Limiting . 554

88.56. Queue . 554

88.57. Message Redistribution . 554

88.58. Queue Requestor . 555

88.59. Queue with Message Selector . 555

88.60. Reattach Node example . 555

88.61. Replicated Failback example. 555

88.62. Replicated Failback static example . 555

88.63. Replicated multiple failover example . 555

88.64. Replicated Failover transaction example. 555

88.65. Request-Reply example . 555

88.66. Scheduled Message . 555

88.67. Security. 556

88.68. Security LDAP . 556

88.69. Security keycloak . 556

88.70. Send Acknowledgements . 556

88.71. Slow Consumer. 556

88.72. Spring Integration . 556

88.73. SSL Transport . 556

88.74. Static Message Selector . 556

88.75. Static Message Selector Using JMS . 556

88.76. Stomp . 557

88.77. Stomp1.1. 557

88.78. Stomp1.2. 557

88.79. Stomp Over Web Sockets . 557

88.80. Symmetric Cluster . 557

88.81. Temporary Queue . 557

88.82. Topic . 557

88.83. Topic Hierarchy . 557

88.84. Topic Selector 1. 558

88.85. Topic Selector 2. 558

88.86. Transaction Failover . 558

88.87. Failover Without Transactions . 558

88.88. Transactional Session . 558

88.89. XA Heuristic. 558

88.90. XA Receive . 558

88.91. XA Send . 558

89. Legal Notice. 560

An in-depth manual on all aspects of Apache ActiveMQ Artemis 2.43.0

Chapter 1. General Project Information
• Apache ActiveMQ Artemis is an open source project to build a multi-protocol, embeddable, very

high performance, clustered, asynchronous messaging system.

• Apache ActiveMQ Artemis is an example of Message Oriented Middleware (MoM). For a
description of MoMs and other messaging concepts please see the Messaging Concepts.

• If you have any questions related to the use or development of Apache ActiveMQ Artemis please
use one of our mailing lists.

• Official project page: https://activemq.apache.org/components/artemis/.

• Download: https://activemq.apache.org/components/artemis/download/

• Git repository: https://github.com/apache/activemq-artemis

https://activemq.apache.org/contact
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/download/
https://github.com/apache/activemq-artemis

Chapter 2. Why use Apache ActiveMQ
Artemis?
Here are just a few reasons:

• 100% open source software. Apache ActiveMQ Artemis is licensed using the Apache Software
License v 2.0 to minimise barriers to adoption.

• Apache ActiveMQ Artemis is designed with usability in mind.

• Written in Java. Runs on any platform with a Java 11+ runtime, that’s everything from Windows
desktops to IBM mainframes.

• Amazing performance. Our ground-breaking high performance journal provides persistent
messaging performance at rates normally seen for non-persistent messaging, our non-persistent
messaging performance rocks the boat too.

• Full feature set. All the features you’d expect in any serious messaging system, and others you
won’t find anywhere else.

• Elegant, clean-cut design with minimal third party dependencies. Run ActiveMQ Artemis stand-
alone, run it in integrated in your favourite Java EE application server, or run it embedded
inside your own product. It’s up to you.

• Seamless high availability. We provide a HA solution with automatic client failover so you can
guarantee zero message loss or duplication in event of server failure.

• Hugely flexible clustering. Create clusters of servers that know how to load balance messages.
Link geographically distributed clusters over unreliable connections to form a global network.
Configure routing of messages in a highly flexible way.

Chapter 3. Messaging Concepts
Apache ActiveMQ Artemis is an asynchronous messaging system, an example of Message Oriented
Middleware, we’ll just call them messaging systems in the remainder of this book.

We’ll first present a brief overview of what kind of things messaging systems do, where they’re
useful and the kind of concepts you’ll hear about in the messaging world.

If you’re already familiar with what a messaging system is and what it’s capable of, then you can
skip this chapter.

3.1. General Concepts
Messaging systems allow you to loosely couple heterogeneous systems together, whilst typically
providing reliability, transactions and many other features.

Unlike systems based on a Remote Procedure Call (RPC) pattern, messaging systems primarily use
an asynchronous message passing pattern with no tight relationship between requests and
responses. Most messaging systems also support a request-response mode but this is not a primary
feature of messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of your
hardware resources, minimizing the amount of threads blocking on IO operations, and to use your
network bandwidth to its full capacity. With an RPC approach you have to wait for a response for
each request you make so are limited by the network round trip time, or latency of your network.
With an asynchronous system you can pipeline flows of messages in different directions, so are
limited by the network bandwidth not the latency. This typically allows you to create much higher
performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The senders
and consumers of messages are completely independent and know nothing of each other. This
allows you to create flexible, loosely coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely couples
heterogeneous systems together. Message buses often form the core of an Enterprise Service Bus
(ESB). Using a message bus to de-couple disparate systems can allow the system to grow and adapt
more easily. It also allows more flexibility to add new systems or retire old ones since they don’t
have brittle dependencies on each other.

3.2. Messaging styles
Messaging systems normally support two main styles of asynchronous messaging: message queue
messaging (also known as point-to-point messaging) and publish subscribe messaging. We’ll
summarise them briefly here:

3.2.1. Point-to-Point

With this type of messaging you send a message to a queue. The message is then typically persisted

https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Message_queue
https://en.wikipedia.org/wiki/Publish_subscribe

to provide a guarantee of delivery, then some time later the messaging system delivers the message
to a consumer. The consumer then processes the message and when it is done, it acknowledges the
message. Once the message is acknowledged it disappears from the queue and is not available to be
delivered again. If the system crashes before the messaging server receives an acknowledgement
from the consumer, then on recovery, the message will be available to be delivered to a consumer
again.

With point-to-point messaging, there can be many consumers on the queue but a particular
message will only ever be consumed by a maximum of one of them. Senders (also known as
producers) to the queue are completely decoupled from receivers (also known as consumers) of the
queue - they do not know of each other’s existence.

A classic example of point to point messaging would be an order queue in a company’s book
ordering system. Each order is represented as a message which is sent to the order queue. Let’s
imagine there are many front end ordering systems which send orders to the order queue. When a
message arrives on the queue it is persisted - this ensures that if the server crashes the order is not
lost. Let’s also imagine there are many consumers on the order queue - each representing an
instance of an order processing component - these can be on different physical machines but
consuming from the same queue. The messaging system delivers each message to one and only one
of the ordering processing components. Different messages can be processed by different order
processors, but a single order is only processed by one order processor - this ensures orders aren’t
processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the
warehouse system and then updates the order database with the order details. Once it’s done that it
acknowledges the message to tell the server that the order has been processed and can be forgotten
about. Often the send to the warehouse system, update in database and acknowledgement will be
completed in a single transaction to ensure ACID properties.

3.2.2. Publish-Subscribe

With publish-subscribe messaging many senders can send messages to an entity on the server,
often called a topic (e.g. in the JMS world).

There can be many subscriptions on a topic, a subscription is just another word for a consumer of a
topic. Each subscription receives a copy of each message sent to the topic. This differs from the
message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to the
topic until the subscriber consumes them - even if the server crashes or is restarted in between.
Non-durable subscriptions only last a maximum of the lifetime of the connection that created them.

An example of publish-subscribe messaging would be a news feed. As news articles are created by
different editors around the world they are sent to a news feed topic. There are many subscribers
around the world who are interested in receiving news items - each one creates a subscription and
the messaging system ensures that a copy of each news message is delivered to each subscription.

https://en.wikipedia.org/wiki/ACID

3.3. Delivery guarantees
A key feature of most messaging systems is reliable messaging. With reliable messaging the server
gives a guarantee that the message will be delivered once and only once to each consumer of a
queue or each durable subscription of a topic, even in the event of system failure. This is crucial for
many businesses; e.g. you don’t want your orders fulfilled more than once or any of your orders to
be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to
cope with duplicate deliveries or lost messages - an example of this might be transient stock price
updates - which are quickly superseded by the next update on the same stock. The messaging
system allows you to configure which delivery guarantees you require.

3.4. Transactions
Messaging systems typically support the sending and acknowledgement of multiple messages in a
single local transaction. Apache ActiveMQ Artemis also supports the sending and acknowledgement
of message as part of a large global transaction - using the Java mapping of XA: JTA.

3.5. Durability
Messages are either durable or non durable. Durable messages will be persisted in permanent
storage and will survive server failure or restart. Non durable messages will not survive server
failure or restart. Examples of durable messages might be orders or trades, where they cannot be
lost. An example of a non durable message might be a stock price update which is transitory and
doesn’t need to survive a restart.

3.6. Messaging APIs
How do client applications interact with messaging systems in order to send and consume
messages?

Several messaging systems provide their own proprietary APIs with which the client communicates
with the messaging system.

There are also some standard ways of operating with messaging systems and some emerging
standards in this space. Let’s take a brief look at these.

3.6.1. JMS & Jakarta Messaging

JMS was historically part of Oracle’s Java EE specification. However, in 2017 control was
transferred to the Eclipse Foundation and it is now known as Jakarta Messaging which is part of
Jakarta EE.

It is a Java API that encapsulates both message queue and publish-subscribe messaging patterns. It
is a lowest common denominator specification - i.e. it was created to encapsulate common
functionality of the already existing messaging systems that were available at the time of its
creation.

https://en.wikipedia.org/wiki/Java_Message_Service
https://jakarta.ee/specifications/messaging/

It is a very popular API and is implemented by most messaging systems. It is only available to
clients running Java.

It does not define a standard wire format - it only defines a programmatic API so clients and servers
from different vendors cannot directly interoperate since each will use the vendor’s own internal
wire protocol.

Apache ActiveMQ Artemis provides client implementations which are a fully compliant with JMS
1.1 & 2.0 as well as Jakarta Messaging 2.0 & 3.0.

3.6.2. System specific APIs

Many systems provide their own programmatic API for which to interact with the messaging
system. The advantage of this it allows the full set of system functionality to be exposed to the client
application. API’s like JMS are not normally rich enough to expose all the extra features that most
messaging systems provide.

Apache ActiveMQ Artemis provides its own core client API for clients to use if they wish to have
access to functionality over and above that accessible via the JMS API.

Please see Core for using the Core API with Apache ActiveMQ Artemis.

3.7. High Availability
High Availability (HA) means that the system should remain operational after failure of one or
more of the servers. The degree of support for HA varies between various messaging systems.

Apache ActiveMQ Artemis provides automatic failover where your sessions are automatically
reconnected to a backup server on event of a server failure.

For more information on HA, please see High Availability and Failover.

3.8. Clusters
Many messaging systems allow you to create groups of messaging servers called clusters. Clusters
allow the load of sending and consuming messages to be spread over many servers. This allows
your system to scale horizontally by adding new servers to the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having fairly
basic clusters with the cluster members being hardly aware of each other.

Apache ActiveMQ Artemis provides very configurable state-of-the-art clustering model where
messages can be intelligently load balanced between the servers in the cluster, according to the
number of consumers on each node, and whether they are ready for messages.

Apache ActiveMQ Artemis also has the ability to automatically redistribute messages between
nodes of a cluster to prevent starvation on any particular node.

For full details on clustering, please see Clusters.

3.9. Bridges and routing
Some messaging systems allow isolated clusters or single nodes to be bridged together, typically
over unreliable connections like a wide area network (WAN), or the internet.

A bridge normally consumes from a queue on one server and forwards messages to another queue
on a different server. Bridges cope with unreliable connections, automatically reconnecting when
the connections becomes available again.

Apache ActiveMQ Artemis bridges can be configured with filter expressions to only forward certain
messages, and transformation can also be hooked in.

Apache ActiveMQ Artemis also allows routing between queues to be configured in server side
configuration. This allows complex routing networks to be set up forwarding or copying messages
from one destination to another, forming a global network of interconnected brokers.

For more information please see Core Bridges and Diverting and Splitting Message Flows.

Chapter 4. Core Architecture
Apache ActiveMQ Artemis core is designed simply as set of Plain Old Java Objects (POJOs) - we hope
you like its clean-cut design.

Each Apache ActiveMQ Artemis server has its own ultra high performance persistent journal,
which it uses for message and other persistence.

Using a high performance journal allows outrageous persistence message performance, something
not achievable when using a relational database for persistence (although JDBC is still an option if
necessary).

Apache ActiveMQ Artemis clients, potentially on different physical machines, interact with the
Apache ActiveMQ Artemis broker. Apache ActiveMQ Artemis currently ships three API
implementations for messaging at the client side:

1. Core client API. This is a simple intuitive Java API that is aligned with the Artemis internal Core.
Allowing more control of broker objects (e.g direct creation of addresses and queues). The Core
API also offers a full set of messaging functionality without some of the complexities of JMS.

2. JMS 2.0 client API. The standard JMS API is available at the client side. This client is also
compliant with the Jakarta Messaging 2.0 specification.

3. Jakarta Messaging 3.0 client API. This is essentially the same as the JMS 2.0 API. The only
difference is the package names use jakarta insead of javax. This difference was introduced due
to the move from Oracle’s Java EE to Eclipse’s Jakarta EE.

Apache ActiveMQ Artemis also provides different protocol implementations on the server so you
can use respective clients for these protocols:

• AMQP

• OpenWire

• MQTT

• STOMP

• HornetQ (for use with HornetQ clients).

• Core (Artemis CORE protocol)

JMS semantics are implemented by a JMS facade layer on the client side.

The Apache ActiveMQ Artemis broker does not speak JMS and in fact does not know anything about
JMS, it is a protocol agnostic messaging server designed to be used with multiple different
protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into operations
on the Apache ActiveMQ Artemis core client API before being transferred over the wire using the
core protocol.

The broker always just deals with core API interactions.

4.1. Standalone Broker
The normal stand-alone messaging broker configuration comprises a core messaging broker and a
number of protocol managers that provide support for the various protocol mentioned earlier.

The standalone broker configuration uses picocli for bootstrapping the broker.

For more information on server configuration files see Server Configuration.

4.2. Embedded Broker
Apache ActiveMQ Artemis core is designed as a set of simple POJOs so if you have an application
that requires messaging functionality internally but you don’t want to expose that as an Apache
ActiveMQ Artemis broker you can directly instantiate and embed brokers in your own application.

Read more about embedding Apache ActiveMQ Artemis.

4.3. Integrated with a Java/Jakarta EE application
server
Apache ActiveMQ Artemis provides its own fully functional Java Connector Architecture (JCA)
adaptor which enables it to be integrated easily into any Java/Jakarta EE (henceforth just "EE")
compliant application server or servlet engine.

EE application servers provide Message Driven Beans (MDBs), which are a special type of
Enterprise Java Beans (EJBs) that can process messages from sources such as JMS systems or mail
systems.

Probably the most common use of an MDB is to consume messages from a JMS messaging system.

According to the EE specification an application server uses a JCA adapter to integrate with a JMS
messaging system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the EE application server for consuming messages via
MDBs, it is also used when sending message to the JMS messaging system e.g. from inside an EJB or
servlet.

When integrating with a JMS messaging system from inside an EE application server it is always
recommended that this is done via a JCA adaptor. In fact, communicating with a JMS messaging
system directly, without using JCA would be illegal according to the EE specification.

The application server’s JCA service provides extra functionality such as connection pooling and
automatic transaction enlistment, which are desirable when using messaging, say, from inside an
EJB. It is possible to talk to a JMS messaging system directly from an EJB, MDB or servlet without
going through a JCA adapter, but this is not recommended since you will not be able to take
advantage of the JCA features, such as caching of JMS sessions, which can result in poor
performance.

Note that all communication between EJB sessions or entity beans and Message Driven beans go

https://picocli.info/

through the adaptor and not directly to Apache ActiveMQ Artemis.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the Apache
ActiveMQ Artemis server. This is not recommended as you’ll most likely end up creating a new
connection and session every time you want to interact from the EJB, which is an anti-pattern.

Chapter 5. Protocols and Interoperability
Apache ActiveMQ Artemis has a powerful & flexible core which provides a foundation upon which
other protocols can be implemented. Each protocol implementation translates the ideas of its
specific protocol onto this core.

The broker ships with a client implementation which interacts directly with this core. It uses what’s
called the "core" API, and it communicates over the network using the "core" protocol.

5.1. Supported Protocols
The broker has a pluggable protocol architecture. Protocol plugins come in the form of protocol
modules. Each protocol module is included on the broker’s class path and loaded by the broker at
boot time. The broker ships with 5 protocol modules out of the box.

5.1.1. AMQP

AMQP is a specification for interoperable messaging. It also defines a wire format, so any AMQP
client can work with any messaging system that supports AMQP. AMQP clients are available in
many different programming languages.

Apache ActiveMQ Artemis implements the AMQP 1.0 specification. Any client that supports the 1.0
specification will be able to interact with Apache ActiveMQ Artemis.

Please see AMQP for more details.

5.1.2. MQTT

MQTT is a lightweight connectivity protocol. It is designed to run in environments where device
and networks are constrained. Any client that supports the 3.1, 3.1.1, or 5 specification will be able
to interact with Apache ActiveMQ Artemis.

Please see MQTT for more details.

5.1.3. STOMP

Stomp is a very simple text protocol for interoperating with messaging systems. It defines a wire
format, so theoretically any Stomp client can work with any messaging system that supports Stomp.
Stomp clients are available in many different programming languages. Any client that supports the
1.0, 1.1, or 1.2 specification will be able to interact with Apache ActiveMQ Artemis.

Please see Stomp for more details.

5.1.4. OpenWire

ActiveMQ Classic defines its own wire protocol: OpenWire. In order to support ActiveMQ Classic
clients, Apache ActiveMQ Artemis supports OpenWire. Any application using the OpenWire JMS
client library shipped with ActiveMQ 5.12.x or higher can be used with Apache ActiveMQ Artemis.

https://en.wikipedia.org/wiki/AMQP
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://mqtt.org/
https://stomp.github.io/

Please see OpenWire for more details.

5.1.5. Core

ActiveMQ Artemis defines its own wire protocol: Core.

Please see Core for more details.

APIs and Other Interfaces

Although JMS and Jakarta Messaging are standardized APIs, they do not define a network protocol.
The ActiveMQ Artemis JMS & Jakarta Messaging clients are implemented on top of the core
protocol. We also provide a client-side JNDI implementation.

5.2. Configuring Acceptors
In order to make use of a particular protocol, a transport must be configured with the desired
protocol enabled. There is a whole section on configuring transports that can be found here.

The default configuration shipped with the ActiveMQ Artemis distribution comes with a number of
acceptors already defined, one for each of the above protocols plus a generic acceptor that supports
all protocols. To enable protocols on a particular acceptor simply add the protocols url parameter
to the acceptor url where the value is one or more protocols (separated by commas). If the
protocols parameter is omitted from the url all protocols are enabled.

• The following example enables only MQTT on port 1883

<acceptors>
 <acceptor>tcp://localhost:1883?protocols=MQTT</acceptor>
</acceptors>

• The following example enables MQTT and AMQP on port 5672

<acceptors>
 <acceptor>tcp://localhost:5672?protocols=MQTT,AMQP</acceptor>
</acceptors>

• The following example enables all protocols on 61616:

<acceptors>
 <acceptor>tcp://localhost:61616</acceptor>
</acceptors>

Here are the supported protocols and their corresponding value used in the protocols url
parameter.

Protocol protocols value

Core (Artemis & HornetQ native) CORE

OpenWire (Classic native) OPENWIRE

AMQP AMQP

MQTT MQTT

STOMP STOMP

Chapter 6. AMQP
Apache ActiveMQ Artemis supports the AMQP 1.0 specification. By default there are acceptor
elements configured to accept AMQP connections on ports 61616 and 5672.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
AMQP.

You can use any AMQP 1.0 compatible clients.

A short list includes:

• qpid clients

• .NET Clients

• Javascript NodeJS

• Java Script RHEA

• … and many others.

6.1. Examples
We have a few examples as part of the Artemis examples:

• .NET:

◦ ./examples/protocols/amqp/dotnet

• ProtonCPP

◦ ./examples/protocols/amqp/proton-cpp

◦ ./examples/protocols/amqp/proton-clustered-cpp

• Ruby

◦ ./examples/protocols/amqp/proton-ruby

• Java (Using the qpid JMS Client)

◦ ./examples/protocols/amqp/queue

• Interceptors

◦ ./examples/features/standard/interceptor-amqp

◦ ./examples/features/standard/broker-plugin

6.2. Message Conversions
The broker will not perform any message conversion to any other protocols when sending AMQP
and receiving AMQP.

However if you intend your message to be received by an AMQP JMS Client, you must follow the
JMS Mapping Conventions. If you send a body type that is not recognized by this specification the

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp
https://qpid.apache.org/download.html
https://blogs.apache.org/activemq/entry/using-net-libraries-with-activemq
https://github.com/noodlefrenzy/node-amqp10
https://github.com/grs/rhea
https://www.oasis-open.org/committees/download.php/53086/amqp-bindmap-jms-v1.0-wd05.pdf

conversion between AMQP and any other protocol will make it a Binary Message. Make sure you
follow these conventions if you intend to cross protocols or languages. Especially on the message
body.

A compatibility setting allows aligning the naming convention of AMQP queues (JMS Durable and
Shared Subscriptions) with CORE. For backwards compatibility reasons, you need to explicitly
enable this via broker configuration:

amqp-use-core-subscription-naming

• true - use queue naming convention that is aligned with CORE.

• false (default) - use older naming convention.

6.3. Intercepting and changing messages
We don’t recommend changing messages at the server’s side for a few reasons:

• AMQP messages are meant to be immutable

• The message won’t be the original message the user sent

• AMQP has the possibility of signing messages. The signature would be broken.

• For performance reasons. We try not to re-encode (or even decode) messages.

If regardless these recommendations you still need and want to intercept and change AMQP
messages, look at the aforementioned interceptor examples.

6.4. AMQP and security
The Apache ActiveMQ Artemis Server accepts the PLAIN, ANONYMOUS, and GSSAPI SASL
mechanism. These are implemented on the broker’s security infrastructure.

6.5. AMQP and destinations
If an AMQP Link is dynamic then a temporary queue will be created and either the remote source
or remote target address will be set to the name of the temporary queue. If the Link is not dynamic
then the address of the remote target or source will be used for the queue. In case it does not exist,
it will be auto-created if the settings allow.

6.6. AMQP and Multicast Addresses (Topics)
Although AMQP has no notion of "topics" it is still possible to treat AMQP consumers or receivers as
subscriptions rather than just consumers on a queue. By default any receiving link that attaches to
an address that has only multicast enabled will be treated as a subscription and a corresponding
subscription queue will be created. If the Terminus Durability is either UNSETTLED_STATE or
CONFIGURATION then the queue will be made durable (similar to a JMS durable subscription) and
given a name made up from the container id and the link name, something like my-container-id:my-
link-name. If the Terminus Durability is configured as NONE then a volatile multicast queue will be
created.

6.7. AMQP and Coordinations - Handling Transactions
An AMQP links target can also be a Coordinator. A Coordinator is used to handle transactions. If a
coordinator is used then the underlying server session will be transacted and will be either rolled
back or committed via the coordinator.


AMQP allows the use of multiple transactions per session, amqp:multi-txns-per-ssn,
however in this version of Apache ActiveMQ Artemis will only support single
transactions per session.

6.8. AMQP scheduling message delivery
An AMQP message can provide scheduling information that controls the time in the future when
the message will be delivered at the earliest. This information is provided by adding a message
annotation to the sent message.

There are two different message annotations that can be used to schedule a message for later
delivery:

x-opt-delivery-time

The specified value must be a positive long corresponding to the time the message should be
made available for delivery (in milliseconds).

x-opt-delivery-delay

The specified value must be a positive long corresponding to the amount of milliseconds after
the broker receives the given message before it should be made available for delivery.

If both annotations are present in the same message then the broker will prefer the more specific
x-opt-delivery-time value.

6.9. DLQ and Expiry transfer
AMQP Messages will be copied before transferred to a DLQ or ExpiryQueue and will receive
properties and annotations during this process.

The broker also keeps an internal only property (called extra property) that is not exposed to the
clients, and those will also be filled during this process.

Here is a list of Annotations and Property names AMQP Messages will receive when transferred:

Annotation name Internal Property Name Description

x-opt-ORIG-MESSAGE-ID _AMQ_ORIG_MESSAGE_ID The original message ID before
the transfer

x-opt-ACTUAL-EXPIRY _AMQ_ACTUAL_EXPIRY When the expiry took place.
Milliseconds since epoch times

Annotation name Internal Property Name Description

x-opt-ORIG-QUEUE _AMQ_ORIG_QUEUE The original queue name before
the transfer

x-opt-ORIG-ADDRESS _AMQ_ORIG_ADDRESS The original address name
before the transfer

6.10. Filtering on Message Annotations
It is possible to filter on messaging annotations if you use the prefix "m." before the annotation
name.

For example if you want to filter messages sent to a specific destination, you could create your filter
accordingly to this:

ConnectionFactory factory = new JmsConnectionFactory("amqp://localhost:5672");
Connection connection = factory.createConnection();
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
connection.start();
javax.jms.Queue queue = session.createQueue("my-DLQ");
MessageConsumer consumer = session.createConsumer(queue, "\"m.x-opt-ORIG-
ADDRESS\"='ORIGINAL_PLACE'");
Message message = consumer.receive();

The broker will set internal properties. If you intend to filter after DLQ or Expiry you may choose
the internal property names:

// Replace the consumer creation on the previous example:
MessageConsumer consumer = session.createConsumer(queue,
"_AMQ_ORIG_ADDRESS='ORIGINAL_PLACE'");

6.11. Configuring AMQP Idle Timeout
It is possible to configure the AMQP Server’s IDLE Timeout by setting the property
amqpIdleTimeout in milliseconds on the acceptor.

This will make the server to send an AMQP frame open to the client, with your configured timeout /
2.

So, if you configured your AMQP Idle Timeout to be 60000, the server will tell the client to send
frames every 30,000 milliseconds.

<acceptor name="amqp">.... ;amqpIdleTimeout=<configured-timeout>; </acceptor>

6.11.1. Disabling Keep alive checks

if you set amqpIdleTimeout=0 that will tell clients to not sending keep alive packets towards the
server. On this case you will rely on TCP to determine when the socket needs to be closed.

<acceptor name="amqp">.... ;amqpIdleTimeout=0; </acceptor>

This contains a real example for configuring amqpIdleTimeout:

<acceptor name="amqp"
>tcp://0.0.0.0:5672?amqpIdleTimeout=0;tcpSendBufferSize=1048576;tcpReceiveBufferSize=1
048576;protocols=AMQP;useEpoll=true;amqpCredits=1000;amqpLowCredits=300;directDeliver=
false;batchDelay=10</acceptor>

6.12. Web Sockets
Apache ActiveMQ Artemis also supports AMQP over Web Sockets. Modern web browsers which
support Web Sockets can send and receive AMQP messages.

AMQP over Web Sockets is supported via a normal AMQP acceptor:

<acceptor name="amqp-ws-acceptor">tcp://localhost:5672?protocols=AMQP</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept AMQP connections over Web Sockets
on the port 5672. Web browsers can then connect to ws://<server>:5672 using a Web Socket to send
and receive AMQP messages.

https://html.spec.whatwg.org/multipage/web-sockets.html

Chapter 7. STOMP
STOMP is a text-orientated wire protocol that allows STOMP clients to communicate with STOMP
Brokers. Apache ActiveMQ Artemis supports STOMP 1.0, 1.1 and 1.2.

STOMP clients are available for several languages and platforms making it a good choice for
interoperability.

By default there are acceptor elements configured to accept STOMP connections on ports 61616 and
61613.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
STOMP.

Refer to the STOMP examples for a look at some of this functionality in action.

7.1. Limitations

7.1.1. Transactional Acknowledgements

The STOMP specification identifies transactional acknowledgements as an optional feature.
Support for transactional acknowledgements is not implemented in Apache ActiveMQ Artemis. The
ACK frame can not be part of a transaction. It will be ignored if its transaction header is set.

7.1.2. Virtual Hosting

Apache ActiveMQ Artemis currently doesn’t support virtual hosting, which means the host header
in CONNECT frame will be ignored.

7.2. Mapping STOMP destinations to addresses and
queues
STOMP clients deals with destinations when sending messages and subscribing. Destination names
are simply strings which are mapped to some form of destination on the server - how the server
translates these is left to the server implementation.

In Apache ActiveMQ Artemis, these destinations are mapped to addresses and queues depending on
the operation being done and the desired semantics (e.g. anycast or multicast).

7.3. Logging
Incoming and outgoing STOMP frames can be logged by enabling DEBUG for
org.apache.activemq.artemis.core.protocol.stomp.StompConnection. This can be extremely useful for
debugging or simply monitoring client activity. Along with the STOMP frame itself the remote IP
address of the client is logged as well as the internal connection ID so that frames from the same
client can be correlated.

https://stomp.github.io/

Follow these steps to configure logging appropriately.

7.4. Routing Semantics
The STOMP specification is intentionally ambiguous about message routing semantics. When
providing an overview of the protocol the STOMP 1.2 specification says:

A STOMP server is modelled as a set of destinations to which messages can
be sent. The STOMP protocol treats destinations as opaque string and their
syntax is server implementation specific. Additionally STOMP does not
define what the delivery semantics of destinations should be. The delivery,
or "message exchange", semantics of destinations can vary from server to
server and even from destination to destination. This allows servers to be
creative with the semantics that they can support with STOMP.

Therefore, there are a handful of different ways to specify which semantics are desired both on the
client-side and broker-side.

7.4.1. Configuring Routing Semantics from the Client Side

Sending

When a STOMP client sends a message (using a SEND frame), the protocol manager looks at the
destination-type header to determine where to route it and potentially how to create the address
and/or queue to which it is being sent. Valid values are ANYCAST and MULTICAST (case sensitive). If no
indication of routing type is supplied (either by the client or the broker) then the default defined in
the corresponding default-address-routing-type & default-queue-routing-type address-settings will
be used as necessary.

The destination header maps to an address of the same name if MULTICAST is used and additionally
to a queue of the same name if ANYCAST is used.

Subscribing

When a STOMP client subscribes to a destination (using a SUBSCRIBE frame), the protocol manager
looks at the subscription-type header frame to determine what subscription semantics to use and
potentially how to create the address and/or queue for the subscription. If no indication of routing
type is supplied (either by the client or the broker) then the default defined in the corresponding
default-address-routing-type & default-queue-routing-type address-settings will be used as
necessary.

The destination header maps to an address of the same name if MULTICAST is used and additionally
to a queue of the same name if ANYCAST is used.

7.4.2. Configuring Routing Semantics from the Broker side

On the broker-side there are two main options for specifying routing semantics - prefixes and

https://stomp.github.io/stomp-specification-1.2.html#Protocol_Overview

address settings

Prefixes

Using prefixes involves specifying the anycastPrefix and/or the multicastPrefix on the acceptor
which the STOMP client is using. For the STOMP use-case these prefixes tell the broker that
destinations using them should be treated as anycast or multicast. For example, if the acceptor has
anycastPrefix=queue/ then when a STOMP client sends a message to destination:queue/foo the
broker will auto-create the address foo and queue foo appropriately as anycast and the message
will be placed in that queue. Additionally, if the acceptor has multicastPrefix=topic/ then when a
STOMP client sends a message to destination:topic/bar the broker will auto-create the address bar
as multicast, but it won’t create a queue since multicast (i.e. pub/sub) semantics require a client to
explicitly create a subscription to receive those messages.


The anycastPrefix and/or multicastPrefix on the acceptor will be stripped from the
destination value.

Address Settings

Using address settings involves defining address-setting elements whose match corresponds with the
destination names the clients will use along with the proper delimiter to enabled matching. For
example, broker.xml could use the following:

<address-settings>
 <address-setting match="queue/#">
 <default-address-routing-type>ANYCAST</default-address-routing-type>
 <default-queue-routing-type>ANYCAST</default-queue-routing-type>
 </address>
 <address-setting match="topic/#">
 <default-address-routing-type>MULTICAST</default-address-routing-type>
 <default-queue-routing-type>MULTICAST</default-queue-routing-type>
 </address>
</address-settings>
<wildcard-addresses>
 <delimiter>/</delimiter>
</wildcard-addresses>

Then if a STOMP client sends a message to destination:queue/foo the broker will auto-create the
address queue/foo and queue queue/foo appropriately as anycast and the message will be placed in
that queue. Additionally, if a STOMP client sends a message to destination:topic/bar the broker will
auto-create the address topic/bar as multicast, but it won’t create a queue as previously explained.

7.5. STOMP heart-beating and connection-ttl
Well behaved STOMP clients will always send a DISCONNECT frame before closing their connections.
In this case the server will clear up any server side resources such as sessions and consumers
synchronously. However if STOMP clients exit without sending a DISCONNECT frame or if they crash
the server will have no way of knowing immediately whether the client is still alive or not. STOMP

connections therefore default to a connection-ttl value of 1 minute (see chapter on connection-ttl
for more information. This value can be overridden using the connection-ttl-override property or
if you need a specific connectionTtl for your stomp connections without affecting the broker-wide
connection-ttl-override setting, you can configure your stomp acceptor with the connectionTtl
property, which is used to set the ttl for connections that are created from that acceptor. For
example:

<acceptor name="stomp-acceptor"
>tcp://localhost:61613?protocols=STOMP;connectionTtl=20000</acceptor>

The above configuration will make sure that any STOMP connection that is created from that
acceptor and does not include a heart-beat header or disables client-to-server heart-beats by
specifying a 0 value will have its connection-ttl set to 20 seconds. The connectionTtl set on an
acceptor will take precedence over connection-ttl-override. The default connectionTtl is 60,000
milliseconds.

Since STOMP 1.0 does not support heart-beating then all connections from STOMP 1.0 clients will
have a connection TTL imposed upon them by the broker based on the aforementioned
configuration options. Likewise, any STOMP 1.1 or 1.2 clients that don’t specify a heart-beat header
or disable client-to-server heart-beating (e.g. by sending 0,X in the heart-beat header) will have a
connection TTL imposed upon them by the broker.

For STOMP 1.1 and 1.2 clients which send a non-zero client-to-server heart-beat header value then
their connection TTL will be set accordingly. However, the broker will not strictly set the
connection TTL to the same value as the specified in the heart-beat since even small network delays
could then cause spurious disconnects. Instead, the client-to-server value in the heart-beat will be
multiplied by the heartBeatToConnectionTtlModifier specified on the acceptor. The
heartBeatToConnectionTtlModifier is a decimal value that defaults to 2.0 so for example, if a client
sends a heart-beat header of 1000,0 the connection TTL will be set to 2000 so that the data or ping
frames sent every 1000 milliseconds will have a sufficient cushion so as not to be considered late
and trigger a disconnect. This is also in accordance with the STOMP 1.1 and 1.2 specifications which
both state, "because of timing inaccuracies, the receiver SHOULD be tolerant and take into account
an error margin."

The minimum and maximum connection TTL allowed can also be specified on the acceptor via the
connectionTtlMin and connectionTtlMax properties respectively. The default connectionTtlMin is 1000
and the default connectionTtlMax is Java’s Long.MAX_VALUE meaning there essentially is no max
connection TTL by default. Keep in mind that the heartBeatToConnectionTtlModifier is relevant here.
For example, if a client sends a heart-beat header of 20000,0 and the acceptor is using a
connectionTtlMax of 30000 and a default heartBeatToConnectionTtlModifier of 2.0 then the connection
TTL would be 40000 (i.e. 20000 * 2.0) which would exceed the connectionTtlMax. In this case the
server would respond to the client with a heart-beat header of 0,15000 (i.e. 30000 / 2.0). As described
previously, this is to make sure there is a sufficient cushion for the client heart-beats in accordance
with the STOMP 1.1 and 1.2 specifications. The same kind of calculation is done for
connectionTtlMin.

The minimum server-to-client heart-beat value is 500ms.



Please note that the STOMP protocol version 1.0 does not contain any heart-beat
frame. It is therefore the user’s responsibility to make sure data is sent within
connection-ttl or the server will assume the client is dead and clean up server side
resources. With STOMP 1.1 users can use heart-beats to maintain the life cycle of
stomp connections.

7.6. Selector/Filter expressions
STOMP subscribers can specify an expression used to select or filter what the subscriber receives
using the selector header. The filter expression syntax follows the core filter syntax described in
the Filter Expressions documentation.

7.7. STOMP and JMS interoperability

7.7.1. Sending and consuming STOMP message from JMS or Core API

STOMP is mainly a text-orientated protocol. To make it simpler to interoperate with JMS and Core
API, our STOMP implementation checks for presence of the content-length header to decide how to
map a STOMP 1.0 message to a JMS Message or a Core message.

If the STOMP 1.0 message does not have a content-length header, it will be mapped to a JMS
TextMessage or a Core message with a single nullable SimpleString in the body buffer.

Alternatively, if the STOMP 1.0 message has a content-length header, it will be mapped to a JMS
BytesMessage or a Core message with a byte[] in the body buffer.

The same logic applies when mapping a JMS message or a Core message to STOMP. A STOMP 1.0
client can check the presence of the content-length header to determine the type of the message
body (String or bytes).

7.7.2. Message IDs for STOMP messages

When receiving STOMP messages via a JMS consumer or a QueueBrowser, the messages have no
properties like JMSMessageID by default. However this may bring some inconvenience to clients
who wants an ID for their purpose. The broker STOMP provides a parameter to enable message ID
on each incoming STOMP message. If you want each STOMP message to have a unique ID, just set
the stompEnableMessageId to true. For example:

<acceptor name="stomp-acceptor"
>tcp://localhost:61613?protocols=STOMP;stompEnableMessageId=true</acceptor>

When the server starts with the above setting, each stomp message sent through this acceptor will
have an extra property added. The property key is amqMessageId and the value is a String
representation of a long type internal message id prefixed with STOMP, like:

amqMessageId : STOMP12345

The default stompEnableMessageId value is false.

7.8. Durable Subscriptions
The SUBSCRIBE and UNSUBSCRIBE frames can be augmented with special headers to create and destroy
durable subscriptions respectively.

To create a durable subscription the client-id header must be set on the CONNECT frame and the
durable-subscription-name must be set on the SUBSCRIBE frame. The combination of these two
headers will form the identity of the durable subscription.

To delete a durable subscription the client-id header must be set on the CONNECT frame and the
durable-subscription-name must be set on the UNSUBSCRIBE frame. The values for these headers
should match what was set on the SUBSCRIBE frame to delete the corresponding durable
subscription.

Aside from durable-subscription-name, the broker also supports durable-subscriber-name (a
deprecated property used before durable-subscription-name) as well as activemq.subscriptionName
from ActiveMQ Classic. This is the order of precedence if the frame contains more than one of
these:

1. durable-subscription-name

2. durable-subscriber-name

3. activemq.subscriptionName

It is possible to pre-configure durable subscriptions since the STOMP implementation creates the
queue used for the durable subscription in a deterministic way (i.e. using the format of client-id
.subscription-name). For example, if you wanted to configure a durable subscription on the address
myAddress with a client-id of myclientid and a subscription name of mysubscription then configure
the durable subscription:

<addresses>
 <address name="myAddress">
 <multicast>
 <queue name="myclientid.mysubscription"/>
 </multicast>
 </address>
</addresses>

7.9. Handling of Large Messages with STOMP
STOMP clients may send very large frame bodies which can exceed the size of the broker’s internal
buffer, causing unexpected errors. To prevent this situation from happening, the broker provides a
STOMP configuration attribute stompMinLargeMessageSize. This attribute can be configured inside a

stomp acceptor, as a parameter. For example:

<acceptor name="stomp-acceptor"
>tcp://localhost:61613?protocols=STOMP;stompMinLargeMessageSize=10240</acceptor>

The type of this attribute is integer. When this attributed is configured, the broker will check the
size of the body of each STOMP frame arrived from connections established with this acceptor. If
the size of the body is equal or greater than the value of stompMinLargeMessageSize, the message will
be persisted as a large message. When a large message is delivered to a STOMP consumer, the
broker will automatically handle the conversion from a large message to a normal message, before
sending it to the client.

If a large message is compressed, the server will uncompressed it before sending it to stomp clients.
The default value of stompMinLargeMessageSize is the same as the default value of
minLargeMessageSize.

7.10. Web Sockets
Apache ActiveMQ Artemis also supports STOMP over Web Sockets. Modern web browsers which
support Web Sockets can send and receive STOMP messages.

STOMP over Web Sockets is supported via the normal STOMP acceptor:

<acceptor name="stomp-ws-acceptor">tcp://localhost:61614?protocols=STOMP</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept STOMP connections over Web
Sockets on the port 61614. Web browsers can then connect to ws://<server>:61614 using a Web
Socket to send and receive STOMP messages.

A companion JavaScript library to ease client-side development is available from GitHub (please see
its documentation for a complete description).

The payload length of Web Socket frames can vary between client implementations. By default the
broker will accept frames with a payload length of 65,536. If the client needs to send payloads
longer than this in a single frame this length can be adjusted by using the
webSocketMaxFramePayloadLength URL parameter on the acceptor. In previous version this was
configured via the similarly named stompMaxFramePayloadLength acceptor URL parameter.

Web Socket frames can be encoded as either binary or text. By default the broker encodes them as
binary. However, this can be changed by using the webSocketEncoderType acceptor URL parameter.
Valid values are binary and text.

The stomp-websockets example shows how to configure an Apache ActiveMQ Artemis broker to have
web browsers and Java applications exchanges messages.

https://html.spec.whatwg.org/multipage/web-sockets.html
https://github.com/jmesnil/stomp-websocket
http://jmesnil.net/stomp-websocket/doc/
https://datatracker.ietf.org/doc/html/rfc6455#section-11.8

7.11. Flow Control
STOMP clients can use the consumer-window-size header on the SUBSCRIBE frame to control the flow
of messages to clients. This is broadly discussed in the Flow Control chapter.

This ability is similar to the activemq.prefetchSize header supported by ActiveMQ Classic. However,
that header specifies the size in terms of messages whereas consumer-window-size specifies the size
in terms of bytes. ActiveMQ Artemis supports the activemq.prefetchSize header for backwards
compatibility but the value will be interpreted as bytes just like consumer-window-size would be. If
both activemq.prefetchSize and consumer-window-size are set then the value for consumer-window-
size will be used.

Setting consumer-window-size to 0 will ensure that once a STOMP client receives a message that it
will not receive another one until it sends the appropriate ACK or NACK frame for the message it
already has.

Setting consumer-window-size to a value greater than 0 will allow it to receive messages until the
cumulative bytes of those messages reaches the configured size. Once that happens the client will
not receive any more messages until it sends the appropriate ACK or NACK frame for the messages it
already has.

Setting consumer-window-size to -1 means there is no flow control and the broker will dispatch
messages to clients as fast as it can.

Flow control can be configured at the acceptor as well using the stompConsumerWindowSize URL
parameter. This value is 10240 (i.e. 10K) by default for clients using client and client-individual
acknowledgement modes. It is -1 for clients using the auto acknowledgement mode. Even if
stompConsumerWindowSize is set on the STOMP acceptor it will be overriden by the value provided by
individual clients using the consumer-window-size header on their SUBSCRIBE frame.



The stompConsumerWindowSize URL parameter used to be called stompConsumerCredits
but was changed to be more consistent with the new header name (i.e. consumer-
window-size). The stompConsumerCredits parameter is deprecated but it will still
work for the time being.

Using the DEBUG logging mentioned earlier it is possible to see the size of the MESSAGE frames
dispatched to clients. This can help when trying to determine the best consumer-window-size setting.

Chapter 8. MQTT
MQTT is a light weight, client to server, publish / subscribe messaging protocol. MQTT has been
specifically designed to reduce transport overhead (and thus network traffic) and code footprint on
client devices. For this reason MQTT is ideally suited to constrained devices such as sensors and
actuators and is quickly becoming the defacto standard communication protocol for IoT.

Apache ActiveMQ Artemis supports the following MQTT versions (with links to their respective
specifications):

• 3.1

• 3.1.1

• 5.0

By default there are acceptor elements configured to accept MQTT connections on ports 61616 and
1883.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
MQTT.

Refer to the MQTT examples for a look at some of this functionality in action.

8.1. MQTT Quality of Service
MQTT offers 3 quality of service levels.

Each message (or topic subscription) can define a quality of service that is associated with it. The
quality of service level defined on a topic is the maximum level a client is willing to accept. The
quality of service level on a message is the desired quality of service level for this message. The
broker will attempt to deliver messages to subscribers at the highest quality of service level based
on what is defined on the message and topic subscription.

Each quality of service level offers a level of guarantee by which a message is sent or received:

• QoS 0: AT MOST ONCE

Guarantees that a particular message is only ever received by the subscriber a maximum of one
time. This does mean that the message may never arrive. The sender and the receiver will
attempt to deliver the message, but if something fails and the message does not reach its
destination (say due to a network connection) the message may be lost. This QoS has the least
network traffic overhead and the least burden on the client and the broker and is often useful
for telemetry data where it doesn’t matter if some of the data is lost.

• QoS 1: AT LEAST ONCE

Guarantees that a message will reach its intended recipient one or more times. The sender will
continue to send the message until it receives an acknowledgment from the recipient,
confirming it has received the message. The result of this QoS is that the recipient may receive
the message multiple times, and also increases the network overhead than QoS 0, (due to acks).

https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

In addition more burden is placed on the sender as it needs to store the message and retry
should it fail to receive an ack in a reasonable time.

• QoS 2: EXACTLY ONCE

The most costly of the QoS (in terms of network traffic and burden on sender and receiver) this
QoS will ensure that the message is received by a recipient exactly one time. This ensures that
the receiver never gets any duplicate copies of the message and will eventually get it, but at the
extra cost of network overhead and complexity required on the sender and receiver.

8.2. MQTT Retain Messages
MQTT has an interesting feature in which messages can be "retained" for a particular address. This
means that once a retain message has been sent to an address, any new subscribers to that address
will receive the last sent retained message before any others messages. This happens even if the
retained message was sent before a client has connected or subscribed. An example of where this
feature might be useful is in environments such as IoT where devices need to quickly get the
current state of a system when they are on boarded into a system.

Retained messages are stored in a queue named with a special prefix according to the name of the
topic where they were originally sent. For example, a retained message sent to the topic /abc/123
will be stored in a multicast queue named $sys.mqtt.retain.abc.123 with an address of the same
name. The MQTT specification doesn’t define how long retained messages should be stored so the
broker will hold on to this data until a client explicitly deletes the retained message or it potentially
expires. However, even at that point the queue and address for the retained message will remain.
These resources can be automatically deleted via the following address-setting:

<address-setting match="$sys.mqtt.retain.#">
 <auto-delete-queues>true</auto-delete-queues>
 <auto-delete-addresses>true</auto-delete-addresses>
</address-setting>

Keep in mind that it’s also possible to automatically apply an expiry-delay to retained messages as
well.

8.3. Will Messages
A will message can be sent when a client initially connects to a broker. Clients are able to set a "will
message" as part of the connect packet. If the client abnormally disconnects, say due to a device or
network failure the broker will proceed to publish the will message to the specified address (as
defined also in the connect packet). Other subscribers to the will topic will receive the will message
and can react accordingly. This feature can be useful in an IoT style scenario to detect errors across
a potentially large scale deployment of devices.

8.4. Debug Logging
Detailed protocol logging (e.g. packets in/out) can be activated by turning on TRACE logging for

org.apache.activemq.artemis.core.protocol.mqtt. Follow these steps to configure logging
appropriately.

The MQTT specification doesn’t dictate the format of the payloads which clients publish. As far as
the broker is concerned a payload is just an array of bytes. However, to facilitate logging the broker
will encode the payloads as UTF-8 strings and print them up to 256 characters. Payload logging is
limited to avoid filling the logs with potentially hundreds of megabytes of unhelpful information.

8.5. Persistent Subscriptions
The subscription information for MQTT sessions is kept in an internal queue named
$sys.mqtt.sessions and persisted to storage (assuming persistence is enabled). The information is
durable so that MQTT subscribers can reconnect and resume their subscriptions seamlessly after a
broker restart, failure, etc. without having to resend a SUBSCRIBE packet. When brokers are
configured for high availability this information will be available on the backup so even in the case
of a broker fail-over subscribers will be able to resume their subscriptions.

While persistent subscriptions can be convenient they impose a performance penalty since data
must be written to and removed from storage. If you don’t need the convenience (e.g. you always
use clean sessions) and/or you don’t want the performance penalty then you can disable it by
setting mqtt-subscription-persistence-enabled to false in broker.xml, e.g.:

<core>
 ...
 <mqtt-subscription-persistence-enabled>false</mqtt-subscription-persistence-
enabled>
 ...
</core>

The default is true.



Even if mqtt-subscription-persistence-enabled is false the broker will still keep
track of QoS 1 & 2 messages. The only impact of disabling MQTT subscription
persistence is that clients will have to resend SUBSCRIBE packets as necessary in
order to continue receiving messages after reconnecting after the server is
restarted.

8.6. Custom Client ID Handling
The client ID used by an MQTT application is very important as it uniquely identifies the
application. In some situations broker administrators may want to perform extra validation or even
modify incoming client IDs to support specific use-cases. This is possible by implementing a custom
security manager as demonstrated in the security-manager example.

The simplest implementation is a "wrapper" just like the security-manager example uses. In the
authenticate method you can modify the client ID using setClientId() on the
org.apache.activemq.artemis.spi.core.protocol.RemotingConnection that is passed in. If you perform

some custom validation of the client ID you can reject the client ID by throwing a
org.apache.activemq.artemis.core.protocol.mqtt.exceptions.InvalidClientIdException.

8.7. Wildcard subscriptions
MQTT defines a special wildcard syntax for topic filters. This definition is found in section 4.7.1 of
both the 3.1.1 and 5 specs. MQTT topics are hierarchical much like a file system, and they use a
special character (i.e. / by default) to separate hierarchical levels. Subscribers are able to subscribe
to specific topics or to whole branches of a hierarchy.

To subscribe to branches of an address hierarchy a subscriber can use wild cards. There are 2 types
of wildcards in MQTT:

• Multi level (#)

Adding this wildcard to an address would match all branches of the address hierarchy under a
specified node. For example: /uk/ Would match /uk/cities, /uk/cities/newcastle and also
/uk/rivers/tyne. Subscribing to an address would result in subscribing to all topics in the
broker. This can be useful, but should be done so with care since it has significant performance
implications.

• Single level (+)

Matches a single level in the address hierarchy. For example /uk/+/stores would match
/uk/newcastle/stores but not /uk/cities/newcastle/stores.

This is close to the default wildcard syntax, but not exactly the same. Therefore, some conversion is
necessary. This conversion isn’t free so if you want the best MQTT performance use broker.xml to
configure the wildcard syntax to match MQTT’s, e.g.:

<core>
 ...
 <wildcard-addresses>
 <delimiter>/</delimiter>
 <any-words>#</any-words>
 <single-word>+</single-word>
 </wildcard-addresses>
 ...
</core>

Of course, changing the default syntax also means other clients on other protocols will need to
follow this same syntax as well as the match values of your address-setting configuration elements.

8.8. Web Sockets
Apache ActiveMQ Artemis also supports MQTT over Web Sockets. Modern web browsers which
support Web Sockets can send and receive MQTT messages.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718107
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901242
https://html.spec.whatwg.org/multipage/web-sockets.html

MQTT over Web Sockets is supported via a normal MQTT acceptor:

<acceptor name="mqtt-ws-acceptor">tcp://host:1883?protocols=MQTT</acceptor>

With this configuration, Apache ActiveMQ Artemis will accept MQTT connections over Web Sockets
on the port 1883. Web browsers can then connect to ws://<server>:1883 using a Web Socket to send
and receive MQTT messages.

SSL/TLS is also available, e.g.:

<acceptor name="mqtt-wss-acceptor"
>tcp://host:8883?protocols=MQTT;sslEnabled=true;keyStorePath=/path/to/keystore;keyStor
ePassword=myPass</acceptor>

Web browsers can then connect to wss://<server>:8883 using a Web Socket to send and receive
MQTT messages.

8.9. Link Stealing
The MQTT specifications define a behavior often referred to as "link stealing." This means that
whenever a new client connects with the same client ID as another existing client then the existing
client’s session will be closed and its network connection will be terminated.

In certain use-cases this behavior is not desired so it is configurable. The URL parameter
allowLinkStealing can be configured on the MQTT acceptor to modify this behavior. By default
allowLinkStealing is true. If it is set to false then whenever a new client connects with the same
client ID as another existing client then the new client’s session will be closed and its network
connection will be terminated. In the case of MQTT 5 clients they will receive a disconnect reason
code of 0x80 (i.e. "Unspecified error").

8.10. Automatic Subscription Clean-up
Sometimes MQTT 3.x clients using CleanSession=false don’t properly unsubscribe. The URL
parameter defaultMqttSessionExpiryInterval can be configured on the MQTT acceptor so that
abandoned sessions and subscription queues will be cleaned up automatically after the expiry
interval elapses.

The default defaultMqttSessionExpiryInterval is -1 which means no clean up will happen for MQTT
3.x clients. Otherwise it represents the number of seconds which must elapse after the client has
disconnected before the broker will remove the session state and subscription queues.

MQTT 5 has the same basic semantics with slightly different configuration. The CleanSession flag
was replaced with CleanStart and a session expiry interval property. The broker will use the client’s
session expiry interval if it is set. If it is not set or set to 0, the session ends when the Network
Connection is closed.

MQTT session state is scanned every 5,000 milliseconds by default. This can be changed using the

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901048

mqtt-session-scan-interval element set in the core section of broker.xml.

8.11. Flow Control
MQTT 3.x lacks a flow control mechanism. The sending party determines how many QoS 1 & 2
messages can be published without acknowledgment. On the broker side, this is controlled by the
defaultMaximumInFlightPublishMessages URL parameter on the MQTT acceptor in broker.xml, which
defaults to 65535.

MQTT 5 introduced a simple form of flow control. In short, a broker can tell a client how many QoS
1 & 2 messages it can receive before being acknowledged and vice versa.

This is controlled on the broker by setting the receiveMaximum URL parameter on the MQTT acceptor.

The default value is 65535 (the maximum value of the 2-byte integer used by MQTT).

A value of 0 is prohibited by the MQTT 5 specification.

A value of -1 will prevent the broker from informing the client of any receive maximum which
means flow-control will be disabled from clients to the broker. This is effectively the same as setting
the value to 65535, but reduces the size of the CONNACK packet by a few bytes.

If the MQTT 5 client doesn’t send the Receive Maximum property to the broker, the broker uses its
defaultMaximumInFlightPublishMessages setting to determine the maximum number of QoS 1 & 2
messages it can send without acknowledgment.

8.12. Topic Alias Maximum
MQTT 5 introduced <a href="https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-
os.html#Topic_Alias">topic aliasing. This is an optimization for the size of
<code>PUBLISH</code> control packets as a 2-byte integer value can now be substituted for the
_name of the topic which can potentially be quite long.

Both the client and the broker can inform each other about the maximum alias value they support
(i.e. how many different aliases they support). This is controlled on the broker using the
topicAliasMaximum URL parameter on the acceptor used by the MQTT client.

The default value is 65535 (the maximum value of the 2-byte integer used by MQTT).

A value of 0 will disable topic aliasing from clients to the broker.

A value of -1 will prevent the broker from informing the client of any topic alias maximum which
means aliasing will be disabled from clients to the broker. This is effectively the same as setting the
value to 0, but reduces the size of the CONNACK packet by a few bytes.

8.13. Maximum Packet Size
MQTT 5 introduced the maximum packet size. This is the maximum packet size the server or client
is willing to accept.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Flow_Control
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901049
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901086

This is controlled on the broker by setting the maximumPacketSize URL parameter on the MQTT
acceptor in broker.xml.

The default value is 268435455 (i.e. 256MB - the maximum value of the variable byte integer used by
MQTT).

A value of 0 is prohibited by the MQTT 5 specification.

A value of -1 will prevent the broker from informing the client of any maximum packet size which
means no limit will be enforced on the size of incoming packets. This also reduces the size of the
CONNACK packet by a few bytes.

8.14. Server Keep Alive
All MQTT versions support a connection keep alive value defined by the client. MQTT 5 introduced a
server keep alive value so that a broker can define the value that the client should use. The primary
use of the server keep alive is for the server to inform the client that it will disconnect the client for
inactivity sooner than the keep alive specified by the client.

This is controlled on the broker by setting the serverKeepAlive URL parameter on the MQTT
acceptor in broker.xml.

The default value is 60 and is measured in seconds.

A value of 0 completely disables keep alives no matter the client’s keep alive value. This is not
recommended because disabling keep alives is generally considered dangerous since it could lead
to resource exhaustion.

A value of -1 means the broker will always accept the client’s keep alive value (even if that value is
0).

Any other value means the serverKeepAlive will be applied if it is less than the client’s keep alive
value unless the client’s keep alive value is 0 in which case the serverKeepAlive is applied. This is
because a value of 0 would disable keep alives and disabling keep alives is generally considered
dangerous since it could lead to resource exhaustion.

8.15. Enhanced Authentication
MQTT 5 introduced enhanced authentication which extends the existing name & password
authentication to include challenge / response style authentication.

However, there are currently no challenge / response mechanisms implemented so if a client passes
the "Authentication Method" property in its CONNECT packet it will receive a CONNACK with a reason
code of 0x8C (i.e. bad authentication method) and the network connection will be closed.

8.16. Publish Authorization Failures
The MQTT 3.1.1 specification is ambiguous regarding the broker’s behavior when a PUBLISH packet
fails due to a lack of authorization. In section 3.3.5 it says:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901094
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901256
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718042

If a Server implementation does not authorize a PUBLISH to be performed
by a Client; it has no way of informing that Client. It MUST either make a
positive acknowledgement, according to the normal QoS rules, or close the
Network Connection

By default the broker will close the network connection. However if you’d rather have the broker
make a positive acknowledgement then set the URL parameter
closeMqttConnectionOnPublishAuthorizationFailure to false on the relevant MQTT acceptor in
broker.xml, e.g.:

<acceptor name="mqtt"
>tcp://0.0.0:1883?protocols=MQTT;closeMqttConnectionOnPublishAuthorizationFailure=fals
e</acceptor>

Chapter 9. OpenWire
Apache ActiveMQ Artemis supports the OpenWire protocol so that an Apache ActiveMQ Classic JMS
client can talk directly to an Apache ActiveMQ Artemis server. By default there is an acceptor
configured to accept OpenWire connections on port 61616.

See the general Protocols and Interoperability chapter for details on configuring an acceptor for
OpenWire.

Refer to the OpenWire examples for a look at this functionality in action.

9.1. Connection Monitoring
OpenWire has a few parameters to control how each connection is monitored, they are:

maxInactivityDuration

It specifies the time (milliseconds) after which the connection is closed by the broker if no data
was received. Default value is 30000.

maxInactivityDurationInitalDelay

It specifies the maximum delay (milliseconds) before inactivity monitoring is started on the
connection. It can be useful if a broker is under load with many connections being created
concurrently. Default value is 10000.

useInactivityMonitor

A value of false disables the InactivityMonitor completely and connections will never time out.
By default it is enabled. On broker side you don’t neet set this. Instead you can set the
connection-ttl to -1.

useKeepAlive

Indicates whether to send a KeepAliveInfo on an idle connection to prevent it from timing out.
Enabled by default. Disabling the keep alive will still make connections time out if no data was
received on the connection for the specified amount of time.

Note at the beginning the InactivityMonitor negotiates the appropriate maxInactivityDuration and
maxInactivityDurationInitalDelay. The shortest duration is taken for the connection.

Fore more details please see ActiveMQ InactivityMonitor.

9.2. Disable/Enable Advisories
By default, advisory topics (ActiveMQ Advisory) are created in order to send certain type of
advisory messages to listening clients. As a result, advisory addresses and queues will be displayed
on the management console, along with user deployed addresses and queues. This sometimes cause
confusion because the advisory objects are internally managed without user being aware of them.
In addition, users may not want the advisory topics at all (they cause extra resources and
performance penalty) and it is convenient to disable them at all from the broker side.

http://activemq.apache.org/openwire.html
http://activemq.apache.org/activemq-inactivitymonitor.html
http://activemq.apache.org/advisory-message.html

The protocol provides two parameters to control advisory behaviors on the broker side.

supportAdvisory

Indicates whether the broker supports advisory messages. If the value is true, advisory
addresses/queues will be created. If the value is false, no advisory addresses/queues are created.
Default value is true.

suppressInternalManagementObjects

Indicates whether advisory addresses/queues, if any, will be registered to management service
(e.g. JMX registry). If set to true, no advisory addresses/queues will be registered. If set to false,
those are registered and will be displayed on the management console. Default value is true.

The two parameters are configured on an OpenWire acceptor, e.g.:

<acceptor name="artemis"
>tcp://localhost:61616?protocols=OPENWIRE;supportAdvisory=true;suppressInternalManagem
entObjects=false</acceptor>

9.3. OpenWire Destination Cache
For improved performance of the broker we keep a cache of recently used destinations, so that
when new messages are dispatched to them, we do not have to do a lookup every time. By default,
this cache holds up to 16 destinations. If additional destinations are added they will overwrite older
records. If you are dealing with a large amount of queues you might want to increase this value,
which is done via configuration option: openWireDestinationCacheSize set on the OpenWire acceptor
like this:

<acceptor name="artemis"
>tcp://localhost:61616?protocols=OPENWIRE;openWireDestinationCacheSize=64</acceptor>

This cache has to be set to a power of 2, i.e.: 2, 16, 128 and so on.

9.4. Virtual Topic Consumer Destination Translation
For existing OpenWire consumers of virtual topic destinations it is possible to configure a mapping
function that will translate the virtual topic consumer destination into a FQQN address. This
address will then represents the consumer as a multicast binding to an address representing the
virtual topic.

The configuration string list property virtualTopicConsumerWildcards has parts separated by a ;. The
first is the classic style destination filter that identifies the destination as belonging to a virtual
topic. The second identifies the number of paths that identify the consumer queue such that it can
be parsed from the destination. Any subsequent parts are additional configuration parameters for
that mapping.

For example, the default virtual topic with consumer prefix of Consumer.., would require a

virtualTopicConsumerWildcards filter of Consumer..>;2. As a url parameter this transforms to
Consumer.*.%3E%3B2 when the url significant characters >; are escaped with their hex code points. In
an acceptor url it would be:

<acceptor name="artemis"
>tcp://localhost:61616?protocols=OPENWIRE;virtualTopicConsumerWildcards=Consumer.*.%3E
%3B2</acceptor>

This will translate Consumer.A.VirtualTopic.Orders into a FQQN of
VirtualTopic.Orders::Consumer.A.VirtualTopic.Orders using the int component 2 of the
configuration to identify the consumer queue as the first two paths of the destination.
virtualTopicConsumerWildcards is multi valued using a , separator.

9.4.1. selectorAware

The mappings support an optional parameter, selectorAware which when true, transfers any
selector information from the OpenWire consumer into a queue filter of any auto-created
subscription queue.


the selector/filter is persisted with the queue binding in the normal way, such that
it works independent of connected consumers.

Please see Virtual Topic Mapping example contained in the OpenWire examples.

9.5. Logging
Incoming and outgoing OpenWire commands can be logged by enabling TRACE for
org.apache.activemq.artemis.core.protocol.openwire.OpenWireConnection. This can be extremely
useful for debugging or simply monitoring client activity. Along with the OpenWire command itself
the remote IP address of the client is logged as well as the internal connection ID so that commands
from the same client can be correlated.

Follow these steps to configure logging appropriately.

Chapter 10. Using Core
Apache ActiveMQ Artemis core is a messaging system with its own API. We call this the core API.

If you don’t want to use the JMS API or any of the other supported protocols you can use the core
API directly. The core API provides all the functionality of JMS but without much of the complexity.
It also provides features that are not available using JMS.

10.1. Core Messaging Concepts
Some of the core messaging concepts are similar to JMS concepts, but core messaging concepts are
also different in some ways as well. In general the core API is simpler than the JMS API, since we
remove distinctions between queues, topics and subscriptions. We’ll discuss each of the major core
messaging concepts in turn, but to see the API in detail please consult the Javadoc.

Also refer to the address model chapter for a high-level overview of these concepts as well as
configuration details.

10.1.1. Message

• A message is the unit of data which is sent between clients and servers.

• A message has a body which is a buffer containing convenient methods for reading and writing
data into it.

• A message has a set of properties which are key-value pairs. Each property key is a string and
property values can be of type integer, long, short, byte, byte[], String, double, float or boolean.

• A message has an address it is being sent to. When the message arrives on the server it is routed
to any queues that are bound to the address. The routing semantics (i.e. anycast or multicast)
are determined by the "routing type" of the address and queue. If the queues are bound with
any filter, the message will only be routed to that queue if the filter matches. An address may
have many queues bound to it or even none. There may also be entities other than queues (e.g.
diverts) bound to addresses.

• Messages can be either durable or non durable. Durable messages in a durable queue will
survive a server crash or restart. Non durable messages will never survive a server crash or
restart.

• Messages can be specified with a priority value between 0 and 9. 0 represents the lowest
priority and 9 represents the highest. The broker will attempt to deliver higher priority
messages before lower priority ones.

• Messages can be specified with an optional expiry time. The broker will not deliver messages
after its expiry time has been exceeded.

• Messages also have an optional timestamp which represents the time the message was sent.

• Apache ActiveMQ Artemis also supports the sending/consuming of very large messages much
larger than can fit in available RAM at any one time.

10.2. Core API

10.2.1. ServerLocator

Clients use ServerLocator instances to create ClientSessionFactory instances. ServerLocator
instances are used to locate servers and create connections to them.

In JMS terms think of a ServerLocator in the same way you would a JMS Connection Factory.

ServerLocator instances are created using the ActiveMQClient factory class.

10.2.2. ClientSessionFactory

Clients use ClientSessionFactory instances to create ClientSession instances. ClientSessionFactory
instances are basically the connection to a server

In JMS terms think of them as JMS Connections.

ClientSessionFactory instances are created using the ServerLocator class.

10.2.3. ClientSession

A client uses a ClientSessionfor consuming and producing messages and for grouping them in
transactions. ClientSession instances can support both transactional and non transactional
semantics and also provide an XAResource interface so messaging operations can be performed as
part of a JTA transaction.

ClientSession instances group ClientConsumer instances and ClientProducer instances.

ClientSession instances can be registered with an optional SendAcknowledgementHandler. This allows
your client code to be notified asynchronously when sent messages have successfully reached the
server. This unique Apache ActiveMQ Artemis feature, allows you to have full guarantees that sent
messages have reached the server without having to block on each message sent until a response is
received. Blocking on each messages sent is costly since it requires a network round trip for each
message sent. By not blocking and receiving send acknowledgements asynchronously you can
create true end to end asynchronous systems which is not possible using the standard JMS API. For
more information on this advanced feature please see the section Guarantees of sends and
commits.

Identifying your client application for management and debugging

Assigning IDs to your core session can help you with monitoring and debugging using the
management console, e.g.:

ServerLocator locator = ...
ClientSessionFactory csf = createSessionFactory(locator);
ClientSession session = csf.createSession(null, null, false, true, true, locator
.isPreAcknowledge(), locator.getAckBatchSize(), "my-client-id");

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

The value my-client-id will then appear in the Client ID column under the Connections,
Consumers, and Producers tabs.

If you are using the JMS API then setClientID would give you the same effect.

10.2.4. ClientConsumer

Clients use ClientConsumer instances to consume messages from a queue. Core messaging supports
both synchronous and asynchronous message consumption semantics. ClientConsumer instances
can be configured with an optional filter expression and will only consume messages which match
that expression.

10.2.5. ClientProducer

Clients create ClientProducer instances on ClientSession instances so they can send messages.
ClientProducer instances can specify an address to which all sent messages are routed, or they can
have no specified address, and the address is specified at send time for the message.



Please note that ClientSession, ClientProducer and ClientConsumer instances are
designed to be re-used.

It’s an anti-pattern to create new ClientSession, ClientProducer and ClientConsumer
instances for each message you produce or consume. If you do this, your
application will perform very poorly. This is discussed further in the section on
performance tuning Performance Tuning.

10.3. A simple example of using Core
Here’s a very simple program using the core messaging API to send and receive a message.
Logically it’s comprised of two sections: firstly setting up the producer to write a message to an
address, and secondly, creating a queue for the consumer using anycast routing, creating the
consumer, and starting it.

ServerLocator locator = ActiveMQClient.createServerLocator("vm://0");

// In this simple example, we just use one session for both producing and receiving

ClientSessionFactory factory = locator.createSessionFactory();
ClientSession session = factory.createSession();

// A producer is associated with an address ...

ClientProducer producer = session.createProducer("example");
ClientMessage message = session.createMessage(true);
message.getBodyBuffer().writeString("Hello");

// We need a queue attached to the address ...

session.createQueue("example", RoutingType.ANYCAST, "example", true);

// And a consumer attached to the queue ...

ClientConsumer consumer = session.createConsumer("example");

// Once we have a queue, we can send the message ...

producer.send(message);

// We need to start the session before we can -receive- messages ...

session.start();
ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBodyBuffer().readString());

session.close();

Chapter 11. Core Client Failover
Apache ActiveMQ Artemis clients can be configured to automatically reconnect to the same server,
reconnect to the backup server or reconnect to other active servers in the event that a failure is
detected in the connection between the client and the server. The clients detect connection failure
when they have not received any packets from the server within the time given by client-failure-
check-period as explained in section Detecting Dead Connections.

11.1. Reconnect to the same server
Set reconnectAttempts to any non-zero value to reconnect to the same server, for further details see
Reconnection and failover attributes.

If the disconnection was due to some transient failure such as a temporary network outage and the
target server was not restarted, then the sessions will still exist on the server, assuming the client
hasn’t been disconnected for more than connection-ttl

In this scenario, the client sessions will be automatically re-attached to the server sessions after the
reconnection. This is done 100% transparently and the client can continue exactly as if nothing had
happened.

The way this works is as follows:

As Apache ActiveMQ Artemis clients send commands to their servers they store each sent command
in an in-memory buffer. In the case that connection failure occurs and the client subsequently
reattaches to the same server, as part of the reattachment protocol the server informs the client
during reattachment with the id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent
commands from its buffer so that the client and server can reconcile their states.Ac

The size of this buffer is configured with the confirmationWindowSize parameter on the connection
URL. When the server has received confirmationWindowSize bytes of commands and processed them
it will send back a command confirmation to the client, and the client can then free up space in the
buffer.

The window is specified in bytes.

Setting this parameter to -1 disables any buffering and prevents any re-attachment from occurring,
forcing reconnect instead. The default value for this parameter is -1. (Which means by default no
auto re-attachment will occur)

11.2. Reconnect to the backup server
Set reconnectAttempts to any non-zero value and ha to true to reconnect to the back server, for
further details see Reconnection and failover attributes.

The clients can be configured to discover the list of live-backup server groups in a number of
different ways. They can be configured explicitly or probably the most common way of doing this is

to use server discovery for the client to automatically discover the list. For full details on how to
configure server discovery, please see Clusters. Alternatively, the clients can explicitly connect to a
specific server and download the current servers and backups see Clusters.

By default, failover will only occur after at least one connection has been made. In other words, by
default, failover will not occur if the client fails to make an initial connection - in this case it will
simply retry connecting according to the reconnect-attempts property and fail after this number of
attempts.

11.3. Reconnect to other active servers
Set failoverAttempts to any non-zero value to reconnect to other active servers, for further details
see Reconnection and failover attributes.

If reconnectAttempts value is not zero then the client will try to reconnect to other active servers
only after all attempts to reconnect to the same server or reconnect to the backup server fail.

11.4. Session reconnection
When clients reconnect to the same server after a restart, reconnect to the backup server or
reconnect to other active servers any sessions will no longer exist on the server and it won’t be
possible to 100% transparently re-attach to them. In this case, any sessions and consumers on the
client will be automatically recreated on the server.

Client reconnection is also used internally by components such as core bridges to allow them to
reconnect to their target servers.

11.5. Failing over on the initial connection
Since the client does not learn about the full topology until after the first connection is made there
is a window where it does not know about the backup. If a failure happens at this point the client
can only try reconnecting to the original server. To configure how many attempts the client will
make you can set the URL parameter initialConnectAttempts. The default for this is 0, that is try
only once. Once the number of attempts has been made an exception will be thrown.

For examples of automatic failover with transacted and non-transacted JMS sessions, please see the
examples chapter.

11.6. Reconnection and failover attributes
Client reconnection and failover is configured using the following parameters:

retryInterval

This optional parameter determines the period in milliseconds between subsequent
reconnection attempts, if the connection to the target server has failed. The default value is 2000
milliseconds.

retryIntervalMultiplier

This optional parameter determines a multiplier to apply to the time since the last retry to
compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let’s take an example:

If we set retryInterval to 1000 ms and we set retryIntervalMultiplier to 2.0, then, if the first
reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between subsequent
reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

maxRetryInterval

This optional parameter determines the maximum retry interval that will be used. When setting
retryIntervalMultiplier it would otherwise be possible that subsequent retries exponentially
increase to ridiculously large values. By setting this parameter you can set an upper limit on that
value. The default value is 2000 milliseconds.

ha

This optional parameter determines whether the client will try to reconnect to the backup node
when the primary node is not reachable. The default value is false. For more information on
HA, please see High Availability and Failover.

reconnectAttempts

This optional parameter determines the total number of reconnect attempts to make to the
current live/backup pair before giving up. A value of -1 signifies an unlimited number of
attempts. The default value is 0.

failoverAttempts

This optional parameter determines the total number of failover attempts to make after a
reconnection failure before giving up and shutting down. A value of -1 signifies an unlimited
number of attempts. The default value is 0.

All of these parameters are set on the URL used to connect to the broker.

If your client does manage to reconnect but the session is no longer available on the server, for
instance if the server has been restarted or it has timed out, then the client won’t be able to re-
attach, and any ExceptionListener or FailureListener instances registered on the connection or
session will be called.

11.7. ExceptionListeners and SessionFailureListeners
Please note, that when a client reconnects or re-attaches, any registered JMS ExceptionListener or
core API SessionFailureListener will be called.

Chapter 12. Mapping JMS Concepts to the
Core API
This chapter describes how JMS destinations are mapped to the Apache ActiveMQ Artemis address
model. If you haven’t already done so, please read about the address model as it introduces
concepts which are referenced here.

12.1. JMS Topic
A JMS topic is implemented as a address where the name of the address is the same as the name of
the JMS topic.

A subscription on that JMS topic is represented as a multicast queue on the corresponding address.
The queue is named according to the whether the subscription is durable and according to the
client ID and subscription named provided via the JMS API.

Typically there is just one consumer per queue, but there can be multiple consumers on a queue
when using JMS shared topic subscriptions. Any messages sent to the JMS topic is therefore routed
to every multicast queue bound to the corresponding address and then dispatched to any
consumers on those queues (i.e. JMS topic subscriber). If there are no queues on the address then
the message is simply dropped.

This effectively achieves JMS pub/sub semantics.

12.2. JMS Queue
Likewise, a JMS queue is implemented as an address where the name of the address is the same as
the name of the JMS queue.

However, there will be just one anycast queue on the corresponding address. All JMS consumers
on this queue will share the messages in the queue. The queue is named the same as the address.

This effectively achieves JMS point-to-point semantics.

Chapter 13. Using JMS or Jakarta Messaging
Although Apache ActiveMQ Artemis provides a JMS agnostic messaging API, many users will be
more comfortable using JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a JMS API.
If you are completely new to JMS we suggest you follow the Oracle JMS tutorial - a full JMS tutorial
is out of scope for this guide.

Apache ActiveMQ Artemis also ships with a wide range of examples, many of which demonstrate
JMS API usage. A good place to start would be to play around with the simple JMS Queue and Topic
example, but we also provide examples for many other parts of the JMS API. A full description of
the examples is available in Examples.

In this section we’ll go through the main steps in configuring the server for JMS and creating a
simple JMS program. We’ll also show how to configure and use JNDI, and also how to use JMS with
Apache ActiveMQ Artemis without using any JNDI.

13.1. A simple ordering system
For this chapter we’re going to use a very simple ordering system as our example. It is a somewhat
contrived example because of its extreme simplicity, but it serves to demonstrate the very basics of
setting up and using JMS.

We will have a single JMS Queue called OrderQueue, and we will have a single MessageProducer
sending an order message to the queue and a single MessageConsumer consuming the order message
from the queue.

The queue will be a durable queue, i.e. it will survive a server restart or crash. We also want to pre-
deploy the queue, i.e. specify the queue in the server configuration so it is created automatically
without us having to explicitly create it from the client.

13.2. JNDI
The JMS specification establishes the convention that administered objects (i.e. JMS queue, topic and
connection factory instances) are made available via the JNDI API. Brokers are free to implement
JNDI as they see fit assuming the implementation fits the API. Apache ActiveMQ Artemis does not
have a JNDI server. Rather, it uses a client-side JNDI implementation that relies on special
properties set in the environment to construct the appropriate JMS objects. In other words, no
objects are stored in JNDI on the Apache ActiveMQ Artemis server, instead they are simply
instantiated on the client based on the provided configuration. Let’s look at the different kinds of
administered objects and how to configure them.



The following configuration properties are strictly required when Apache ActiveMQ
Artemis is running in stand-alone mode. When Apache ActiveMQ Artemis is
integrated to an application server (e.g. Wildfly) the application server itself will
almost certainly provide a JNDI client with its own properties.

https://docs.oracle.com/javaee/7/tutorial/partmessaging.htm

13.2.1. ConnectionFactory JNDI

A JMS connection factory is used by the client to make connections to the server. It knows the
location of the server it is connecting to, as well as many other configuration parameters.

Here’s a simple example of the JNDI context environment for a client looking up a connection
factory to access an embedded instance of Apache ActiveMQ Artemis:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.invmConnectionFactory=vm://0

In this instance we have created a connection factory that is bound to invmConnectionFactory, any
entry with prefix connectionFactory. will create a connection factory.

In certain situations there could be multiple server instances running within a particular JVM. In
that situation each server would typically have an InVM acceptor with a unique server-ID. A client
using JMS and JNDI can account for this by specifying a connction factory for each server, like so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.invmConnectionFactory0=vm://0
connectionFactory.invmConnectionFactory1=vm://1
connectionFactory.invmConnectionFactory2=vm://2

Here is a list of all the supported URL schemes:

• vm

• tcp

• udp

• jgroups

Most clients won’t be connecting to an embedded broker. Clients will most commonly connect
across a network a remote broker. Here’s a simple example of a client configuring a connection
factory to connect to a remote broker running on myhost:5445:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.ConnectionFactory=tcp://myhost:5445

In the example above the client is using the tcp scheme for the provider URL. A client may also
specify multiple comma-delimited host:port combinations in the URL (e.g. (tcp://remote-
host1:5445,remote-host2:5445)). Whether there is one or many host:port combinations in the URL
they are treated as the initial connector(s) for the underlying connection.

The udp scheme is also supported which should use a host:port combination that matches the group-

address and group-port from the corresponding broadcast-group configured on the ActiveMQ
Artemis server(s).

Each scheme has a specific set of properties which can be set using the traditional URL query string
format (e.g. scheme://host:port?key1=value1&key2=value2) to customize the underlying transport
mechanism. For example, if a client wanted to connect to a remote server using TCP and SSL it
would create a connection factory like so, tcp://remote-host:5445?ssl-enabled=true.

All the properties available for the tcp scheme are described in the documentation regarding the
Netty transport.

Note if you are using the tcp scheme and multiple addresses then a query can be applied to all the
url’s or just to an individual connector, so where you have

• (tcp://remote-host1:5445?httpEnabled=true,remote-host2:5445?httpEnabled=true)?clientID=1234

then the httpEnabled property is only set on the individual connectors where as the clientId is set
on the actual connection factory. Any connector specific properties set on the whole URI will be
applied to all the connectors.

The udp scheme supports 4 properties:

localAddress

If you are running with multiple network interfaces on the same machine, you may want to
specify that the discovery group listens only on a specific interface. To do this you can specify
the interface address with this parameter.

localPort

If you want to specify a local port to which the datagram socket is bound you can specify it here.
Normally you would just use the default value of -1 which signifies that an anonymous port
should be used. This parameter is always specified in conjunction with localAddress.

refreshTimeout

This is the period the discovery group waits after receiving the last broadcast from a particular
server before removing that servers connector pair entry from its list. You would normally set
this to a value significantly higher than the broadcast-period on the broadcast group otherwise
servers might intermittently disappear from the list even though they are still broadcasting due
to slight differences in timing. This parameter is optional, the default value is 10000 milliseconds
(10 seconds).

discoveryInitialWaitTimeout

If the connection factory is used immediately after creation then it may not have had enough
time to received broadcasts from all the nodes in the cluster. On first usage, the connection
factory will make sure it waits this long since creation before creating the first connection. The
default value for this parameter is 10000 milliseconds.

Lastly, the jgroups scheme is supported which provides an alternative to the udp scheme for server
discovery. The URL pattern is jgroups://channelName?file=jgroups-xml-conf-filename wherejgroups-
xml-conf-filename refers to an XML file on the classpath that contains the JGroups configuration.

The channelName is the name given to the jgroups channel created.

The refreshTimeout and discoveryInitialWaitTimeout properties are supported just like with udp.

The default type for the default connection factory is of type javax.jms.ConnectionFactoryor
jakarta.jms.ConnectionFactory depending on the client you’re using. This can be changed by setting
the type like so

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
java.naming.provider.url=tcp://localhost:5445?type=CF

In this example it is still set to the default, below shows a list of types that can be set.

Configuration for Connection Factory Types

The interface provided will depend on whether you’re using the JMS or Jakarta Messaging client
implementation.

type interface

CF (default) javax.jms.ConnectionFactory or
jakarta.jms.ConnectionFactory

XA_CF javax.jms.XAConnectionFactoryor
jakarta.jms.XAConnectionFactory

QUEUE_CF javax.jms.QueueConnectionFactoryor
jakarta.jms.QueueConnectionFactory

QUEUE_XA_CF javax.jms.XAQueueConnectionFactoryor
jakarta.jms.XAQueueConnectionFactory

TOPIC_CF javax.jms.TopicConnectionFactoryor
jakarta.jms.TopicConnectionFactory

TOPIC_XA_CF javax.jms.XATopicConnectionFactoryor
jakarta.jms.XATopicConnectionFactory

13.2.2. Destination JNDI

JMS destinations are also typically looked up via JNDI. As with connection factories, destinations
can be configured using special properties in the JNDI context environment. The property name
should follow the pattern: queue.<jndi-binding> or topic.<jndi-binding>. The property value should
be the name of the queue hosted by the Apache ActiveMQ Artemis server. For example, if the server
had a JMS queue configured like so:

<address name="OrderQueue">
 <queue name="OrderQueue"/>
</address>

And if the client wanted to bind this queue to "queues/OrderQueue" then the JNDI properties would

be configured like so:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
java.naming.provider.url=tcp://myhost:5445
queue.queues/OrderQueue=OrderQueue

It is also possible to look-up JMS destinations which haven’t been configured explicitly in the JNDI
context environment. This is possible using dynamicQueues/ or dynamicTopics/ in the look-up string.
For example, if the client wanted to look-up the aforementioned "OrderQueue" it could do so simply
by using the string "dynamicQueues/OrderQueue". Note, the text that follows dynamicQueues/ or
dynamicTopics/ must correspond exactly to the name of the destination on the server.

13.2.3. The code

Here’s the code for the example:

First we’ll create a JNDI initial context from which to lookup our JMS objects. If the above
properties are set in jndi.properties and it is on the classpath then any new, empty InitialContext
will be initialized using those properties:

InitialContext ic = new InitialContext();

//Now we'll look up the connection factory from which we can create
//connections to myhost:5445:

ConnectionFactory cf = (ConnectionFactory)ic.lookup("ConnectionFactory");

//And look up the Queue:

Queue orderQueue = (Queue)ic.lookup("queues/OrderQueue");

//Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

//And we create a non transacted JMS Session, with AUTO_ACKNOWLe.g. //acknowledge
mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

//We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

//And we create a MessageConsumer which will consume orders from the
//queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

//We make sure we start the connection, or delivery won't occur on it:

connection.start();

//We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

//And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

It is as simple as that. For a wide range of working JMS examples please see the examples.

Warning

Please note that JMS connections, sessions, producers and consumers are
designed to be re-used.

It is an anti-pattern to create new connections, sessions, producers and
consumers for each message you produce or consume. If you do this, your
application will perform very poorly. This is discussed further in the section
on performance tuning Performance Tuning.

13.3. Directly instantiating JMS Resources without
using JNDI
Although it is a very common JMS usage pattern to lookup JMS Administered Objects (that’s JMS
Queue, Topic and ConnectionFactory instances) from JNDI, in some cases you just think "Why do I
need JNDI? Why can’t I just instantiate these objects directly?"

With Apache ActiveMQ Artemis you can do exactly that. Apache ActiveMQ Artemis supports the
direct instantiation of JMS Queue, Topic and ConnectionFactory instances, so you don’t have to use
JNDI at all.

For a full working example of direct instantiation please look at the
Instantiate JMS Objects Directly example under the JMS section of the
examples.

Here’s our simple example, rewritten to not use JNDI at all:

We create the JMS ConnectionFactory object via the ActiveMQJMSClient Utility class, note we need
to provide connection parameters and specify which transport we are using, for more information

on connectors please see Configuring the Transport.

TransportConfiguration transportConfiguration = new TransportConfiguration
(NettyConnectorFactory.class.getName());

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactoryWithoutHA
(JMSFactoryType.CF,transportConfiguration);

//We also create the JMS Queue object via the ActiveMQJMSClient Utility
//class:

Queue orderQueue = ActiveMQJMSClient.createQueue("OrderQueue");

//Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

//And we create a non transacted JMS Session, with AUTO_ACKNOWLe.g. //acknowledge
mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

//We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

//And we create a MessageConsumer which will consume orders from the
//queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

//We make sure we start the connection, or delivery won't occur on it:

connection.start();

//We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

//And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

13.4. Setting The Client ID
This represents the client id for a JMS client and is needed for creating durable subscriptions. It is
possible to configure this on the connection factory and can be set via the clientId element. Any

connection created by this connection factory will have this set as its client id.

13.5. Setting The Batch Size for DUPS_OK
When the JMS acknowledge mode is set to DUPS_OK it is possible to configure the consumer so that it
sends acknowledgements in batches rather that one at a time, saving valuable bandwidth. This can
be configured via the connection factory via the dupsOkBatchSize element and is set in bytes. The
default is 1024 * 1024 bytes = 1 MiB.

13.6. Setting The Transaction Batch Size
When receiving messages in a transaction it is possible to configure the consumer to send
acknowledgements in batches rather than individually saving valuable bandwidth. This can be
configured on the connection factory via the transactionBatchSize element and is set in bytes. The
default is 1024 * 1024.

13.7. Setting The Destination Cache
Many frameworks such as Spring resolve the destination by name on every operation, this can
cause a performance issue and extra calls to the broker, in a scenario where destinations
(addresses) are permanent broker side, such as they are managed by a platform or operations team.
using cacheDestinations element, you can toggle on the destination cache to improve the
performance and reduce the calls to the broker. This should not be used if destinations (addresses)
are not permanent broker side, as in dynamic creation/deletion.

Chapter 14. Extra Acknowledge Modes
JMS specifies 3 acknowledgement modes:

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

Apache ActiveMQ Artemis supports two additional modes: PRE_ACKNOWLEDGE and
INDIVIDUAL_ACKNOWLEDGE

In some cases you can afford to lose messages in event of failure, so it would make sense to
acknowledge the message on the server before delivering it to the client.

This extra mode is supported by Apache ActiveMQ Artemis and will call it pre-acknowledge mode.

The disadvantage of acknowledging on the server before delivery is that the message will be lost if
the system crashes after acknowledging the message on the server but before it is delivered to the
client. In that case, the message is lost and will not be recovered when the system restart.

Depending on your messaging case, preAcknowledgement mode can avoid extra network traffic and
CPU at the cost of coping with message loss.

An example of a use case for pre-acknowledgement is for stock price update messages. With these
messages it might be reasonable to lose a message in event of crash, since the next price update
message will arrive soon, overriding the previous price.



Please note, that if you use pre-acknowledge mode, then you will lose transactional
semantics for messages being consumed, since clearly they are being
acknowledged first on the server, not when you commit the transaction. This may
be stating the obvious but we like to be clear on these things to avoid confusion!

14.1. Using PRE_ACKNOWLEDGE
This can be configured by setting the boolean URL parameter preAcknowledge to true.

Alternatively, when using the JMS API, create a JMS Session with the
ActiveMQSession.PRE_ACKNOWLEDGE constant.

// messages will be acknowledge on the server *before* being delivered to the client
Session session = connection.createSession(false, ActiveMQJMSConstants.
PRE_ACKNOWLEDGE);

14.2. Individual Acknowledge
A valid use-case for individual acknowledgement would be when you need to have your own
scheduling and you don’t know when your message processing will be finished. You should prefer

having one consumer per thread worker but this is not possible in some circumstances depending
on how complex is your processing. For that you can use the individual acknowledgement.

You basically setup Individual ACK by creating a session with the acknowledge mode with
ActiveMQJMSConstants.INDIVIDUAL_ACKNOWLEDGE. Individual ACK inherits all the semantics from Client
Acknowledge, with the exception the message is individually acked.



Please note, that to avoid confusion on MDB processing, Individual
ACKNOWLEDGE is not supported through MDBs (or the inbound resource
adapter). this is because you have to finish the process of your message inside the
MDB.

14.3. Example
See the Pre-acknowledge Example which shows how to use pre-acknowledgement mode with JMS.

Chapter 15. PROXY Protocol
As noted in the official PROXY Protocol documentation:

The PROXY protocol provides a convenient way to safely transport
connection information such as a client’s address across multiple layers of
NAT or TCP proxies.

This essentially allows the broker to know a client’s IP address even when the connection is
established through reverse proxy that supports the PROXY protocol (e.g. HAProxy, nginx, etc.).
Without PROXY protocol support the broker would see such client connections as coming from the
proxy itself which can be misleading for administrators and complicate trouble-shooting.

Both versions 1 & 2 of the PROXY Protocol are supported.

Any of our supported messaging protocols can be used in combination with the PROXY protocol
with or without TLS.

15.1. Configuration
Support for the PROXY Protocol is configured on a per-acceptor basis using the
proxyProtocolEnabled parameter, e.g.:

<acceptor name="proxy-artemis">
tcp://0.0.0.0:61616?proxyProtocolEnabled=true</acceptor>

15.1.1. Security

Support for the PROXY Protocol must be explicitly configured due to security reasons. As noted in
the official PROXY Protocol documentation:

The receiver MUST be configured to only receive the protocol described in
this specification and MUST not try to guess whether the protocol header is
present or not. This means that the protocol explicitly prevents port sharing
between public and private access. Otherwise it would open a major
security breach by allowing untrusted parties to spoof their connection
addresses. The receiver SHOULD ensure proper access filtering so that
only trusted proxies are allowed to use this protocol. [emphasis added]

Because of this, an acceptor using proxyProtocolEnabled=true can only accept connections using the
PROXY protocol and vice versa.

If a client attempts to use (or not use) the PROXY Protocol in violation of the configured value for
proxyProtocolEnabled the broker will log a warning with the code AMQ224151 containing details about

https://github.com/haproxy/haproxy/blob/e6a9192af68c5e385aa73c3e1cc51eb9f0cc09d6/doc/proxy-protocol.txt
https://github.com/haproxy/haproxy/blob/master/doc/proxy-protocol.txt

the violation.

15.2. Management
Client connections established through a reverse proxy configured with PROXY Protocol support
will have 2 additional pieces of information compared to non-proxied connections:

proxyAddress

The IP address and port of the proxy through which the client’s connection is established.

proxyProtocolVersion

The version of the PROXY Protocol used when establishing the connection from the proxy to the
broker.

Valid values are V1 and V2.

This information is available via the listConnections method of the ActiveMQServerControl. On the
web console corresponding details will be available in the "Connections" tab.

Chapter 16. Versions
This chapter provides the following information for each release:

• A link to the full release notes which includes all issues resolved in the release.

• A brief list of "highlights" when applicable.

• If necessary, specific steps required when upgrading from the previous version.


If the upgrade spans multiple versions then the steps from each version need to be
followed in order.


Follow the general upgrade procedure outlined in the Upgrading the Broker
chapter in addition to any version-specific upgrade instructions outlined here.

16.1. 2.43.0
Full release notes

16.1.1. Highlights

• Broker observability has improved with the new ability to export metrics for executor services
(aka thread pools).

• The PROXY Protocol is now supported! This means that clients connecting through an applicable
reverse proxy (e.g. HAProxy, nginx, etc.) will have the original client IP address reflected in the
logs and in the web console rather than that of the proxy itself. More details available here.

• It is now possible to remove or add acceptors or a running broker. Click here for more details.

• AMQP Federation now supports filtering. Click here for more details.

16.1.2. Upgrading

• As part of the work for ARTEMIS-5557 to report executor service metrics the names of many
ActiveMQ-related threads were changed to be more clear and consistent. This will be visible, for
example, when inspecting thread dumps or if you happen to include the thread name in your
logging output. Here’s examples of old names vs. the new ones.

Old Thread Name New Thread Name

Thread-0 (ActiveMQ-scheduled-threads) Thread-0 (activemq-scheduled-0.0.0.0)

Thread-0 (ActiveMQ-server-
ActiveMQServerImpl::name=0.0.0.0)

Thread-0 (activemq-0.0.0.0)

Thread-0 (ActiveMQ-IO-server-
ActiveMQServerImpl::name=0.0.0.0)

Thread-0 (activemq-io-0.0.0.0)

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12356053
https://github.com/haproxy/haproxy/blob/master/doc/proxy-protocol.txt
https://issues.apache.org/jira/browse/ARTEMIS-5609
https://issues.apache.org/jira/browse/ARTEMIS-5625
https://issues.apache.org/jira/browse/ARTEMIS-5557

Old Thread Name New Thread Name

Thread-0 (ActiveMQ-PageExecutor-server-
org.apache.activemq.artemis.core.server.impl.
ActiveMQServerImpl$2@7841111)

Thread-0 (activemq-paging-0.0.0.0)

Thread-0 (activemq-netty-threads) Thread-0 (activemq-remoting-amqp-0.0.0.0)

ActiveMQ Artemis Server Shutdown Timer activemq-shutdown-timer

Critical-Analyzer-0 (CriticalAnalyzer) Thread-0 (activemq-critical-analyzer)

Network-Checker-0 (NetworkChecker) Thread-0 (activemq-network-checker)

Apache ActiveMQ Artemis libaio poller activemq-libaio-poller

qtp748316439-74 Thread-0 (activemq-web)

Scheduler-624545052-1 activemq-web-scheduled-1

See the Thread Pooling documentation for more details.

16.2. 2.42.0
Full release notes

16.2.1. Highlights

• Apply security-setting configuration according to uuid-namespace.

• Control the maximum number of in-flight MQTT messages for both 3.x and 5.0 clients via
defaultMaximumInFlightPublishMessages.

• MQTT performance improvements for:

◦ persisting subscriptions

◦ matching subscription identifiers to topic filters for 5.0 clients

• Upgrade to ActiveMQ Artemis Console 1.2.1 with lots of usability improvements

• Support for XOAUTH SASL mechanism for AMQP broker connections

• And for developers…almost 2,500 lines of code were eliminated by consistently using the
convenience methods from Java’s java.util.Objects class across the code-base (e.g. hash,
toString, equals, requireNonNull, etc.).

16.2.2. Upgrading from 2.41.0

• Due to ARTEMIS-5553 the default match for management-related address-settings is now
activemq.management.#. Previously it was activemq.management# which technically worked but
was not valid wildcard syntax.

This change will have no functional impact. It is being identified here to avoid confusion when
user’s notice the difference.

• Due to ARTEMIS-5499 the mqtt-session-state-persistence-timeout configuration parameter has

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12355900
https://activemq.apache.org/components/artemis-console/download/release-notes-1.2.1
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#hash(java.lang.Object…​)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#toString(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#equals(java.lang.Object,java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#requireNonNull(T)
https://issues.apache.org/jira/browse/ARTEMIS-5553
https://issues.apache.org/jira/browse/ARTEMIS-5499

been deprecated. Timeouts are no longer possible due to an adjustment of how the broker
manages MQTT subscription persistence. You can continue to define mqtt-session-state-
persistence-timeout in broker.xml without error, but it won’t actually do anything.

Furthermore, it is no longer recommended to disable MQTT subscription persistence by
modifying the configuration of the $sys.mqtt.sessions queue. This method still works, but the
mqtt-subscription-persistence-enabled configuration parameter was added for convenience &
clarity. Performance will also be slightly better with this new parameter.

• Due to ARTEMIS-5444 the temporary-queue-namespace configuration parameter has been
renamed to uuid-namespace. Address-settings configured according to the uuid-namespace will be
applied based on the name following a supported UUID format rather than simply if the
resource is temporary as it was previously.

The temporary-queue-namespace configuration parameter will still be supported for now although
it will follow the new semantics.

Further technical details are available on the Jira.

• The broker was always meant to scan MQTT sessions every 5000 milliseconds, but due to a bug it
was doing so every 500 milliseconds instead. This has been fixed via ARTEMIS-5202. Since this is
technically changing the default behavior of the broker it is being enumerated here for clarity.
Keep in mind that this is configurable via the mqtt-session-scan-interval parameter in
broker.xml.

• Due to ARTEMIS-5364 several adjustments have been made to the supporting files used to run
the broker on both Linux and Windows. While these changes do not result in any significant
behavioral differences, they’re worth noting here since users often modify these files for their
specific use-case.

The relevant changes include:

◦ Removing the following variables from all profiles (i.e. artemis.profile for Linux &
artemis.profile.cmd for Windows):

▪ ARTEMIS_INSTANCE_URI

▪ ARTEMIS_INSTANCE_ETC_URI

▪ ARTEMIS_ETC_DIR

◦ Removing the ARTEMIS_OOME_DUMP from the "utility" profiles

◦ Update the order of Windows' profile JAVA_ARGS to match those from Linux

16.3. 2.41.0
Full release notes

16.3.1. Highlights

• AMQP Broker Connections Advanced Bridges

https://issues.apache.org/jira/browse/ARTEMIS-5444
https://issues.apache.org/jira/browse/ARTEMIS-5444
https://issues.apache.org/jira/browse/ARTEMIS-5202
https://issues.apache.org/jira/browse/ARTEMIS-5364
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12355793

• HTTP/2 support for the embedded web server

• New data available via management for queues, addresses, and core bridges

• Performance improvements when removing queues, especially in queue-heavy use-cases

• A handful of paging improvements including additional tests

• Several dependency upgrades

16.4. 2.40.0
Full release notes

16.4.1. Highlights

• New & Improved Management Console

• Performance improvements for paging when multiple producers send to the same address

• Performance improvements for read-heavy uses cases involving message properties

• Environment variable substitution is now supported in bootstrap.xml

• New management operation to dump the broker’s config as a properties file

• The global max size can now be set as a percentage of the JVM’s max memory via global-max-
size-percent-of-jvm-max-memory

• Jakarta-based CDI Client

• And for developers…lots of updates to the code-base for style consistency & clarity plus
adoption of many Java 17 features and APIs

16.4.2. Upgrading from 2.39.0

• Due to EOL components in Hawio 2.x used by our web console we’ve moved to a new web
console based on Hawtio 4. This move is about security just like the recent move to Java 17.

Notable differences:

◦ From a graphical interface perspective the main change is that the prominently featured
"tree" component was relocated to the "Artemis JMX" view available from the menu on the
left of the screen. The categorized resource tabs which were available previously are now
the main and recommended way to interact with the broker. These tabs offer a paged view
which is filterable and sortable and scales well for resource heavy use-cases.

◦ Any request with an origin header using the https scheme which is ultimately received by
Jolokia via HTTP is now discarded by default since it is deemed insecure. If you use a TLS
proxy that transforms secure requests to insecure requests (e.g. in a Kubernetes
environment) then consider changing the proxy to preserve HTTPS and switching the
embedded web server to HTTPS. If that isn’t feasible then you can accept the risk by adding
<ignore-scheme/> to etc/jolokia-access.xml. See the Jolokia documentation for more details.

◦ The console will now automatically protect itself from brute-force attacks (e.g. i.e. repeated,
quick login attempts). This behavior is controlled by the hawtio.authenticationThrottled

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12355489
https://github.com/apache/activemq-artemis-console
https://github.com/apache/activemq-artemis-console
embedded-web-server.pdf
https://jolokia.org/reference/html/manual/security.html

system property. If you wish to disable this behavior then set this property to false (e.g. in
artemis.profile). It is true by default. See the Hawtio documentation for more details.

The behavior and presentation should be more consistent overall, and anything that was
possible before should still be possible since the underlying management API has not changed.

In order to upgrade an existing instance of 2.39.0 to 2.40.0 you can use the upgrade command
which will automatically perform all the changes or you can make the following changes
manually:

1. Remove references to the "branding" and "plugin" app in bootstrap.xml. These are the
relevant lines from the default bootstrap.xml that should be removed:

<app name="branding" url="activemq-branding" war="activemq-branding.war"/>
<app name="plugin" url="artemis-plugin" war="artemis-plugin.war"/>

The only app needed for the new web console is console.war.

2. Rename the hawtio.role Java system property to hawtio.roles. A simple search & replace
will suffice.

a. If using Linux or similar this change will be in the bin/artemis script.

b. If using Windows this change will be in etc/artemis.profile.cmd.

16.5. 2.39.0
Full release notes

16.5.1. Highlights

• Java 17 is now required.

• AMQP federation and broker connections have new management controls.

• The Core client (including the Core JMS client) supports a configurable timeout for onMessage
invocations when closing/stopping a connection.

• Datasource configuration is now available when configuring the broker via properties.

• Failure conditions for CLI commands (e.g. artemis check) now specifically return an exit code of
1 which means they can be more reliably incorporated into other scripts, etc.

• The binary distribution is almost 8MB smaller than 2.38.0 due to reduced dependencies.

• Lots of fixes for various flaky tests. This reduces spurious test failures improving the experience
for developers building the broker and running the test-suite.

16.5.2. Upgrading from 2.38.0

• Due to ARTEMIS-5202 support for Java 11 has been dropped.

The main reason for this change is that the version of Jetty we were embedding in previous

https://hawt.io/docs/security.html#_configuration_properties
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12355167
https://issues.apache.org/jira/browse/ARTEMIS-5202

versions (i.e. 10) will officially reach its end-of-life on January 1, 2025 and will therefore no
longer be receiving any fixes - including security fixes. Security is critical for us and most of our
users so we therefore need to upgrade to Jetty 12 - the only version of Jetty now supported. Jetty
12 requires Java 17 so we must also move to Java 17 and drop support for Java 11.

Please note that after upgrading the broker to Java 17 it will be backwards compatible with all
previous clients.

• Due to ARTEMIS-5153 the queues related to AMQP federation events and and controls are now
marked as internal.

16.6. 2.38.0
Full release notes

16.6.1. Highlights

• WebSocket compression is now supported. This compression can be used transparently for
AMQP, STOMP, or MQTT when communication is over WebSockets.

• The ActiveMQServerMessagePlugin now has a messageMoved() callback.

• Core bridge configuration now supports client-id which will make it much easier to identify
bridge connections on remote brokers.

• The consumer CLI command now supports consuming messages "forever" by specifying -1 for
--receive-timeout.

• The authentication & authorization caches now have detailed debug logging.

• There’s been a handful of updates to broker management:

◦ The documentation has been improved with more examples for Jolokia and a new sub-
section on management method option syntax.

◦ It’s now possible to pass empty "options" to the management methods that accept them.

◦ The management methods which return paged results can now return all the results
together by specifying -1 for either the page or the pageSize.

◦ The management method option syntax now supports the NOT_EQUALS operator for greater
flexibility with filtering results of management operations.

◦ Configuration for diverts created via management can now be done via JSON.

• The TextFileCertificateLoginModule now supports normalisation of DN property values. See
ARTEMIS-5102 for more details

16.6.2. Upgrading from 2.37.0

• Due to ARTEMIS-5096 the web console’s archive (i.e. console.war) will now be uncompressed.
This change was necessary in order to remove certain jar files from the archive which were
already being distributed in the broker’s main lib directory. Eliminating these duplicate jars
will decrease the size of the broker distribution and it also means the console will, in some
cases, use updated dependencies and prevent security tools from flagging older jars.

https://github.com/jetty/jetty.project/issues/10485
https://issues.apache.org/jira/browse/ARTEMIS-5153
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12355013
https://issues.apache.org/jira/browse/ARTEMIS-5102
https://issues.apache.org/jira/browse/ARTEMIS-5096

• Due to ARTEMIS-5101 the two-way algorithm in the default sensitive string codec used for
symmetric password masking is now deprecated. It will continue to work, but it will print a
warning to the log. This is the first step in a process to get to eliminate passwords are stored in
configuration files except those encoded by strong one-way hashing algorithms. Other use-cases
will be pushed toward certificate-based security (i.e. mutual TLS) or something equivalent that
requires no password.

• Due to ARTEMIS-5085 the parameters retryIntervalMultiplier and maxRetryInterval will now be
applied to "initial" connection attempts (i.e. controlled via initialConnectAttempts). This is to fix
a bug where these parameters were incorrectly ignored.

16.7. 2.37.0
Full release notes

16.7.1. Highlights

• The environment variables of the CLI commands other than run is configurable via the artemis-
utility.profile file.

• The logging configuration of the CLI commands other than run is configurable via the log4j2-
utility.properties file.

• The run command has been removed from the artemis shell, use the artemis script (artemis.cmd
on Windows) to execute it.

• A version compatibility on voting (shared nothing replication quorum protocol) was fixed as
part of ARTEMIS-4986

16.7.2. Upgrading from 2.36.0

The CLI commands other than run will now need to define the environment variables via the
artemis-utility.profile file and the logging configuration via the log4j2-utility.properties file.
See logging for more information.

16.8. 2.36.0
Full release notes

16.8.1. Highlights

• Numerous dependency upgrades triggered by integration with GitHub’s Dependabot.

• Stability improvement for use-cases involving slower IO devices (e.g. NFS) and the NIO journal
via ARTEMIS-4949.

• Code optimization in the address manager to decrease CPU utilization and increase broker
scalability for use-cases involving a large number of addresses and queues courtesy of
ARTEMIS-4814.

• Stability improvement for use-cases involving STOMP clients connecting over WebSockets via
ARTEMIS-3509.

https://issues.apache.org/jira/browse/ARTEMIS-5101
https://issues.apache.org/jira/browse/ARTEMIS-5085
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354977
https://issues.apache.org/jira/browse/ARTEMIS-4986
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354818
https://docs.github.com/en/code-security/getting-started/dependabot-quickstart-guide
https://issues.apache.org/jira/browse/ARTEMIS-4949
https://issues.apache.org/jira/browse/ARTEMIS-4814
https://issues.apache.org/jira/browse/

• Lots of internal "code gardening" improvements for developers to make the code-base simpler
and more consistent.

16.9. 2.35.0
Full release notes

16.9.1. Highlights

• There was a regression in broker replication in regard to Large Messages that was addressed

• json output as an option on ./artemis queue stat --json

• The codebase has migrated to JUNIT 5

16.10. 2.34.0
Full release notes

16.10.1. Highlights

• Extensive resiliency tests and hardening on Mirroring.

• Paging performance improvements on sync.

• Statistics about security events.

• Replication status metrics.

16.10.2. Upgrading from 2.33.0

• Due to ARTEMIS-4712 the connection pooling functionality configured via the connectionPool
property in login.config is no longer supported in the LDAPLoginModule. The login.config may
still use the connectionPool property. No error will be thrown. However, connections will no
longer be pooled regardless of the configuration.

• Due to ARTEMIS-4498 the web console will now report all internal objects.

◦ This was done in an attempt to allow administrators to act when things are not working as
expected, to get metrics on these objects and allow more transparency for the broker.

◦ this includes all Openwire Advisor queues and addresses, MQTT internal objects, Cluster
Store and Forward (SNF) Queues, Mirror SNF.

◦ You may want to revisit authorizations if you mean to control access to certain users on the
web console.

• The CLI operation ./artemis queue stat has its output improved and updated. If you parsed the
previous output in scripts you will see differences in the output.

◦ It is not recommended to parse the output of a CLI Operation. You may use jolokia calls over
management instead with proper JSON output.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354784
https://issues.apache.org/jira/browse/ARTEMIS-4813
https://issues.apache.org/jira/browse/ARTEMIS-4815
https://issues.apache.org/jira/browse/ARTEMIS-4790
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354426
https://issues.apache.org/jira/browse/ARTEMIS-4758
https://issues.apache.org/jira/browse/ARTEMIS-4773
https://issues.apache.org/jira/browse/ARTEMIS-4306
https://issues.apache.org/jira/browse/ARTEMIS-4675
https://issues.apache.org/jira/browse/ARTEMIS-4712
https://issues.apache.org/jira/browse/ARTEMIS-4498

16.11. 2.33.0
Full release notes

16.11.1. Highlights

• Support for JSON formatted typed properties on CLI producer command

• New CLI command pwd for showing directories related to the current instance

• Maven Bill of Materials (BOM) artemis-bom to simplify integration

• "FirstMessage" API for scheduled messages

• New "view" and "edit" permissions for management operations configurable via security-
settings in broker.xml

• New sslAutoReload parameter for the embedded web server configured in bootstrap.xml to
detect and automatically reload whe SSL stores change on disk

• Performance improvements on mirroring and paging

• Logging metrics to mitigate the risk of missing WARN or ERROR messages in the log.

• Much improved documentation on network isolation (aka split brain)

• Pluggable lock manager (aka pluggable quorum voting) out of "experimental" status and ready
for general use

16.11.2. Upgrading from 2.32.0

• Due to ARTEMIS-4532 the names of addresses and queues related to MQTT topics and
subscriptions respectively may change. This will impact MQTT use-cases if both of the following
are true:

1. The broker is configured to use a wildcard syntax which doesn’t match the MQTT wildcard
syntax (e.g. the default wildcard syntax).

2. You are using characters from the broker’s wildcard syntax in your MQTT topic name or
filter. For example, if you were using the default wildcard syntax and an MQTT topic named
1.0/group/device. The dot (.) character here is part of the broker’s wildcard syntax, and it is
being used in the name of an MQTT topic.

In this case the characters from the broker’s wildcard syntax that do not match the
characters in the MQTT wildcard syntax will be escaped with a backslash (i.e. \). To avoid
this conversion you can configure the broker to use the MQTT wildcard syntax or change the
name of the MQTT topic name or filter.

This change will also impact OpenWire JMS consumers which are using # instead of < for
wildcard purposes. In previous versions the # character was just passed through when
converting from the OpenWire wildcard format to the Core wildcard format. However, now the
character is escaped during conversion. It is a bug for an application to use to use # as a
wildcard with the OpenWire JMS client; > is the proper character to use as specified in the
ActiveMQ Classic documentation on wildcards.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12354184
https://issues.apache.org/jira/browse/ARTEMIS-4532
https://activemq.apache.org/components/classic/documentation/wildcards

• Due to ARTEMIS-4559 folks embedding the broker and also depending on the artemis-quorum-ri
and/or artemis-quorum-api modules and/or using
org.apache.activemq.artemis.core.config.ha.DistributedPrimitiveManagerConfiguration will
need to use artemis-lockmanager-ri, artemis-lockmanager-api, and
org.apache.activemq.artemis.core.config.ha.DistributedLockManagerConfiguration respectively.
Previously these were marked as "experimental" in the documentation and were changed
strictly in name to clarify their use conceptually. Furthermore, the documentation around high
availability and network isolation (i.e. split brain) was refactored significantly to be more clear
and comprehensive.

16.12. 2.32.0
Full release notes

16.12.1. Highlights

• Mirrored Core Messages can now be sent on their native format without conversions

• Mirror bug fixes and improvements

• ActiveMQ Artemis has now adopted more inclusive language definitions.

• The examples are now part of its own repository: https://github.com/apache/activemq-artemis-
examples/

16.12.2. Upgrading from 2.31.x

• Due to ARTEMIS-4501 MQTT subscription queues will be automatically removed when the
corresponding session expires, either based on the session expiry interval passed by an MQTT 5
client or based on the configured defaultMqttSessionExpiryInterval for MQTT 3.x clients or
MQTT 5 clients which don’t explicitly pass a session expiry interval.

Prior to this change removing subscription queues relied on the generic auto-delete-* address-
settings.

These settings are now no longer required.

Configure defaultMqttSessionExpiryInterval instead.

• Due to ARTEMIS-3474 the following configuration elements have changed wherever they occur
(e.g. broker.xml, bootstrap.xml, etc.), although all the previous configurations will still be
supported for the time being:

◦ master → primary

◦ slave → backup

◦ check-for-live-server → check-for-active-server

◦ whitelist → allowlist

◦ blacklist → denylist
Additionally, references to these elements have also changed in the documentation and in

https://issues.apache.org/jira/browse/ARTEMIS-4559
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353769
https://issues.apache.org/jira/browse/ARTEMIS-3474
https://github.com/apache/activemq-artemis-examples/
https://github.com/apache/activemq-artemis-examples/
https://issues.apache.org/jira/browse/ARTEMIS-4501
https://issues.apache.org/jira/browse/ARTEMIS-3474

management interfaces. Cluster topology information (e.g. returned from the
listNetworkTopology) will contain both primary and live entries for nodes functioning as
primary servers.

16.13. 2.31.2
Full release notes

16.13.1. Highlights

• Bug Fix

16.14. 2.31.1
Full release notes

16.14.1. Highlights

• Bug Fixes and component upgrades

16.15. 2.31.0
Full release notes

16.15.1. Highlights

• Introduced an interactive shell for running CLI command as well as Bash & ZSH auto-complete
support.

• Added a CLI cluster verification tool to help monitor broker topologies. Use via the check
cluster command.

• The queue stat command is now able to to verify the message counts on the entire cluster
topology when clustering is in use.

• Added AMQP Federation support to broker connections.

• MQTT subscription state is now persisted.

• Significantly improved the Paging JDBC Persistence.

• Converted much of the documentation from MarkDown to AsciiDoc. See ARTEMIS-4383 for
more details.

• Many other bug fixes and improvements.

16.15.2. Upgrading from 2.30.0

• Due to ARTEMIS-4372 and the introduction of the new Artemis shell feature when you invoke
./artemis it will now start the new shell to navigate through the CLI commands rather than just
spitting out the help text.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353776
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353642
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353446
https://issues.apache.org/jira/browse/ARTEMIS-4383
https://issues.apache.org/jira/browse/ARTEMIS-4372

16.16. 2.30.0
Full release notes

16.16.1. Highlights

• This is mainly a bug-fix release with a few small improvements and a handful of dependency
upgrades. See the release notes for all the details.

16.17. 2.29.0
Full release notes

16.17.1. Highlights

• This version underwent extensive testing and fixes regarding Large Messages, with a few JIRAs
dedicated to this topic. Look on the release notes for more information.

16.17.2. Upgrading from 2.28.0

• Due to ARTEMIS-4151 the default access for MBeans not defined in the role-access or allowlist
of management.xml is now read only. This is a precautionary measure to ensure no unanticipated
MBean deployed with the broker poses a risk. However, this will also impact JVM-specific and
platform MBeans as well (e.g. which allow manual garbage collection, "flight recording," etc.).
Write access and general operational access to these MBeans will now have to be manually
enabled in management.xml either by changing the default-access (not recommended) or
specifically configuring a role-access for the particular MBean in question.


This applies to all MBean access including directly via JMX and via the Jolokia
JMX-HTTP bridge.

• Due to ARTEMIS-4212 the broker will reject address definitions in broker.xml which don’t
specify a routing type, e.g.:

<address name="myAddress"/>

Such configurations will need to be changed to specify a routing-type, e.g.:

<address name="myAddress">
 <anycast/>
</address>

Or

<address name="myAddress">
 <multicast/>

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353357
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12353357
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352880&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352880&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-4151
https://issues.apache.org/jira/browse/ARTEMIS-4212

</address>

If an address without a routing type is configured the broker will throw an exception like this
and fail to start:

java.lang.IllegalArgumentException: AMQ229247: Invalid address configuration for
'myAddress'. Address must support multicast and/or anycast.
 at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseAddres
sConfiguration(FileConfigurationParser.java:1580)
 at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseAddres
ses(FileConfigurationParser.java:1038)
 at
org.apache.activemq.artemis.core.deployers.impl.FileConfigurationParser.parseMainCo
nfig(FileConfigurationParser.java:804)
 at
org.apache.activemq.artemis.core.config.impl.FileConfiguration.parse(FileConfigurat
ion.java:56)
 at
org.apache.activemq.artemis.core.config.FileDeploymentManager.readConfiguration(Fil
eDeploymentManager.java:81)
 at
org.apache.activemq.artemis.integration.FileBroker.createComponents(FileBroker.java
:120)
 at org.apache.activemq.artemis.cli.commands.Run.execute(Run.java:119)
 at org.apache.activemq.artemis.cli.Artemis.internalExecute(Artemis.java:212)
 at org.apache.activemq.artemis.cli.Artemis.execute(Artemis.java:162)
 at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
Method)
 at
java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessor
Impl.java:62)
 at
java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethod
AccessorImpl.java:43)
 at java.base/java.lang.reflect.Method.invoke(Method.java:566)
 at org.apache.activemq.artemis.boot.Artemis.execute(Artemis.java:144)
 at org.apache.activemq.artemis.boot.Artemis.main(Artemis.java:61)

• Due to ARTEMIS-3707 all use of javax.transaction.TransactionManager was removed from the
JCA Resource Adapter. However, this rendered the transactionTimeout activation configuration
property useless. Some existing users rely on this behavior so it has been restored and properly
deprecated for future removal.

16.18. 2.28.0
Full release notes

https://issues.apache.org/jira/browse/ARTEMIS-3707
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352523&projectId=12315920

16.18.1. Highlights

• Bug Fixes and improvements as usual

• ARTEMIS-4136 Mirror sync replication

◦ Mirror now has an option to set sync=true. Blocking operations from clients will wait a
round trip on the mirror.

• ARTEMIS-4065 Paging Counter Journal Records were removed

◦ We don’t store page counters records on the journal any longer what should simplify
operation and improve performance.

16.18.2. Upgrading from 2.27.0

• Due to ARTEMIS-3871 the naming pattern used for MQTT shared subscription queues has
changed. Previously the subscription queue was named according to the subscription name
provided in the MQTT SUBSCRIBE packet. However, MQTT allows the same name to be used
across multiple subscriptions whereas queues in the broker must be named uniquely. Now the
subscription queue will be named according to the subscription name and topic name so that all
subscription queue names will be unique. Before upgrading please ensure all MQTT shared
subscriptions are empty. When the subscribers reconnect they will get a new subscription
queue. If they are not empty you can move the messages to the new subscription queue
administratively.

16.19. 2.27.1
Full release notes

16.19.1. Highlights

• Bug Fixes

• AMQP Large Message over Bridges were broken

• Rollback of massive transactions would take a long time to process

• Improvements to auto-create and auto-delete queues.

16.20. 2.27.0
Full release notes

16.20.1. Highlights

• 2.27.0 Introduced a new upgrade tool to help migrating your instance to a newer version.

• The client and broker now use SLF4J for their logging API.

• The broker distribution now uses Log4J 2 as its logging implementation.

https://issues.apache.org/jira/browse/ARTEMIS-4136
https://issues.apache.org/jira/browse/ARTEMIS-4065
https://issues.apache.org/jira/browse/ARTEMIS-3871
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352610&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352246&projectId=12315920
https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/manual/

16.20.2. Upgrading from 2.26.0

Client applications wanting logging will now need to supply an appropriate SLF4J-supporting
logging implementation configured appropriately for their needs. See client application logging for
more information plus an example around using Log4J 2.

The broker distribution now includes and configures Log4J 2 as its logging implementation, see
logging for more details. If upgrading an existing broker instance rather than creating a new
instance, some configuration etc updates will be necessary for the brokers existing instance /etc and
/bin files.

You can use the new upgrade helper tool from the newly downloaded broker to refresh various
configuration files and scripts for an existing broker instance. The broker.xml and data are left in
place as-is.

 You should back up your existing broker instance before running the command.

The command can be executed by running ./artemis upgrade <path-to-your-instance> from the
new downloaded broker home.



Most existing customisations to the old configuration files and scripts will be lost
in the process of refreshing the files. As such you should compare the old
configuration files with the refreshed ones and then port any missing
customisations you may have made as necessary. The upgrade command itself will
copy the older files it changes to an old-config-bkp. folder within the instance
directory.

Similarly, if you had customised the old logging.properties file you may need to
prepare analogous changes for the new log4j2.properties file.

Note also that the configuration-file-refresh-period setting in broker.xml no longer covers logging
configuration refresh. Log4J 2 has its own configuration reload handling, configured via the
monitorInterval property within the Log4J configuration file itself. The default
<instance>/etc/log4j2.properties file created has a 5 second monitorInterval value set to align with
the prior default broker behaviour.

16.20.3. Manual update

Alternatively, rather than using the upgrade helper command as outlined above, you can instead
perform the update manually, following the general upgrading procedure plus the additional steps
below:

1. The new <instance>/etc/log4j2.properties file should be created with Log4J 2 configuration.
The file used by the "artemis create" CLI command can be downloaded from: log4j2.properties

2. The old <instance>/etc/logging.properties JBoss Logging configuration file should be deleted.

3. Related startup script or profile cleanups are needed: a diff file demonstrating the changes
needed since 2.26.0 is available here for *nix or here for Windows.

https://github.com/apache/activemq-artemis/blob/2.27.0/artemis-cli/src/main/resources/org/apache/activemq/artemis/cli/commands/etc/log4j2.properties
02-27-00-scripts-profiles.diff
02-27-00-scripts-profiles-windows.diff

16.21. 2.26.0
Full release notes

16.21.1. Highlights

• Bug fixes and improvements

16.21.2. Upgrading from 2.25.0

1. Due to ARTEMIS-4006 the artemis-jms-client-all and artemis-jakarta-client-all clients were
removed from the lib/client directory in the binary distribution. If you use these libraries they
can be found at Maven Central (e.g. here). Please refer to the client class path documentation for
more information.

2. We removed the REST interface from the code-base and documentation. If you still require the
REST interface you can access the latest version which is still viable. You can still follow the
steps from the previous documentation to build and deploy the interface. However, you should
stop using it as it will not be maintained any more.

3. Due to ARTEMIS-3980 the web content was removed from the binary distribution. We now
redirect web requests with the root target to the administration console. To enable this new
redirect behavior on current instances you have to update bootstrap.xml. Change:

<web path="web">

to:

<web path="web" rootRedirectLocation="console">

If you used to customize the index page or to add custom content in the web folder please refer
to the web-server documentation for more information on disabling the redirect and enabling
the web content.

16.22. 2.25.0
Full release notes

16.22.1. Highlights

• Improvement on Paging Flow Control

• Many other bug fixes and improvements

16.23. 2.24.0
Full release notes

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352297&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-4006
https://repo1.maven.org/maven2/org/apache/activemq/artemis-jms-client-all/
https://mvnrepository.com/artifact/org.apache.activemq.rest/artemis-rest/2.25.0
https://activemq.apache.org/components/artemis/documentation/2.25.0/rest.html
https://issues.apache.org/jira/browse/ARTEMIS-3980
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12352143&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351822&projectId=12315920

16.23.1. Highlights

• Streamlined page caches and files are just read into queues without the need of soft caches.

16.23.2. Upgrading from 2.23.0

1. Due to ARTEMIS-3851 the queue created for an MQTT 3.x subscriber using CleanSession=1 is
now non-durable rather than durable. This may impact security-settings for MQTT clients
which previously only had createDurableQueue for their role. They will now need
createNonDurableQueue as well. Again, this only has potential impact for MQTT 3.x clients using
CleanSession=1.

2. Due to ARTEMIS-3892 the username assigned to queues will be based on the validated user
rather than just the username submitted by the client application. This will impact use-cases
like the following:

a. When login.config is configured with the GuestLoginModule which causes some users to be
assigned a specific username and role during the authentication process.

b. When login.config is configured with the CertificateLoginModule which causes users to be
assigned a username and role corresponding to the subject DN from their SSL certificate.

In these kinds of situations the broker will use this assigned (i.e. validated) username for any
queues created with the connection. In the past the queue’s username would have been left
blank.

16.24. 2.23.1
Full release notes

16.24.1. Highlights

• ARTEMIS-3856 - Failed to change channel state to ReadyForWriting :
java.util.ConcurrentModificationException

16.25. 2.23.0
Full release notes.

16.25.1. Highlights

• management operations for the embedded web server.

• JakartaEE 10 Support

• BugFix: High cpu usage on ReadWrite locks

16.26. 2.22.0
Full release notes.

https://issues.apache.org/jira/browse/ARTEMIS-3851
https://issues.apache.org/jira/browse/ARTEMIS-3892
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351846&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-3856
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12351677
https://issues.apache.org/jira/browse/ARTEMIS-3700
https://issues.apache.org/jira/browse/ARTEMIS-3848
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12351488

16.26.1. Highlights

• The default producer-window-size on cluster-connection was changed to 1MB to mitigate
potential OutOfMemoryErrors in environments with with high latency networking.

16.27. 2.21.0
Full release notes.

16.27.1. Highlights

• MQTT 5 is now supported.

• A new set of performance tools are now available to evaluate throughput and Response Under
Load performance of Artemis

• Diverts now support multiple addresses

• Runtime configuration reloading now supports bridges.

• Paging can now be configured by message count.

16.27.2. Upgrading from 2.20.0

1. Due to XML schema changes to correct an inaccurate domain name 2 files will need to be
updated:

a. etc/bootstrap.xml

b. etc/management.xml

In both files change the XML namespace from activemq.org to activemq.apache.org, e.g. in
bootsrap.xml use:

 <broker xmlns="http://activemq.apache.org/schema">

And in management.xml use:

 <management-context xmlns="http://activemq.apache.org/schema">

2. If you’re using JDBC persistence then due to the changes in ARTEMIS-3679 you’ll need to
update your database. The column HOLDER_EXPIRATION_TIME on the NODE_MANAGER_STORE changed
from a TIMESTAMP to a BIGINT (or NUMBER(19) on Oracle). You will have to stop any broker that is
accessing that table and either drop it or execute the proper ALTER TABLE statement for your
database. If you drop the table then it will be automatically recreated when broker restarts and
repopulated with a new, auto-generated node ID.

3. If you’re using JGroups then due to the changes in ARTEMIS-2413 where JGroups was updated
from 3.x to 5.x you will need to update your JGroups configuration. Many of the protocols have
changed, and there’s no automated tool to bring legacy configurations up to date so please refer
to the JGroups documentation for more details on the new configuration. You can find example

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12351083&projectId=12315920
https://issues.apache.org/jira/browse/ARTEMIS-3679
https://issues.apache.org/jira/browse/ARTEMIS-2413
http://jgroups.org/manual5/index.html#protlist

configurations in the JGroups repository (e.g. tcp.xml and udp.xml).

16.28. 2.20.0
Full release notes.

16.28.1. Highlights

• Java 11 is now required.

16.29. 2.19.0
Full release notes.

16.29.1. Highlights

• New ability to replay retained journal records via the management API.

• New environment/system property to set the "key" for masked passwords when using the
default codec.

• Ability to disable message-load-balancing and still allow redistribution via the new
OFF_WITH_REDISTRIBUTION type.

• MQTT session state can now be cleaned up automatically to avoid excessive accumulation in
situations where client’s don’t clean up their own sessions.

• Distribute full Jakarta Messaging 3.0 client in the lib/client directory along with a new
example of how to use it in examples/features/standard/queue-jakarta.

16.30. 2.18.0
Full release notes.

16.30.1. Highlights

• Dual Mirror support improving capabilities on AMQP Mirror for Disaster Recovery

• Journal Retention

• Replication integrated with ZooKeeper

• Connection Routers

• Concurrency configuration for core bridges.

• XPath filter expressions (for parity with ActiveMQ Classic).

16.30.2. Upgrading from 2.17.0

1. Due to ARTEMIS-3367 the default setting for verifyHost on core connectors has been changed
from false to true. This means that core clients will now expect the CN or Subject Alternative
Name values of the broker’s SSL certificate to match the hostname in the client’s URL.

https://github.com/belaban/JGroups/tree/master/conf
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12350581&projectId=12315920
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12350519
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12349689
https://issues.apache.org/jira/browse/ARTEMIS-3367

This impacts all core-based clients including core JMS clients and core connections between
cluster nodes. Although this is a "breaking" change, not performing hostname verification is a
security risk (e.g. due to man-in-the-middle attacks). Enabling it by default aligns core client
behavior with industry standards. To deal with this you can do one of the following:

◦ Update your SSL certificates to use a hostname which matches the hostname in the client’s
URL. This is the recommended option with regard to security.

◦ Update any connector using sslEnabled=true to also use verifyHost=false. Using this option
means that you won’t get the extra security of hostname verification, but no certificates will
need to change. This essentially restores the previous default behavior.

For additional details about please refer to section 3.1 of RFC 2818 "HTTP over TLS".

2. Due to ARTEMIS-3117 SSL keystore and truststores are no longer reloaded automatically.
Previously an instance of javax.net.ssl.SSLContext was created for every connection. This
would implicitly pick up any changes to the keystore and truststore for any new connection.
However, this was grossly inefficient and therefore didn’t scale well with lots of connections.
The behavior was changed so that just one javax.net.ssl.SSLContext is created for each
acceptor. However, one can still reload keystores & truststores from disk without restarting the
broker. Simply use the reload management operation on the acceptor. This is available via JMX,
the web console, Jolokia, etc.

Here’s an example curl command you can use with Jolokia to invoke the artemis acceptor’s
reload operation:

curl --user admin:admin --header "Content-Type: application/json" --request POST
--data '{"type":"exec",
"mbean":"org.apache.activemq.artemis:broker=\"0.0.0.0\",component=acceptors,name=\"
artemis\"", "operation":"reload"}' http://localhost:8161/console/jolokia/exec

Of course you’ll want to adjust the username & password as well as the broker and acceptor
names for your environment.

3. The "rate" metric for queues was removed from the web console via ARTEMIS-3397. This was a
follow-up from ARTEMIS-2909 in 2.16.0 (referenced in the upgrade instructions below). The
"rate" metric mistakenly left visible on the web console after it was removed from the
management API.

4. Due to ARTEMIS-3141, ARTEMIS-3128, & ARTEMIS-3175 the data returned for any "list" or
"browse" management method which return message data, including those exposed via the web
console, will have their return data truncated by default. This is done to avoid adverse
conditions with large volumes of message data which could potentially negatively impact
broker stability. The management-message-attribute-size-limit address-setting controls this
behavior. If you wish to restore the previous (and potentially dangerous behavior) then you can
specify -1 for this. It is 256 by default.

https://datatracker.ietf.org/doc/html/rfc2818#section-3.1
https://issues.apache.org/jira/browse/ARTEMIS-3117
https://issues.apache.org/jira/browse/ARTEMIS-3397
https://issues.apache.org/jira/browse/ARTEMIS-2909
https://issues.apache.org/jira/browse/ARTEMIS-3141
https://issues.apache.org/jira/browse/ARTEMIS-3128
https://issues.apache.org/jira/browse/ARTEMIS-3175

16.31. 2.17.0
Full release notes.

16.31.1. Highlights

• Message-level authorization similar to ActiveMQ Classic.

• A count of addresses and queues is now available from the management API.

• You can now reload the broker’s configuration from disk via the management API rather than
waiting for the periodic disk scan to pick it up

• Performance improvements on libaio journal.

• New command-line option to transfer messages.

• Performance improvements for the wildcard address manager.

• JDBC datasource property values can now be masked.

• Lots of usability improvements to the Hawtio 2 based web console introduced in 2.16.0

• New management method to create a core bridge using JSON-based configuration input.

• Jakarta Messaging 2.0 & 3.0 artifacts for Jakarta EE 8 & 9 respectively.

16.32. 2.16.0
Full release notes.

16.32.1. Highlights

• Configurable namespace for temporary queues

• AMQP Server Connectivity

• "Basic" SecurityManager implementation that supports replication

• Consumer window size support for individual STOMP clients

• Improved JDBC connection management

• New web console based on Hawtio 2

• Performance optimizations (i.e. caching) for authentication and authorization

• Support for admin objects in the JCA resource adapter to facilitate deployment into 3rd-party
Java EE application servers

• Ability to prevent an acceptor from automatically starting

16.32.2. Upgrading from 2.15.0

1. Due to ARTEMIS-2893 the fundamental way user management was implemented had to change
to avoid data integrity issues related to concurrent modification. From a user’s perspective two
main things changed:

a. User management is no longer possible using the artemis user commands when the broker

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12349326
https://blogs.apache.org/activemq/entry/activemq-artemis-embraces-jakarta-ee
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348718
https://issues.apache.org/jira/browse/ARTEMIS-2893

is offline. Of course users are still free to modify the properties files directly in this
situation.

b. The parameters of the artemis user commands changed. Instead of using something like
this:

./artemis user add --user guest --password guest --role admin

Use this instead:

./artemis user add --user-command-user guest --user-command-password guest
--role admin

In short, use user-command-user in lieu of user and user-command-password in lieu of password.
Both user and password parameters now apply to the connection used to send the command
to the broker.

For additional details see ARTEMIS-2893 and ARTEMIS-3010

2. Due to ARTEMIS-2909 the "rate" metric was removed from the management API for queues. In
short, the org.apache.activemq.artemis.core.server.Queue#getRate method is for slow-consumer
detection and is designed for internal use only.

Furthermore, it’s too opaque to be trusted by a remote user as it only returns the number of
message added to the queue since the last time it was called. The problem here is that the user
calling it doesn’t know when it was invoked last. Therefore, they could be getting the rate of
messages added for the last 5 minutes or the last 5 milliseconds. This can lead to inconsistent
and misleading results.

There are three main ways for users to track rates of message production and consumption (in
recommended order):

a. Use a metrics plugin. This is the most feature-rich and flexible way to track broker metrics,
although it requires tools (e.g. Prometheus) to store the metrics and display them (e.g.
Grafana).

b. Invoke the getMessageCount() and getMessagesAdded() management methods and store the
returned values along with the time they were retrieved. A time-series database is a great
tool for this job. This is exactly what tools like Prometheus do. That data can then be used to
create informative graphs, etc. using tools like Grafana. Of course, one can skip all the tools
and just do some simple math to calculate rates based on the last time the counts were
retrieved.

c. Use the broker’s message counters. Message counters are the broker’s simple way of
providing historical information about the queue. They provide similar results to the
previous solutions, but with less flexibility since they only track data while the broker is up
and there’s not really any good options for graphing.

https://issues.apache.org/jira/browse/ARTEMIS-2893
https://issues.apache.org/jira/browse/ARTEMIS-3010
https://issues.apache.org/jira/browse/ARTEMIS-2909

16.33. 2.15.0
Full release notes.

16.33.1. Highlights

• Ability to use FQQN syntax for both security-settings and JNDI lookup

• Support pausing dispatch during group rebalance (to avoid potential out-of-order consumption)

• Socks5h support

16.34. 2.14.0
Full release notes.

16.34.1. Highlights

• Management methods to update diverts

• Ability to "disable" a queue so that messages are not routed to it

• Support JVM GC & thread metrics

• Support for resetting queue properties by unsetting them in broker.xml

• Undeploy diverts by removing them from broker.xml

• Add addressMemoryUsagePercentage and addressSize as metrics

16.34.2. Upgrading from 2.13.0

This is likely a rare situation, but it’s worth mentioning here anyway. Prior to 2.14.0 if you
configured a parameter on a queue in broker.xml (e.g. max-consumers) and then later removed that
setting the configured value you set would remain. This has changed in 2.14.0 via ARTEMIS-2797.
Any value that is not explicitly set in broker.xml will be set back to either the static default or the
dynamic default configured in the address-settings (e.g. via default-max-consumers in this example).
Therefore, ensure any existing queues have all the needed parameters set in broker.xml values
before upgrading.

16.35. 2.13.0
Full release notes.

16.35.1. Highlights

• Management methods for an address' duplicate ID cache to check the cache’s size and clear it

• Support for min/max expiry-delay

• Per-acceptor security domains

• Command-line check tool for checking the health of a broker

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348568
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348290
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12348088

• Support disabling metrics per address via the enable-metrics address setting

• Improvements to the audit logging

• Speed optimizations for the HierarchicalObjectRepository, an internal object used to store
address and security settings

16.35.2. Upgrading from 2.12.0

Version 2.13.0 added new audit logging which is logged at INFO level and can be very verbose. The
logging.properties shipped with this new version is set up to filter this out by default. If your
logging.properties isn’t updated appropriately this audit logging will likely appear in your console
and artemis.log file assuming you’re using a logging configuration close to the default. Add this to
your logging.properties:

to enable audit change the level to INFO
logger.org.apache.activemq.audit.base.level=ERROR
logger.org.apache.activemq.audit.base.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.base.useParentHandlers=false

logger.org.apache.activemq.audit.resource.level=ERROR
logger.org.apache.activemq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false

logger.org.apache.activemq.audit.message.level=ERROR
logger.org.apache.activemq.audit.message.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.message.useParentHandlers=false

...

#Audit logger
handler.AUDIT_FILE=org.jboss.logmanager.handlers.PeriodicRotatingFileHandler
handler.AUDIT_FILE.level=INFO
handler.AUDIT_FILE.properties=suffix,append,autoFlush,fileName
handler.AUDIT_FILE.suffix=.yyyy-MM-dd
handler.AUDIT_FILE.append=true
handler.AUDIT_FILE.autoFlush=true
handler.AUDIT_FILE.fileName=${artemis.instance}/log/audit.log
handler.AUDIT_FILE.formatter=AUDIT_PATTERN

formatter.AUDIT_PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.AUDIT_PATTERN.properties=pattern
formatter.AUDIT_PATTERN.pattern=%d [AUDIT](%t) %s%E%n

16.36. 2.12.0
Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12346675

16.36.1. Highlights

• Support for SOCKS proxy

• Real large message support for AMQP

• Automatic creation of dead-letter resources akin to ActiveMQ 5’s individual dead-letter strategy

• Automatic creation of expiry resources

• Improved API for queue creation

• Allow users to override JAVA_ARGS via environment variable

• Reduce heap usage during journal loading during broker start-up

• Allow server header in STOMP CONNECTED frame to be disabled

• Support disk store used percentage as an exportable metric (e.g. to be monitored by tools like
Prometheus, etc.)

• Ability to configure a "customizer" for the embedded web server

• Improved logging for errors when starting an acceptor to more easily identify the acceptor
which has the problem.

• The CLI will now read the broker.xml to find the default connector URL for commands which
require it (e.g. consumer, producer, etc.)

16.37. 2.11.0
Full release notes.

16.37.1. Highlights

• Support retroactive addresses.

• Support downstream federated queues and addresses.

• Make security manager configurable via XML.

• Support pluggable SSL TrustManagerFactory.

• Add plugin support for federated queues/addresses.

• Support com.sun.jndi.ldap.read.timeout in LDAPLoginModule.

16.38. 2.10.0
Full release notes.

This was mainly a bug-fix release with a notable dependency change impacting version upgrade.

16.38.1. Upgrading from 2.9.0

Due to the WildFly dependency upgrade the broker start scripts/configuration need to be adjusted
after upgrading.

https://www.eclipse.org/jetty/javadoc/9.4.26.v20200117/org/eclipse/jetty/server/HttpConfiguration.Customizer.html
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12346258
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345602

On *nix

Locate this statement in bin/artemis:

WILDFLY_COMMON="$ARTEMIS_HOME/lib/wildfly-common-1.5.1.Final.jar"

This needs to be replaced with this:

WILDFLY_COMMON="$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final.jar"

On Windows

Locate this part of JAVA_ARGS in etc/artemis.profile.cmd respectively bin/artemis-service.xml:

%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final.jar

This needs to be replaced with this:

%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final.jar

16.39. 2.9.0
Full release notes.

This was a light release. It included a handful of bug fixes, a few improvements, and one major new
feature.

16.39.1. Highlights

• Support exporting metrics.

16.40. 2.8.1
Full release notes.

This was mainly a bug-fix release with a notable dependency change impacting version upgrade.

16.40.1. Upgrading from 2.8.0

Due to the dependency upgrade made on ARTEMIS-2319 the broker start scripts need to be adjusted
after upgrading.

On *nix

Locate this if statement in bin/artemis:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345527
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345432
https://issues.apache.org/jira/browse/ARTEMIS-2319

if [-z "$LOG_MANAGER"] ; then
 # this is the one found when the server was created
 LOG_MANAGER="$ARTEMIS_HOME/lib/jboss-logmanager-2.0.3.Final.jar"
fi

This needs to be replaced with this block:

if [-z "$LOG_MANAGER"] ; then
 # this is the one found when the server was created
 LOG_MANAGER="$ARTEMIS_HOME/lib/jboss-logmanager-2.1.10.Final.jar"
fi

WILDFLY_COMMON=`ls $ARTEMIS_HOME/lib/wildfly-common*jar 2>/dev/null`
if [-z "$WILDFLY_COMMON"] ; then
 # this is the one found when the server was created
 WILDFLY_COMMON="$ARTEMIS_HOME/lib/wildfly-common-1.5.1.Final.jar"
fi

Notice that the jboss-logmanager version has changed and there is also a new wildfly-common library.

Not much further down there is this line:

-Xbootclasspath/a:"$LOG_MANAGER" \

This line should be changed to be:

-Xbootclasspath/a:"$LOG_MANAGER:$WILDFLY_COMMON" \

On Windows

Locate this part of JAVA_ARGS in etc/artemis.profile.cmd respectively bin/artemis-service.xml:

-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final.jar

This needs to be replaced with this:

-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager
-2.1.10.Final.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final.jar

16.41. 2.8.0
Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12345169

16.41.1. Highlights

• Support ActiveMQ5 feature JMSXGroupFirstForConsumer.

• Clarify handshake timeout error with remote address.

• Support duplicate detection for AMQP messages the same as core.

16.42. 2.7.0
Full release notes.

16.42.1. Highlights

• Support advanced destination options like consumersBeforeDispatchStarts and
timeBeforeDispatchStarts from Classic.

• Add support for delays before deleting addresses and queues via auto-delete-queues-delay and
auto-delete-addresses-delay Address Settings.

• Support logging HTTP access.

• Add a CLI command to purge a queue.

• Support user and role manipulation for PropertiesLoginModule via management interfaces.

• Docker images.

• Audit logging.

• Implementing consumer priority.

• Support FQQN for producers.

• Track routed and unrouted messages sent to an address.

• Support connection pooling in LDAPLoginModule.

• Support configuring a default consumer window size via default-consumer-window-size Address
Setting.

• Support masking key-store-password and trust-store-password in management.xml.

• Support JMSXGroupSeq -1 to close/reset message groups from Classic.

• Allow configuration of RMI registry port.

• Support routing-type configuration on core bridge.

• Move artemis-native as its own project, as activemq-artemis-native.

• Support federated queues and addresses.

16.43. 2.6.4
Full release notes.

This was mainly a bug-fix release with a few improvements a couple notable new features:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342977
https://github.com/apache/activemq-artemis/tree/main/artemis-docker
https://github.com/apache/activemq-artemis-native
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12344010

16.43.1. Highlights

• Added the ability to set the text message content on the producer CLI command.

• Support reload logging configuration at runtime.

16.44. 2.6.3
Full release notes.

This was mainly a bug-fix release with a few improvements but no substantial new features.

16.45. 2.6.2
Full release notes.

This was a bug-fix release with no substantial new features or improvements.

16.46. 2.6.1
Full release notes.

This was a bug-fix release with no substantial new features or improvements.

16.47. 2.6.0
Full release notes.

16.47.1. Highlights

• Support regular expressions for matching client certificates.

• Support SASL_EXTERNAL for AMQP clients.

• New examples showing virtual topic mapping and exclusive queue features.

16.48. 2.5.0
Full release notes.

16.48.1. Highlights

• Exclusive consumers.

• Equivalent ActiveMQ Classic Virtual Topic naming abilities.

• SSL Certificate revocation list.

• Last-value queue support for OpenWire.

• Support masked passwords in bootstrap.xm and login.config

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343472
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343404
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12343356
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342903
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12342127

• Configurable broker plugin implementation for logging various broker events (i.e.
LoggingActiveMQServerPlugin).

• Option to use OpenSSL provider for Netty via the sslProvider URL parameter.

• Enable splitting of broker.xml into multiple files.

• Enhanced message count and size metrics for queues.

16.48.2. Upgrading from 2.4.0

1. Due to changes from ARTEMIS-1644 any acceptor that needs to be compatible with HornetQ
and/or Artemis 1.x clients needs to have anycastPrefix=jms.queue.;multicastPrefix=jms.topic.
in the acceptor url. This prefix used to be configured automatically behind the scenes when the
broker detected these old types of clients, but that broke certain use-cases with no possible
work-around. See ARTEMIS-1644 for more details.

16.49. 2.4.0
Full release notes.

16.49.1. Highlights

• JMX configuration via XML rather than having to use system properties via command line or
start script.

• Configuration of max frame payload length for STOMP web-socket.

• Ability to configure HA using JDBC persistence.

• Implement role-based access control for management objects.

16.49.2. Upgrading from 2.3.0

1. Create <ARTEMIS_INSTANCE>/etc/management.xml. At the very least, the file must contain this:

<management-context xmlns="http://activemq.apache.org/schema"/>

This configures role based authorisation for JMX. Read more in the Management
documentation.

2. If configured, remove the Jolokia war file from the web element in
<ARTEMIS_INSTANCE>/etc/bootstrap.xml:

<app url="jolokia" war="jolokia.war"/>

This is no longer required as the Jolokia REST interface is now integrated into the console web
application.

If the following is absent and you desire to deploy the web console then add:

https://issues.apache.org/jira/browse/ARTEMIS-1644
https://issues.apache.org/jira/browse/ARTEMIS-1644
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12341540

<app url="console" war="console.war"/>


the Jolokia REST interface URL will now be at http://<host>:<port>/console/
jolokia

16.50. 2.3.0
Full release notes.

16.50.1. Highlights

• Web admin console!

• Critical Analysis and deadlock detection on broker

• Support Netty native kqueue on Mac.

• Last-value queue for AMQP

16.50.2. Upgrading from 2.2.0

1. If you desire to deploy the web console then add the following to the web element in
<ARTEMIS_INSTANCE>/etc/bootstrap.xml:

<app url="console" war="console.war"/>

16.51. 2.2.0
Full release notes.

16.51.1. Highlights

• Scheduled messages with the STOMP protocol.

• Support for JNDIReferenceFactory and JNDIStorable.

• Ability to delete queues and addresses when broker.xml changes.

• Client authentication via Kerberos TLS Cipher Suites (RFC 2712).

2.1.0
Full release notes.

16.51.2. Highlights

• Broker plugin support.

• Support Netty native epoll on Linux.

http://<host>:<port>/console/jolokia
http://<host>:<port>/console/jolokia
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12341247
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12340541
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339963

• Ability to configure arbitrary security role mappings.

• AMQP performance improvements.

16.52. 2.0.0
Full release notes.

16.52.1. Highlights

• Huge update involving a significant refactoring of the addressing model yielding the following
benefits:

◦ Simpler and more flexible XML configuration.

◦ Support for additional messaging use-cases.

◦ Eliminates confusing JMS-specific queue naming conventions (i.e. "jms.queue." & "jms.topic."
prefixes).

• Pure encoding of messages so protocols like AMQP don’t need to convert messages to "core"
format unless absolutely necessary.

• "MAPPED" journal type for increased performance in certain use-cases.

16.53. 1.5.6
Full release notes.

16.53.1. Highlights

• Bug fixes.

16.54. 1.5.5
Full release notes.

16.54.1. Highlights

• Bug fixes.

16.55. 1.5.4
Full release notes.

16.55.1. Highlights

• Support Oracle12C for JDBC persistence.

• Bug fixes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338813
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12340547
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339947
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339158

16.56. 1.5.3
Full release notes.

16.56.1. Highlights

• Support "byte notation" (e.g. "K", "KB", "Gb", etc.) in broker XML configuration.

• CLI command to recalculate disk sync times.

• Bug fixes.

16.57. 1.5.2
Full release notes.

16.57.1. Highlights

• Support for paging using JDBC.

• Bug fixes.

16.58. 1.5.1
Full release notes.

16.58.1. Highlights

• Support outgoing connections for AMQP.

• Bug fixes.

16.59. 1.5.0
Full release notes.

16.59.1. Highlights

• AMQP performance improvements.

• JUnit rule implementation so messaging resources like brokers can be easily configured in tests.

• Basic CDI integration.

• Store user’s password in hash form by default.

16.60. 1.4.0
Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12339575
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338833
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338661
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12338118
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12336052

16.60.1. Highlights

• "Global" limit for disk usage.

• Detect and reload certain XML configuration changes at runtime.

• MQTT interceptors.

• Support adding/deleting queues via CLI.

• New "browse" security permission for clients who only wish to look at messages.

• Option to populate JMSXUserID.

• "Dual authentication" support to authenticate SSL-based and non-SSL-based clients differently.

16.61. 1.3.0
Full release notes.

16.61.1. Highlights

• Better support of OpenWire features (e.g. reconnect, producer flow-control, optimized
acknowledgements)

• SSL keystore reload at runtime.

• Initial support for JDBC persistence.

• Support scheduled messages on last-value queue.

16.62. 1.2.0
Full release notes.

16.62.1. Highlights

• Improvements around performance

• OSGi support.

• Support functionality equivalent to all Classic JAAS login modules including:

◦ Properties file

◦ LDAP

◦ SSL certificate

◦ "Guest"

16.63. 1.1.0
Full release notes.

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12328978
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12333274
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=12332642&projectId=12315920

16.63.1. Highlights

• MQTT support.

• The examples now use the CLI programmatically to create, start, stop, etc. servers reflecting real
cases used in production.

• CLI improvements. There are new tools to compact the journal and additional improvements to
the user experience.

• Configurable resource limits.

• Ability to disable server-side message load-balancing.

16.64. 1.0.0
Full release notes.

16.64.1. Highlights

• First release of the donated code-base as ActiveMQ Artemis!

• Lots of features for parity with ActiveMQ Classic including:

◦ OpenWire support

◦ AMQP 1.0 support

◦ URL based connections

◦ Auto-create addresses/queues

◦ Jolokia integration

https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12315920&version=12328953
https://lists.apache.org/thread/7y4o61zzk5y9bdjqsho2p6k7860kmzbt

Chapter 17. Upgrading the Broker
Apache ActiveMQ Classic (and previous versions) is runnable out of the box by executing the
command: ./bin/activemq run. The ActiveMQ Artemis broker follows a different paradigm where
the project distribution serves as the broker "home" and one or more broker "instances" are created
which reference the "home" for resources (e.g. jar files) which can be safely shared between broker
instances. Therefore, an instance of the broker must be created before it can be run. This may
seems like an overhead at first glance, but it becomes very practical when updating to a new
Artemis version for example.

To create an Artemis broker instance navigate into the Artemis home folder and run: ./bin/artemis
create /path/to/myBrokerInstance on the command line.

Because of this separation it’s very easy to upgrade Artemis in most cases.



It’s recommended to choose a folder different from where Apache Artemis was
downloaded. This separation allows you run multiple broker instances with the
same Artemis "home" for example. It also simplifies updating to newer versions of
Artemis.

17.1. General Upgrade Procedure
Upgrading may require some specific steps noted in the versions, but the general process is as
follows:

1. Navigate to the etc folder of the broker instance that’s being upgraded

2. Open artemis.profile and artemis-utility.profile (artemis.profile.cmd and artemis-
utility.profile.cmd on Windows). It contains a property which is relevant for the upgrade:

ARTEMIS_HOME='/path/to/apache-artemis-version'

If you run Artemis as a service on windows you have to do the following additional steps:

1. Navigate to the bin folder of the broker instance that’s being upgraded

2. Open artemis-service.xml. It contains a property which is relevant for the upgrade:

<env name="ARTEMIS_HOME" value="/path/to/apache-artemis-version"/>

The ARTEMIS_HOME property is used to link the instance with the home. In most cases the instance can
be upgraded to a newer version simply by changing the value of this property to the location of the
new broker home. Please refer to the aforementioned versions document for additional upgrade
steps (if required).

It is also possible to do many of these update steps automatically as can be seen in the next section.

17.2. Upgrading tool
An upgrade helper tool from the new broker download can be used to refresh various
configuration files and scripts from an existing broker instance from a prior version, and thus
automate much of work to upgrade the instance to use the new version.

 You should back up your existing broker instance before running the command.

cd $NEW_ARTEMIS_DOWNLOAD/bin/
./artemis upgrade PATH_TO_UPGRADING_INSTANCE

The broker instance script bin/artemis plus profiles etc/artemis.profile and etc/artemis-
utility.profile (artemis.cmd, artemis.cmd.profile, and artemis-utility.cmd.profile on Windows)
will be updated to the new versions, setting its ARTEMIS_HOME to refer to the new broker version
home path. The tool will also create the new <instance>/etc/log4j2.properties and
<instance>/etc/log4j2-default.properties configuration files if needed (e.g if you are migrating
from a version prior to 2.27.0), and remove the old <instance>/etc/logging.properties file if
present.

The broker.xml file and data are retained as-is.



Most existing customisations to the old configuration files and scripts will be lost
in the process of refreshing the files. As such you should compare the old
configuration files with the refreshed ones and then port any missing
customisations you may have made as necessary. The upgrade command itself will
copy the older files it changes to an old-config-bkp. folder within the instance dir.

Similarly, if you had customised the old logging.properties file you may need to
prepare analogous changes for the new log4j2.properties and log4j2-
utility.properties files.

Chapter 18. Docker
One of the simplest ways to get started with ActiveMQ Artemis is by using one of our Docker
images.

18.1. Official Images
Official Docker images are available on dockerhub. Images are pushed along with all the other
distribution artifacts for every release. The fastest, simplest way to get started is with this command
which will create and start a detached container named mycontainer, expose the main messaging
port (i.e. 61616) and HTTP port (i.e. 8161), and remove it when it terminates:

$ docker run --detach --name mycontainer -p 61616:61616 -p 8161:8161 --rm
apache/activemq-artemis:latest-alpine

Once the broker starts you can open the web management console at http://localhost:8161 and log
in with the default username & password artemis.

You can also use the shell command to interact with the running broker using the default
username & password artemis, e.g.:

$ docker exec -it mycontainer /var/lib/artemis-instance/bin/artemis shell --user
artemis --password artemis

Using the shell command you can execute basic tasks like creating & deleting addresses and
queues, sending and browsing messages, viewing queue statistics, etc. See the Command Line
Interface chapter for more details.

You can view the container’s logs using:

$ docker logs -f mycontainer

Stop the container using:

$ docker stop mycontainer

The official Docker images are built using these scripts which you can also use to build your own
images. Read on for more details.

18.2. Build your own Image
In order to build an image you need an ActiveMQ Artemis binary distribution. This can be sourced
locally (in which case you need to build the project first) or remotely based on an official Apache
release.

https://www.docker.com/
https://hub.docker.com/r/apache/activemq-artemis/tags
http://localhost:8161
https://github.com/apache/activemq-artemis/tree/main/artemis-docker

18.2.1. Using a Local Release

If you want to use a local binary distribution then build it from the root of the ActiveMQ source
tree, e.g.:

$ mvn -Prelease package -DskipTests

Following the build the distribution files will be in your local distribution directory. Here <version>
is the version of the distribution that you built.

artemis-distribution/target/apache-artemis-<version>-bin/apache-artemis-<version>

Then switch to the artemis-docker directory and use the prepare-docker.sh script with the proper
parameters to copy the Docker files into your local binary distribution, e.g.:

$ cd artemis-docker
$./prepare-docker.sh --from-local-dist --local-dist-path ../artemis-
distribution/target/apache-artemis-<version>-bin/apache-artemis-<version>/

This will copy all the files necessary to build any of the pre-configured Docker images and provide
you with additional instructions. Follow these instructions to finish building the image you want
based on one of the provided Docker files or even one of your own.

18.2.2. Using an Official Apache Release

If you would rather use an official Apache release in your image rather than a local release then
run the following command from the artemis-docker directory where <version> is the release
version you wish to use (e.g. 2.30.0):

$./prepare-docker.sh --from-release --artemis-version <version>

This will copy all the files necessary to build any of the pre-configured Docker images and provide
you with additional instructions. Follow these instructions to finish building the image you want
based on one of the provided Docker files or even one of your own.

18.2.3. Customizing the Image

Environment Variables

Environment variables determine the options configured for the artemis create command when
running docker build. The available options are:

ARTEMIS_USER

The administrator username. The default is artemis.

ARTEMIS_PASSWORD

The administrator password. The default is artemis.

ANONYMOUS_LOGIN

Set to true to allow anonymous logins. The default is false.

EXTRA_ARGS

Additional arguments sent to the artemis create command. The default is --http-host 0.0.0.0
--relax-jolokia. Setting this value will override the default. See the documentation on artemis
create for available options.

The combination of the above environment variables results in the docker-run.sh script calling the
following command to create the broker instance the first time the Docker container runs:

${ARTEMIS_HOME}/bin/artemis create --user ${ARTEMIS_USER} --password
${ARTEMIS_PASSWORD} --silent ${LOGIN_OPTION} ${EXTRA_ARGS}

Note: LOGIN_OPTION is either --allow-anonymous or --require-login depending on the value of
ANONYMOUS_LOGIN.

These variables can be set in the relevant Dockerfile or, for example, on the command-line, e.g.:

$ docker run -e ARTEMIS_USER=myUser -e ARTEMIS_PASSWORD=myPass --name mycontainer -it
-p 61616:61616 -p 8161:8161 apache/activemq-artemis:latest-alpine

Mapping point

The image will use the directory /var/lib/artemis-instance to hold the configuration and the data
of the running broker. You can map this to a folder on the host for when you want the
configuration and data persisted outside of a container, e.g.:

docker run -it -p 61616:61616 -p 8161:8161 -v <broker folder on
host>:/var/lib/artemis-instance apache/activemq-artemis:latest-alpine

In this case the value <broker folder on host> is a directory where the broker instance is supposed
to be saved and reused on each run.

Overriding files in etc folder

You can use customized configuration for the ActiveMQ Artemis instance by replacing the files
residing in the etc folder with the custom ones, e.g. broker.xml or artemis.profile. Put the
replacement files inside a folder and map it as a volume to:

/var/lib/artemis-instance/etc-override

The contents of etc-override folder will be copied over to etc folder after the instance creation so
that the broker will always start with user-supplied configuration.

It you are mapping the whole var/lib/artemis-instance to an outside folder for persistence then
you can place an etc-override folder inside the mapped one. Its contents will again be copied over
etc folder after creating the instance.

Chapter 19. Using the Server
This chapter will familiarise you with how to use the Apache ActiveMQ Artemis server.

We’ll show where it is, how to start and stop it, and we’ll describe the directory layout and what all
the files are and what they do.

This document will refer to the full path of the directory where the ActiveMQ distribution has been
extracted to as ${ARTEMIS_HOME}.

19.1. Installation
You can get the latest release from the Download page.

The following highlights some important folders on the distribution:

|___ bin
|
|___ lib
|
|___ schema
|
|___ web

bin

binaries and scripts needed to run ActiveMQ Artemis.

lib

jars and libraries needed to run ActiveMQ Artemis

schema

XML Schemas used to validate ActiveMQ Artemis configuration files

web

The folder where the web context is loaded when the broker runs.

19.2. Creating a Broker Instance
A broker instance is the directory containing all the configuration and runtime data, such as logs
and message journal, associated with a broker process. It is recommended that you do not create
the instance directory under ${ARTEMIS_HOME}. This separation is encouraged so that you can more
easily upgrade when the next version of ActiveMQ Artemis is released.

On Unix systems, it is a common convention to store this kind of runtime data under the /var/lib
directory. For example, to create an instance at /var/lib/mybroker, run the following commands in
your command line shell:

https://activemq.apache.org/components/artemis/download/

Before the broker is used, a broker instance must be created. This process requires the use of the
Command Line Interface which is better explained in its own chapter.

In the following example a broker instance named mybroker will be created:

$ cd /var/lib
$ ${ARTEMIS_HOME}/bin/artemis create mybroker

A broker instance directory will contain the following sub directories:

bin

holds execution scripts associated with this instance.

data

holds the data files used for storing persistent messages

etc

hold the instance configuration files

lib

holds any custom runtime Java dependencies like transformers, plugins, interceptors, etc.

log

holds rotating log files

tmp

holds temporary files that are safe to delete between broker runs

At this point you may want to adjust the default configuration located in the etc directory.

19.2.1. Options

There are several options you can use when creating an instance. For a full list of options use the
help command:

$./artemis help create
Usage: artemis create [--aio] [--allow-anonymous] [--autocreate] [--autodelete]
 [--backup] [--blocking] [--clustered]
 [--disable-persistence] [--failover-on-shutdown]
 [--force] [--jdbc] [--linux] [--mapped] [--nio]
 [--no-amqp-acceptor] [--no-autocreate] [--no-autotune]
 [--no-fsync] [--no-hornetq-acceptor] [--no-mqtt-acceptor]
 [--no-stomp-acceptor] [--no-web] [--paging]
 [--relax-jolokia] [--replicated] [--require-login]
 [--shared-store] [--silent] [--slave]
 [--support-advisory]
 [--suppress-internal-management-objects]
 [--use-client-auth] [--verbose] [--windows]

 [--addresses=<addresses>]
 [--cluster-password=<clusterPassword>]
 [--cluster-user=<clusterUser>] [--data=<data>]
 [--default-port=<defaultPort>] [--encoding=<encoding>]
 [--etc=<etc>] [--global-max-messages=<globalMaxMessages>]
 [--global-max-size=<globalMaxSize>] [--home=<home>]
 [--host=<host>] [--http-host=<httpHost>]
 [--http-port=<httpPort>] [--java-memory=<javaMemory>]
 [--jdbc-bindings-table-name=<jdbcBindings>]
 [--jdbc-connection-url=<jdbcURL>]
 [--jdbc-driver-class-name=<jdbcClassName>]
 [--jdbc-large-message-table-name=<jdbcLargeMessages>]
 [--jdbc-lock-expiration=<jdbcLockExpiration>]
 [--jdbc-lock-renew-period=<jdbcLockRenewPeriod>]
 [--jdbc-message-table-name=<jdbcMessages>]
 [--jdbc-network-timeout=<jdbcNetworkTimeout>]
 [--jdbc-node-manager-table-name=<jdbcNodeManager>]
 [--jdbc-page-store-table-name=<jdbcPageStore>]
 [--journal-device-block-size=<journalDeviceBlockSize>]
 [--journal-retention=<retentionDays>]
 [--journal-retention-max-bytes=<retentionMaxBytes>]
 [--max-hops=<maxHops>]
 [--message-load-balancing=<messageLoadBalancing>]
 [--name=<name>] [--password=<password>] [--ping=<ping>]
 [--port-offset=<portOffset>] [--queues=<queues>]
 [--role=<role>] [--security-manager=<securityManager>]
 [--ssl-key=<sslKey>]
 [--ssl-key-password=<sslKeyPassword>]
 [--ssl-trust=<sslTrust>]
 [--ssl-trust-password=<sslTrustPassword>]
 [--staticCluster=<staticNode>] [--user=<user>]
 [--java-options=<javaOptions>]... <directory>
Create a new broker instance.
 <directory> The instance directory to hold the broker's
 configuration and data. Path must be writable.
 --addresses=<addresses>
 A comma separated list of addresses with the
 option to specify a routing type, e.g.
 --addresses myAddress1,myAddress2:anycast.
 Routing-type default: multicast.
 --aio Set the journal as asyncio.
 --allow-anonymous Allow connections from users with no security
 credentials. Opposite of --require-login.
 Default: input.
 --autocreate Allow automatic creation of addresses & queues.
 Default: true.
 --autodelete Allow automatic deletion of addresses & queues.
 Default: false.
 --backup Be a backup broker. Valid for shared store or
 replication.
 --blocking Block producers when address becomes full.

 Opposite of --paging. Default: false.
 --cluster-password=<clusterPassword>
 The password to use for clustering. Default: input.
 --cluster-user=<clusterUser>
 The user to use for clustering. Default: input.
 --clustered Enable clustering.
 --data=<data> Directory where ActiveMQ data are stored. Paths
 can be absolute or relative to artemis.instance
 directory. Default: data.
 --default-port=<defaultPort>
 The port number to use for the main 'artemis'
 acceptor. Default: 61616.
 --disable-persistence Disable message persistence to the journal
 --encoding=<encoding> The encoding that text files should use. Default:
 UTF-8.
 --etc=<etc> Directory where ActiveMQ configuration is located.
 Paths can be absolute or relative to artemis.
 instance directory. Default: etc.
 --failover-on-shutdown Whether broker shutdown will trigger failover for
 clients using the core protocol. Valid only for
 shared store. Default: false.
 --force Overwrite configuration at destination directory.
 --global-max-messages=<globalMaxMessages>
 Maximum number of messages that will be accepted
 in memory before using address full policy mode.
 Default: undefined.
 --global-max-size=<globalMaxSize>
 Maximum amount of memory which message data may
 consume. Default: half of the JVM's max memory.
 --home=<home> Directory where ActiveMQ Artemis is installed.
 --host=<host> Broker's host name. Default: 0.0.0.0 or input if
 clustered).
 --http-host=<httpHost> Embedded web server's host name. Default:
 localhost.
 --http-port=<httpPort> Embedded web server's port. Default: 8161.
 --java-memory=<javaMemory>
 Define the -Xmx memory parameter for the broker.
 Default: 2G.
 --java-options=<javaOptions>
 Extra Java options to be passed to the profile.
 --jdbc Store message data in JDBC instead of local files.
 --jdbc-bindings-table-name=<jdbcBindings>
 Name of the jdbc bindings table.
 --jdbc-connection-url=<jdbcURL>
 The URL used for the database connection.
 --jdbc-driver-class-name=<jdbcClassName>
 JDBC driver classname.
 --jdbc-large-message-table-name=<jdbcLargeMessages>
 Name of the large messages table.
 --jdbc-lock-expiration=<jdbcLockExpiration>
 Lock expiration (in milliseconds).

 --jdbc-lock-renew-period=<jdbcLockRenewPeriod>
 Lock Renew Period (in milliseconds).
 --jdbc-message-table-name=<jdbcMessages>
 Name of the jdbc messages table.
 --jdbc-network-timeout=<jdbcNetworkTimeout>
 Network timeout (in milliseconds).
 --jdbc-node-manager-table-name=<jdbcNodeManager>
 Name of the jdbc node manager table.
 --jdbc-page-store-table-name=<jdbcPageStore>
 Name of the page store messages table.
 --journal-device-block-size=<journalDeviceBlockSize>
 The block size of the journal's storage device.
 Default: 4096.
 --journal-retention=<retentionDays>
 Configure journal retention in days. If > 0 then
 enable journal-retention-directory from broker.
 xml allowing replay options.
 --journal-retention-max-bytes=<retentionMaxBytes>
 Maximum number of bytes to keep in the retention
 directory.
 --linux, --cygwin Force Linux or Cygwin script creation. Default:
 based on your actual system.
 --mapped Set the journal as mapped.
 --max-hops=<maxHops> Number of hops on the cluster configuration.
 --message-load-balancing=<messageLoadBalancing>
 Message load balancing policy for cluster.
 Default: ON_DEMAND. Valid values: ON_DEMAND,
 STRICT, OFF, OFF_WITH_REDISTRIBUTION.
 --name=<name> The name of the broker. Default: same as host name.
 --nio Set the journal as nio.
 --no-amqp-acceptor Disable the AMQP specific acceptor.
 --no-autocreate Disable auto creation for addresses & queues.
 --no-autotune Disable auto tuning of the journal-buffer-timeout
 in broker.xml.
 --no-fsync Disable usage of fdatasync (channel.force(false)
 from Java NIO) on the journal.
 --no-hornetq-acceptor Disable the HornetQ specific acceptor.
 --no-mqtt-acceptor Disable the MQTT specific acceptor.
 --no-stomp-acceptor Disable the STOMP specific acceptor.
 --no-web Whether to omit the web-server definition from
 bootstrap.xml.
 --paging Page messages to disk when address becomes full.
 Opposite of --blocking. Default: true.
 --password=<password> The user's password. Default: input.
 --ping=<ping> A comma separated string to be passed on to the
 broker config as network-check-list. The broker
 will shutdown when all these addresses are
 unreachable.
 --port-offset=<portOffset>
 How much to off-set the ports of every acceptor.
 --queues=<queues> A comma separated list of queues with the option

 to specify a routing type, e.g. --queues
 myQueue1,myQueue2:multicast. Routing-type
 default: anycast.
 --relax-jolokia Disable strict checking in jolokia-access.xml.
 --replicated Enable broker replication.
 --require-login Require security credentials from users for
 connection. Opposite of --allow-anonymous.
 --role=<role> The name for the role created. Default: amq.
 --security-manager=<securityManager>
 Which security manager to use - jaas or basic.
 Default: jaas.
 --shared-store Enable broker shared store.
 --silent Disable all the inputs, and make a best guess for
 any required input.
 --slave Deprecated for removal. Use 'backup' instead.
 --ssl-key=<sslKey> Embedded web server's key store path.
 --ssl-key-password=<sslKeyPassword>
 The key store's password.
 --ssl-trust=<sslTrust> The trust store path in case of client
 authentication.
 --ssl-trust-password=<sslTrustPassword>
 The trust store's password.
 --staticCluster, --static-cluster=<staticNode>
 Cluster node connectors list separated by comma, e.
 g. "tcp://server:61616,tcp://server2:61616,tcp:
 //server3:61616".
 --support-advisory Support advisory messages for the OpenWire
 protocol.
 --suppress-internal-management-objects
 Do not register any advisory addresses/queues for
 the OpenWire protocol with the broker's
 management service.
 --use-client-auth Require client certificate authentication when
 connecting to the embedded web server.
 --user=<user> The username. Default: input.
 --verbose Print additional information.
 --windows Force Windows script creation. Default: based on
 your actual system.

Some of these options may be mandatory in certain configurations and the system may ask you for
additional input, e.g.:

$./artemis create /usr/server
Creating ActiveMQ Artemis instance at: /usr/server

--user:
What is the default username?
admin

--password: is mandatory with this configuration:

What is the default password?

--allow-anonymous | --require-login:
Allow anonymous access?, valid values are Y, N, True, False
y

Auto tuning journal ...
done! Your system can make 250 writes per millisecond, your journal-buffer-timeout
will be 4000

You can now start the broker by executing:

 "/usr/server" run

Or you can run the broker in the background using:

 "/usr/server" start

19.3. Starting and Stopping a Broker Instance
Assuming you created the broker instance under /var/lib/mybroker all you need to do start running
the broker instance is execute:

/var/lib/mybroker/bin/artemis run

To stop the Apache ActiveMQ Artemis instance you will use the same artemis script, but with the
stop argument. Example:

/var/lib/mybroker/bin/artemis stop

Please note that Apache ActiveMQ Artemis requires a Java 11 or later.

By default the etc/bootstrap.xml configuration is used. The configuration can be changed e.g. by
running ./artemis run -- xml:path/to/bootstrap.xml or another config of your choosing.

Environment variables are used to provide ease of changing ports, hosts and data directories used
and can be found in etc/artemis.profile on linux and etc\artemis.profile.cmd on Windows.

19.4. Configuration Files
These are the files you’re likely to find in the etc directory of a default broker instance with a short
explanation of what they configure. Scroll down further for additional details as appropriate.

artemis.profile

system properties and JVM arguments (e.g. Xmx, Xms, etc.)

artemis-roles.properties

user/role mapping for the default properties-based JAAS login module

artemis-users.properties

user/password for the default properties-based JAAS login module

bootstrap.xml

embedded web server, security, location of broker.xml

broker.xml

core broker configuration, e.g. acceptors, addresses, queues, diverts, clustering; full reference

jolokia-access.xml

security for Jolokia, specifically Cross-Origin Resource Sharing (CORS)

log4j2.properties

logging config like levels, log file locations, etc.

login.config

standard Java configuration for JAAS security

management.xml

remote connectivity and security for JMX MBeans

19.4.1. Bootstrap Configuration File

The bootstrap.xml file is very simple. Let’s take a look at an example:

<broker xmlns="http://activemq.apache.org/schema">

 <jaas-security domain="activemq"/>

 <server configuration="file:/path/to/broker.xml"/>

 <web path="web" rootRedirectLocation="console">
 <binding name="artemis" uri="http://localhost:8161">
 <app name="console" url="console" war="console.war"/>
 </binding>
 </web>
</broker>

jaas-security

Configures JAAS-based security for the server. The domain attribute refers to the relevant login
module entry in login.config. If different behavior is needed then a custom security manager
can be configured by replacing jaas-security with security-manager. See the "Custom Security
Manager" section in the security chapter for more details.

https://jolokia.org/reference/html/manual/security.html

server

Instantiates a core server using the configuration file from the configuration attribute. This is
the main broker POJO necessary to do all the real messaging work.

web

Configures an embedded web server for things like the admin console.

19.4.2. Broker configuration file

The configuration for the Apache ActiveMQ Artemis core broker is contained in broker.xml.

There are many attributes which you can configure for Apache ActiveMQ Artemis. In most cases
the defaults will do fine, in fact every attribute can be defaulted which means a file with a single
empty configuration element is a valid configuration file. The different configuration will be
explained throughout the manual or you can refer to the configuration reference here.

19.5. Other Use-Cases

19.5.1. System Property or Environment Variable Substitution

It is possible to use system property or environment variable substitution in all the configuration
files by replacing a value with the name of the system property or the environment variable. Here
is an example of this with a connector configuration:

<connector name="netty"
>tcp://${activemq.remoting.netty.host:localhost}:${activemq.remoting.netty.port:61616}
</connector>

Here you can see we have replaced 2 values with system properties activemq.remoting.netty.host
and activemq.remoting.netty.port. These values will be replaced by the value found in the system
property if there is one, if not they default back to localhost or 61616 respectively. It is also possible
to not supply a default (i.e. ${activemq.remoting.netty.host}), however the system property must be
supplied in that case.

19.5.2. Windows Server

On windows you will have the option to run ActiveMQ Artemis as a service. Just use the following
command to install it:

 $./artemis-service.exe install

The create process should give you a hint of the available commands available for the artemis-
service.exe

19.5.3. Adding Bootstrap Dependencies

Bootstrap dependencies like logging handlers must be accessible by the log manager at boot time.
Package the dependency in a jar and put it on the boot classpath before of log manager jar. This can
be done appending the jar at the variable JAVA_ARGS, defined in artemis.profile, with the option
-Xbootclasspath/a.


the environment variable JAVA_ARGS_APPEND can be used to append or override
options.

19.5.4. Adding Runtime Dependencies

Runtime dependencies like transformers, broker plugins, JDBC drivers, password decoders, etc.
must be accessible by the broker at runtime. Package the dependency in a jar, and put it on the
broker’s classpath. This can be done by placing the jar file in the lib directory of the broker
distribution itself, by placing the jar file in the lib directory of the broker instance, by setting the
system property artemis.extra.libs with the directory that contains the jar file, or by setting the
environment variable ARTEMIS_EXTRA_LIBS with the directory that contains the jar file, A broker
instance does not have a lib directory by default so it may need to be created. It should be on the
"top" level with the bin, data, log, etc. directories. The system property artemis.extra.libs is a
comma separated list of directories that contains jar files, i.e.

-Dartemis.extra.libs=/usr/local/share/java/lib1,/usr/local/share/java/lib2

The environment variable ARTEMIS_EXTRA_LIBS is a comma separated list of directories that contains
jar files and is ignored if the system property artemis.extra.libs is defined, i.e.

export ARTEMIS_EXTRA_LIBS=/usr/local/share/java/lib1,/usr/local/share/java/lib2

19.5.5. Library Path

If you’re using the Asynchronous IO Journal on Linux, you need to specify java.library.path as a
property on your Java options. This is done automatically in the scripts.

If you don’t specify java.library.path at your Java options then the JVM will use the environment
variable LD_LIBRARY_PATH.

You will need to make sure libaio is installed on Linux. For more information refer to the libaio
chapter.

Chapter 20. Command Line Interface
ActiveMQ Artemis has a Command Line Interface (CLI) that can used to manage a few aspects of the
broker like instance creation, basic user management, queue & address management, etc. This
interface is designed for simple use-cases with humans in mind. It is not an exhaustive set of
commands for complete broker management. There is a comprehensive management API available
with many operations that return JSON formatted output which is better suited for use in scripts
and other automated processes.

There are two ways the CLI can be used:

• Traditional CLI commands, e.g.: ./artemis [COMMAND] [PARAMETERS]

• A custom shell that is accesssed using the ./artemis or ./artemis shell commands.

All commands available through the traditional CLI commands are also available through the shell
interface.

One benefit of the shell is that it will reuse some information as you repeat commands. For
example, once you supply the broker URI and username & password to one command those values
will be transparently applied other commands in the same shell session. Of course, the shell also
allows you to avoid retyping ./artemis for every command.

20.1. Getting Help
You can get a complete list of available commands by typing:

$./artemis help
Usage: artemis [COMMAND]
ActiveMQ Artemis Command Line
Commands:
 help use 'help <command>' for more information
 pwd Information on current folder and instance.
 shell JLine3 shell helping using the CLI
 producer Send message(s) to a broker.
 transfer Move messages from one destination towards another destination.
 consumer Consume messages from a queue.
 browser Browse messages on a queue.
 mask Mask a password and print it out.
 version Print version information.
 perf use 'help perf' for sub commands list
 check use 'help check' for sub commands list
 queue use 'help queue' for sub commands list
 address use 'help address' for sub commands list
 connect Connect to the broker validating credentials for commands.
 disconnect Clear previously typed user credentials.
 data use 'help data' for sub commands list
 create Create a new broker instance.
 upgrade Update a broker instance to the current artemis.home, keeping all

 the data and broker.xml. Warning: backup your instance before
 using this command and compare the files.
 completion Generates the auto complete script file to be used in bash or
 zsh. Usage: source <(./artemis completion)

It is also possible to use help at a specific command or sub-command for more information. For
example, to get a list of sub-commands for data you type ./artemis help data:

$./artemis help data
Usage: artemis data [COMMAND]
use 'help data' for sub commands list
Commands:
 recover Recover (undelete) every message on the journal by creating a new
 output journal. Rolled back and acked messages will be sent out to
 the output as much as possible.
 print Print data records information. WARNING: don't use while a
 production server is running.
 exp Export all message-data using an XML that could be interpreted by
 any system.
 imp Import all message-data using an XML that could be interpreted by
 any system.
 decode Decode a journal's internal format into a new set of journal files.
 encode Encode a set of journal files into an internal encoded data format.
 compact Compact the journal of a non running server.

Or you can get help for a particular command. For example, ./artemis help create:

Usage: artemis create [--aio] [--allow-anonymous] [--autocreate] [--autodelete]
 [--backup] [--blocking] [--clustered]
 [--disable-persistence] [--failover-on-shutdown]
 [--force] [--jdbc] [--linux] [--mapped] [--nio]
 [--no-amqp-acceptor] [--no-autocreate] [--no-autotune]
 [--no-fsync] [--no-hornetq-acceptor] [--no-mqtt-acceptor]
 [--no-stomp-acceptor] [--no-web] [--paging]
 [--relax-jolokia] [--replicated] [--require-login]
 [--shared-store] [--silent] [--slave]
 [--support-advisory]
 [--suppress-internal-management-objects]
 [--use-client-auth] [--verbose] [--windows]
 [--addresses=<addresses>]
 [--cluster-password=<clusterPassword>]
 [--cluster-user=<clusterUser>] [--data=<data>]
 [--default-port=<defaultPort>] [--encoding=<encoding>]
 [--etc=<etc>] [--global-max-messages=<globalMaxMessages>]
 [--global-max-size=<globalMaxSize>] [--home=<home>]
 [--host=<host>] [--http-host=<httpHost>]
 [--http-port=<httpPort>] [--java-memory=<javaMemory>]
 [--jdbc-bindings-table-name=<jdbcBindings>]
 [--jdbc-connection-url=<jdbcURL>]

 [--jdbc-driver-class-name=<jdbcClassName>]
 [--jdbc-large-message-table-name=<jdbcLargeMessages>]
 [--jdbc-lock-expiration=<jdbcLockExpiration>]
 [--jdbc-lock-renew-period=<jdbcLockRenewPeriod>]
 [--jdbc-message-table-name=<jdbcMessages>]
 [--jdbc-network-timeout=<jdbcNetworkTimeout>]
 [--jdbc-node-manager-table-name=<jdbcNodeManager>]
 [--jdbc-page-store-table-name=<jdbcPageStore>]
 [--journal-device-block-size=<journalDeviceBlockSize>]
 [--journal-retention=<retentionDays>]
 [--journal-retention-max-bytes=<retentionMaxBytes>]
 [--max-hops=<maxHops>]
 [--message-load-balancing=<messageLoadBalancing>]
 [--name=<name>] [--password=<password>] [--ping=<ping>]
 [--port-offset=<portOffset>] [--queues=<queues>]
 [--role=<role>] [--security-manager=<securityManager>]
 [--ssl-key=<sslKey>]
 [--ssl-key-password=<sslKeyPassword>]
 [--ssl-trust=<sslTrust>]
 [--ssl-trust-password=<sslTrustPassword>]
 [--staticCluster=<staticNode>] [--user=<user>]
 [--java-options=<javaOptions>]... <directory>
Create a new broker instance.
 <directory> The instance directory to hold the broker's
 configuration and data. Path must be writable.
 --addresses=<addresses>
 A comma separated list of addresses with the
 option to specify a routing type, e.g.
 --addresses myAddress1,myAddress2:anycast.
 Routing-type default: multicast.
 --aio Set the journal as asyncio.
 --allow-anonymous Allow connections from users with no security
 credentials. Opposite of --require-login.
 Default: input.
 --autocreate Allow automatic creation of addresses & queues.
 Default: true.
 --autodelete Allow automatic deletion of addresses & queues.
 Default: false.
 --backup Be a backup broker. Valid for shared store or
 replication.
 --blocking Block producers when address becomes full.
 Opposite of --paging. Default: false.
 --cluster-password=<clusterPassword>
 The password to use for clustering. Default: input.
 --cluster-user=<clusterUser>
 The user to use for clustering. Default: input.
 --clustered Enable clustering.
 --data=<data> Directory where ActiveMQ data are stored. Paths
 can be absolute or relative to artemis.instance
 directory. Default: data.
 --default-port=<defaultPort>

 The port number to use for the main 'artemis'
 acceptor. Default: 61616.
 --disable-persistence Disable message persistence to the journal
 --encoding=<encoding> The encoding that text files should use. Default:
 UTF-8.
 --etc=<etc> Directory where ActiveMQ configuration is located.
 Paths can be absolute or relative to artemis.
 instance directory. Default: etc.
 --failover-on-shutdown Whether broker shutdown will trigger failover for
 clients using the core protocol. Valid only for
 shared store. Default: false.
 --force Overwrite configuration at destination directory.
 --global-max-messages=<globalMaxMessages>
 Maximum number of messages that will be accepted
 in memory before using address full policy mode.
 Default: undefined.
 --global-max-size=<globalMaxSize>
 Maximum amount of memory which message data may
 consume. Default: half of the JVM's max memory.
 --home=<home> Directory where ActiveMQ Artemis is installed.
 --host=<host> Broker's host name. Default: 0.0.0.0 or input if
 clustered).
 --http-host=<httpHost> Embedded web server's host name. Default:
 localhost.
 --http-port=<httpPort> Embedded web server's port. Default: 8161.
 --java-memory=<javaMemory>
 Define the -Xmx memory parameter for the broker.
 Default: 2G.
 --java-options=<javaOptions>
 Extra Java options to be passed to the profile.
 --jdbc Store message data in JDBC instead of local files.
 --jdbc-bindings-table-name=<jdbcBindings>
 Name of the jdbc bindings table.
 --jdbc-connection-url=<jdbcURL>
 The URL used for the database connection.
 --jdbc-driver-class-name=<jdbcClassName>
 JDBC driver classname.
 --jdbc-large-message-table-name=<jdbcLargeMessages>
 Name of the large messages table.
 --jdbc-lock-expiration=<jdbcLockExpiration>
 Lock expiration (in milliseconds).
 --jdbc-lock-renew-period=<jdbcLockRenewPeriod>
 Lock Renew Period (in milliseconds).
 --jdbc-message-table-name=<jdbcMessages>
 Name of the jdbc messages table.
 --jdbc-network-timeout=<jdbcNetworkTimeout>
 Network timeout (in milliseconds).
 --jdbc-node-manager-table-name=<jdbcNodeManager>
 Name of the jdbc node manager table.
 --jdbc-page-store-table-name=<jdbcPageStore>
 Name of the page store messages table.

 --journal-device-block-size=<journalDeviceBlockSize>
 The block size of the journal's storage device.
 Default: 4096.
 --journal-retention=<retentionDays>
 Configure journal retention in days. If > 0 then
 enable journal-retention-directory from broker.
 xml allowing replay options.
 --journal-retention-max-bytes=<retentionMaxBytes>
 Maximum number of bytes to keep in the retention
 directory.
 --linux, --cygwin Force Linux or Cygwin script creation. Default:
 based on your actual system.
 --mapped Set the journal as mapped.
 --max-hops=<maxHops> Number of hops on the cluster configuration.
 --message-load-balancing=<messageLoadBalancing>
 Message load balancing policy for cluster.
 Default: ON_DEMAND. Valid values: ON_DEMAND,
 STRICT, OFF, OFF_WITH_REDISTRIBUTION.
 --name=<name> The name of the broker. Default: same as host name.
 --nio Set the journal as nio.
 --no-amqp-acceptor Disable the AMQP specific acceptor.
 --no-autocreate Disable auto creation for addresses & queues.
 --no-autotune Disable auto tuning of the journal-buffer-timeout
 in broker.xml.
 --no-fsync Disable usage of fdatasync (channel.force(false)
 from Java NIO) on the journal.
 --no-hornetq-acceptor Disable the HornetQ specific acceptor.
 --no-mqtt-acceptor Disable the MQTT specific acceptor.
 --no-stomp-acceptor Disable the STOMP specific acceptor.
 --no-web Whether to omit the web-server definition from
 bootstrap.xml.
 --paging Page messages to disk when address becomes full.
 Opposite of --blocking. Default: true.
 --password=<password> The user's password. Default: input.
 --ping=<ping> A comma separated string to be passed on to the
 broker config as network-check-list. The broker
 will shutdown when all these addresses are
 unreachable.
 --port-offset=<portOffset>
 How much to off-set the ports of every acceptor.
 --queues=<queues> A comma separated list of queues with the option
 to specify a routing type, e.g. --queues
 myQueue1,myQueue2:multicast. Routing-type
 default: anycast.
 --relax-jolokia Disable strict checking in jolokia-access.xml.
 --replicated Enable broker replication.
 --require-login Require security credentials from users for
 connection. Opposite of --allow-anonymous.
 --role=<role> The name for the role created. Default: amq.
 --security-manager=<securityManager>
 Which security manager to use - jaas or basic.

 Default: jaas.
 --shared-store Enable broker shared store.
 --silent Disable all the inputs, and make a best guess for
 any required input.
 --slave Deprecated for removal. Use 'backup' instead.
 --ssl-key=<sslKey> Embedded web server's key store path.
 --ssl-key-password=<sslKeyPassword>
 The key store's password.
 --ssl-trust=<sslTrust> The trust store path in case of client
 authentication.
 --ssl-trust-password=<sslTrustPassword>
 The trust store's password.
 --staticCluster, --static-cluster=<staticNode>
 Cluster node connectors list separated by comma, e.
 g. "tcp://server:61616,tcp://server2:61616,tcp:
 //server3:61616".
 --support-advisory Support advisory messages for the OpenWire
 protocol.
 --suppress-internal-management-objects
 Do not register any advisory addresses/queues for
 the OpenWire protocol with the broker's
 management service.
 --use-client-auth Require client certificate authentication when
 connecting to the embedded web server.
 --user=<user> The username. Default: input.
 --verbose Print additional information.
 --windows Force Windows script creation. Default: based on
 your actual system.

20.2. Bash and Zsh auto complete
Bash and Zsh provide ways to auto-complete commands. To integrate with that functionality you
have the option to generate the auto-complete script, i.e.:

$ source <(./artemis completion)

After the auto-completion is installed you can view auto-completion information by pressing TAB :

$./artemis
activation check consumer disconnect mask producer
run transfer version
address completion create help perf pwd
shell upgrade
browser connect data kill perf-journal queue
stop user

In order to see the various parameters available you must type -- then press TAB :

$./artemis create --
--addresses --jdbc-bindings-table-name
--paging
--aio --jdbc-connection-url
--password
--allow-anonymous --jdbc-driver-class-name --ping
--autocreate --jdbc-large-message-table-name --port
-offset
--autodelete --jdbc-lock-expiration
--queues
--blocking --jdbc-lock-renew-period
--relax-jolokia
--cluster-password --jdbc-message-table-name
--replicated
--cluster-user --jdbc-network-timeout
--require-login
--clustered --jdbc-node-manager-table-name --role

20.3. Input required
Some functionality may require interactive user input if not explicitly provided through a
parameter. For example, in cases like connecting to a broker or creating the broker instance:

$./artemis queue stat
Connection brokerURL = tcp://localhost:61616
Connection failed::AMQ229031: Unable to validate user from /127.0.0.1:56320. Username:
null; SSL certificate subject DN: unavailable

--user:
Type the username for a retry
myUser

--password: is mandatory with this configuration:
Type the password for a retry

20.4. Artemis Shell
To initialize the shell session, type ./artemis shell (or just ./artemis if you prefer):

$./artemis

The ActiveMQ Artemis shell provides an interface that can be used to execute commands directly
without leaving the Java Virtual Machine.

 _ _ _

 / \ ____| |_ ___ __ __(_) _____
 / _ \| _ \ __|/ _ \ \/ | |/ __/
 / ___ \ | \/ |_/ __/ |\/| | |___ \
 /_/ _\| ______|_| |_|_|/___ /
 Apache ActiveMQ Artemis

For a list of commands, type help or press <TAB>:
Type exit or press <CTRL-D> to leave the session:
Apache ActiveMQ Artemis >

20.4.1. Connecting Interactively

It is possible to authenticate your CLI client once to the server and reuse the connection
information for additional commands:

Apache ActiveMQ Artemis > connect --user=myUser --password=myPass --url
tcp://localhost:61616
Connection brokerURL = tcp://localhost:61616
Connection Successful!

Now any command requiring authentication will reuse these parameters.

For example the sub-command queue stat will reuse previous information to perform its
connection to the broker.

Apache ActiveMQ Artemis > queue stat
Connection brokerURL = tcp://localhost:61616
|NAME |ADDRESS
|CONSUMER_COUNT|MESSAGE_COUNT|MESSAGES_ADDED|DELIVERING_COUNT|MESSAGES_ACKED|SCHEDULED
_COUNT|ROUTING_TYPE|
|DLQ |DLQ |0 |0 |0
|0 |0 |0 |ANYCAST |
|ExpiryQueue |ExpiryQueue |0 |0 |0
|0 |0 |0 |ANYCAST |
|Order |Order |0 |4347 |4347
|0 |0 |0 |ANYCAST |
|activemq.management.0b...|activemq.management.0b...|1 |0 |0
|0 |0 |0 |MULTICAST |

20.4.2. Connecting Statically

It is possible to start the shell with an initial connection configured statically, e.g.:

$./artemis shell --user <username> --password <password> --url tcp://<hostname
>:<port>

The CLI should not ask for a the broker URL or user/password for any further commands, e.g.:

$./artemis shell --user myUser --password myPass
...

Apache ActiveMQ Artemis > queue stat
Connection brokerURL = tcp://localhost:61616
|NAME |ADDRESS
|CONSUMER_COUNT|MESSAGE_COUNT|MESSAGES_ADDED|DELIVERING_COUNT|MESSAGES_ACKED|SCHEDULED
_COUNT|ROUTING_TYPE|
|DLQ |DLQ |0 |0 |0
|0 |0 |0 |ANYCAST |
|ExpiryQueue |ExpiryQueue |0 |0 |0
|0 |0 |0 |ANYCAST |
|TEST |TEST |0 |8743 |8743
|0 |0 |0 |ANYCAST |
|activemq.management.2a...|activemq.management.2a...|1 |0 |0
|0 |0 |0 |MULTICAST |

Chapter 21. The Client Classpath

21.1. Maven dependencies
The recommended way to define a client dependency for your java application is through a Maven
dependency declaration.

There are two dependencies you can choose from, org.apache.activemq:artemis-jms-client for JMS
2.0 or org.apache.activemq:artemis-jakarta-client for Jakarta Messaging 3.x.

For JMS:

…
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-jms-client</artifactId>
 <version>2.43.0</version>
</dependency>
…

For Jakarta:

…
<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-jakarta-client</artifactId>
 <version>2.43.0</version>
</dependency>
…

21.2. Individual client dependencies
If you don’t wish to use a build tool such as Maven which manages the dependencies for you, you
may also choose to add the specific dependency jars to your classpath, which are all included under
./lib on the main distribution.

For more information of the clients individual dependencies, see:

• JMS client dependencies

• Jakarta client dependencies

21.3. Repackaged '-all' clients
Even though it is highly recommend to use the maven dependencies, in cases this isnt a possibility
and neither is using the individual dependencies as detailed above then the all-inclusive

client-classpath-jms.pdf#artemis-jms-client-dependencies
client-classpath-jakarta.pdf#artemis-jakarta-client-dependencies

repackaged jar could be used as an alternative.

These jars are available at Maven Central:

• artemis-jms-client-all-2.43.0.jar

• artemis-jakarta-client-all-2.43.0.jar

Whether you are using JMS or just the Core API simply add the artemis-jms-client-all jar to your
client classpath. For Jakarta Messaging add the artemis-jakarta-client-all jar instead.



These repackaged jars include all the client’s dependencies. Be careful with mixing
other components jars in your application as they may clash with each other. Note
also that the '-all' clients cant be embedded in the same JVM as the broker, for that
you must use artemis-jms-client or artemis-jakarta-client as appropriate.

https://repo.maven.apache.org/maven2/org/apache/activemq/artemis-jms-client-all/2.43.0/
https://repo.maven.apache.org/maven2/org/apache/activemq/artemis-jakarta-client-all/2.43.0/
client-classpath-jms.pdf#artemis-jms-client-dependencies

Chapter 22. Address Model
Every messaging protocol and API that Apache ActiveMQ Artemis supports defines a different set of
messaging resources.

• JMS uses queues and topics

• STOMP uses generic destinations

• MQTT uses topics

• AMQP uses generic nodes

In order to deal the the unique semantics and use-cases for each of these the broker has a flexible
and powerful address model based on the following core set of resources:

• address

• queue

• routing type

22.1. Address
Messages are sent to an address. An address is given a unique name, a routing type, and zero or
more queues.

22.2. Queue
Messages are consumed from a queue. A queue is bound to an address. It is given a unique name
and a routing type. There can be zero or more queues bound to one address. When a message is
sent to an address it is routed to one or more of its queues based on the configured routing type.

The name of the queue must be globally unique. For example, you can’t have a queue named q1 on
address a1 and also a queue named q1 address a2.

22.3. Routing Type
A routing type determines how messages are routed from an address to the queue(s) bound to that
address. Two different routing types are supported, anycast and multicast.

If you want your messages routed to… Use this routing type…

a single queue on the address anycast

every queue on the address multicast


It is possible to define queues with a different routing type for the same address,
but this typically results in an anti-pattern and is therefore not recommended.

22.4. Automatic Configuration
By default Apache ActiveMQ Artemis will automatically create addresses and queues to support the
semantics of whatever protocol you’re using. The broker understands how to support each
protocol’s functionality with the core resources so that in most cases no manual configuration is
required. This saves you from having to preconfigure each address and queue before a client can
connect to it.

The broker can optionally be configured to automatically delete addresses and queues when they
are no longer in use.

Automatic creation and deletion is configured on a per address basis and is controlled by the
following address-setting elements:

• auto-create-addresses

• auto-delete-addresses

• default-address-routing-type

• auto-create-queues

• auto-delete-queues

• default-queue-routing-type



Automatic queue creation is for queues that would not otherwise be created during
normal operation. For example, when a remote application creates a consumer on
a JMS topic then a queue will be created representing that subscription as
described in the JMS-to-core mapping chapter. This queue will be created
regardless of how auto-create-queues is configured because it is required for
normal operation.

See the documentation on address settings for more details on these elements.

Of course, automatic configuration can be disabled and everything can be configured manually.
Read on for more details about manual configuration.

22.5. Basic Manual Configuration
The following examples show how to configure resources for basic anycast and multicast use-cases.


Many of the details of these use-cases are protocol agnostic. The goal here is to
demonstrate and explain the basic configuration elements and how the address
model works fundamentally.

22.5.1. Anycast

The most common use-case for anycast semantics, sometimes referred to as point-to-point, involves
applications following a "competing consumer" pattern to receive messages from a shared queue.
The more consumers receiving messages the greater the overall message throughput. Multiple Java

applications sharing a JMS queue is a classic example of this use-case.

In this use-case the broker is configured, for example, with an address, address.foo using the
anycast routing type with just one queue, q1. When a producer sends a message to address.foo it is
then routed to q1 and finally dispatched to one of the consumers.

Figure 1. Anycast

This is what the configuration for this use-case would look like in etc/broker.xml:

<addresses>
 <address name="address.foo">
 <anycast>
 <queue name="q1"/>
 </anycast>
 </address>
</addresses>

For most protocols and APIs which support this kind of use-case (e.g. JMS, AMQP, etc.) it is
customary to use the same name when sending and consuming messages. In that case you’d use a
configuration like this:

<addresses>
 <address name="orderQueue">
 <anycast>
 <queue name="orderQueue"/>
 </anycast>
 </address>
</addresses>

22.5.2. Multicast

The most common use-case for multicast semantics, sometimes referred to as publish/subscribe or
"pub/sub", involves each application receiving every message sent to an address. Multiple
applications consuming from a JMS topic is a classic example of this use-case. MQTT subscriptions
is another supported example of multicast semantics.

In this use-case the broker is configured with an address, address.foo using the multicast routing
type with two queues, q1 & q2. When a producer sends a message to address.foo it is then routed to

both q1 & q2 so that ultimately both consumers receive the same messages.

Figure 2. Multicast

This is what the configuration for this use-case would look like in etc/broker.xml:

<addresses>
 <address name="address.foo">
 <multicast>
 <queue name="q1"/>
 <queue name="q2"/>
 </multicast>
 </address>
</addresses>

This basic configuration is simple and straight-forward, but there’s a problem. In a normal pub/sub
use-case like with a JMS topic or with MQTT the number of subscribers isn’t known ahead of time. In
that case, this is the recommended configuration:

<addresses>
 <address name="address.foo">
 <multicast/>
 </address>
</addresses>

Define <multicast/> with no queues and the broker will automatically create queues for each
subscription when the consumers connect to address.foo. Then when a message is sent to
address.foo it will be routed to each queue for each subscriber and therefore each subscriber will
get every message. These queues are often referred to as subscription queues for obvious reasons.

These subscription queues are typically named based on the semantics of the protocol used to
create them. For example, JMS supports durable and non-durable subscriptions. The queue for a
non-durable subscription is named with a UUID, but the queue used for a durable subscription is
named according to the JMS "client ID" and "subscription name." Similar conventions are used for
AMQP, MQTT, STOMP, etc.

22.6. Advanced Manual Configuration

22.6.1. Fully Qualified Queue Names

In most cases it’s not necessary or desirable to statically configure the aforementioned subscription
queues. However, there are scenarios where a user may want to statically configure a subscription
queue and later connect to that queue directly using a Fully Qualified Queue Name (FQQN).

An FQQN uses a special syntax to specify both the address and the queue so that applications using
protocols and APIs which don’t natively understand the address/queue separation (e.g. AMQP, JMS,
etc.) can send messages or subscribe directly to a queue rather than being limited to the address.
Applications simply need to use the address name and the queue name separated by :: (e.g.
address::queue).

In this example, the address a1 is configured with two queues: q1, q2 as shown in the configuration
below.

<addresses>
 <address name="a1">
 <multicast>
 <queue name="q1" />
 <queue name="q2" />
 </multicast>
 </address>
</addresses>

Here’s a snippet of Java code using JMS which demonstrates the FQQN syntax:

Queue q1 session.createQueue("a1::q1");
MessageConsumer consumer = session.createConsumer(q1);


The string :: should only be used for FQQN and not in any other context in
address or queue names.

The examples below show how to use broker side configuration to statically configure a queue with
publish subscribe behavior for shared, non-shared, durable and non-durable subscription
behavior.

Shared, Durable Subscription Queue using max-consumers

The default behavior for queues is to not limit the number connected queue consumers. The max-
consumers parameter of the queue element can be used to limit the number of connected consumers
allowed at any one time.

Open the file etc/broker.xml for editing.

<addresses>
 <address name="durable.foo">
 <multicast>
 <!-- pre-configured shared durable subscription queue -->
 <queue name="q1" max-consumers="10">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
</addresses>

Non-shared, Durable Subscription Queue

The broker can be configured to prevent more than one consumer from connecting to a queue at
any one time. The subscriptions to queues configured this way are therefore "non-shared". To do
this simply set the max-consumers parameter to 1:

<addresses>
 <address name="durable.foo">
 <multicast>
 <!-- pre-configured non shared durable subscription queue -->
 <queue name="q1" max-consumers="1">
 <durable>true</durable>
 </queue>
 </multicast>
 </address>
</addresses>

Non-durable Subscription Queue

Non-durable subscriptions are again usually managed by the relevant protocol manager, by
creating and deleting temporary queues.

If a user requires to pre-create a queue that behaves like a non-durable subscription queue the
purge-on-no-consumers flag can be enabled on the queue. When purge-on-no-consumers is set to true.
The queue will not start receiving messages until a consumer is attached. When the last consumer
is detached from the queue. The queue is purged (its messages are removed) and will not receive
any more messages until a new consumer is attached.

Open the file etc/broker.xml for editing.

<addresses>
 <address name="non.shared.durable.foo">
 <multicast>
 <queue name="orders1" purge-on-no-consumers="true"/>
 </multicast>
 </address>

</addresses>

22.6.2. Disabled Queue

If a user requires to statically configure a queue and disable routing to it, for example where a
queue needs to be defined so a consumer can bind, but you want to disable message routing to it
for the time being.

Or you need to stop message flow to the queue to allow investigation keeping the consumer bound,
but don’t wish to have further messages routed to the queue to avoid message build up.

When enabled is set to true the queue will have messages routed to it. (default)

When enabled is set to false the queue will NOT have messages routed to it.

Open the file etc/broker.xml for editing.

<addresses>
 <address name="foo.bar">
 <multicast>
 <queue name="orders1" enabled="false"/>
 </multicast>
 </address>
</addresses>


Disabling all the queues on an address means that any message sent to that
address will be silently dropped.

22.6.3. UUID Resources

Some protocols and APIs support creating anonymous (i.e. unnamed) resources (e.g. a JMS queue
created via createTemporaryQueue or a JMS topic created via createTemporaryTopic). These resources
are ultimately created using a UUID (i.e universally unique identifier) as the name for both the
address and the queue (as necessary). However, since the name is a UUID it is impossible to create
an address-setting or security-setting for it whose match is anything but #.

To enable more specific configurations one can specify the uuid-namespace in broker.xml and then
create an address-setting or security-setting whose match value corresponds to the configured
uuid-namespace, e.g.:

<uuid-namespace>uuid</uuid-namespace>

<address-settings>
 <address-setting match="uuid.#">
 <enable-metrics>false</enable-metrics>
 </address-setting>
</address-settings>

https://docs.oracle.com/javaee/7/api/javax/jms/Session.html#createTemporaryQueue--
https://docs.oracle.com/javaee/7/api/javax/jms/Session.html#createTemporaryTopic--

Any resource named using a UUID will have metrics disabled using this configuration. The default
uuid-namespace is empty.


This setting does not change the actual name of the resource. It only changes the
name used to lookup address-settings or security-settings.

UUID Formats

The broker supports two different UUID formats - Core and OpenWire

Core UUID

A Core UUID is a 36-character string that follows the pattern X-X-X-X-X where:

• The first group consists of 8 hex characters.

• The second, third, and fourth groups consist of 4 hex characters each.

• The fifth group consists of 12 hex characters.

• A hyphen separates each group of hex characters.

• A "hex character" is one of the following: abcdef0123456789.

Here’s an example: c7ef2580-210f-11f0-bef5-3ce1a1d12939.

OpenWire UUID

An OpenWire UUID is a variable length string that follows the pattern X-X-X-X:X:X where:

• The first group is a prefix of arbitrary content and length. The default prefix is ID: plus
hostname.

• The second, third, and fourth groups consist of digits separated from each other by a -
character.

• The fifth and sixth group consists of digits separated from each previous group by a : character.

Here’s an example: ID:localhost-45187-1745501083698-10000:1:10001.

22.6.4. Other Advanced Configurations

Each of the following advanced configurations have their own chapter so their details are not
repeated here:

• Exclusive queues

• Last Value queues

• Non-Destructive queues

• Ring queues

• Retroactive addresses

22.7. How to filter messages
Apache ActiveMQ Artemis supports the ability to filter messages using Filter Expressions.

Filters can be applied in two places - on a queue and on a consumer.

Filtering messages on a queue increases performance vs. filtering on the consumer because the
messages don’t need to be scanned. However, a queue filter is often not as flexible.

22.7.1. Queue Filter

When a filter is applied to a queue, messages are filtered before they are routed to the queue. To
add a filter use the filter element when configuring a queue, e.g.:

<addresses>
 <address name="filter">
 <anycast>
 <queue name="filter">
 <filter string="color='red'"/>
 </queue>
 </anycast>
 </address>
</addresses>

The filter defined above ensures that only messages with an attribute "color='red'" is sent to this
queue.

22.7.2. Consumer Filters

Consumer filters are applied after messages have routed to the queue and are defined using the
appropriate client APIs. The following JMS example shows how consumer filters work.

Define an address with a single queue, with no filter applied in etc/broker.xml.

<addresses>
 <address name="filter">
 <anycast>
 <queue name="filter"/>
 </anycast>
 </address>
</addresses>

Then send some messages to the queue.

...
// Send some messages
for (int i = 0; i < 3; i ++) {

 TextMessage redMessage = senderSession.createTextMessage("Red");
 redMessage.setStringProperty("color", "red");
 producer.send(redMessage)

 TextMessage greenMessage = senderSession.createTextMessage("Green");
 greenMessage.setStringProperty("color", "green");
 producer.send(greenMessage)
}

At this point the queue would have 6 messages: red, green, red, green, red, green.

Create a consumer with the filter color='red'.

MessageConsumer redConsumer = redSession.createConsumer(queue, "color='red'");

The redConsumer has a filter that only matches "red" messages. The redConsumer will receive 3
messages.

red, red, red

The resulting queue would now be

green, green, green

22.8. Alternate Ways to Determine Routing Type
Typically the routing type is determined either by the static XML configuration or by the default-
address-routing-type and default-queue-routing-type address-setting elements used for automatic
address and queue creation. However, there are two other ways to specify routing type:

• a configurable prefix which client applications can use when sending messages or creating
consumers

• a property client applications can set on the messages they send

22.8.1. Using a Prefix to Determine Routing Type

These prefixes are configured using the anycastPrefix and multicastPrefix parameters within the
URL of the acceptor which the client is using. When multiple values are needed, these can be
separated by a comma.

Configuring an Anycast Prefix

In etc/broker.xml, add the anycastPrefix to the URL of the desired acceptor. In the example below,
the acceptor is configured to use queue/ for the anycastPrefix. Client code can specify queue/foo/ if
the client wants anycast routing.

<acceptor name="artemis">
tcp://0.0.0.0:61616?protocols=AMQP;anycastPrefix=queue/</acceptor>

Consider, for example, a STOMP client that wants to send a message using anycast semantics to a
queue that doesn’t exist. Consider also that the broker is configured to auto-create addresses and
queues, but the default-address-routing-type and default-queue-routing-type are both MULTICAST.
Since the anycastPrefix is queue/ it can just send a message to queue/foo and the broker will
automatically create an address named foo with an anycast queue also named foo.

Configuring a Multicast Prefix

In etc/broker.xml, add the multicastPrefix to the URL of the desired acceptor. In the example below,
the acceptor is configured to use topic/ for the multicastPrefix. Client code can specify topic/foo/ if
the client wants multicast routing.

<acceptor name="artemis">
tcp://0.0.0.0:61616?protocols=AMQP;multicastPrefix=topic/</acceptor>

Consider, for example, a STOMP client that wants to create a subscription with multicast semantics
on an address that doesn’t exist. Consider also that the broker is configured to auto-create
addresses and queues, but the default-address-routing-type and default-queue-routing-type are
both ANYCAST. Since the multicastPrefix is topic/ it can just subscribe to topic/foo and the broker
will automatically create an address named foo with a multicast queue for the subscription. Any
messages sent to foo will then be routed to the subscription queue.

22.8.2. Using a Message Property to Determine Routing Type

The AMQ_ROUTING_TYPE property represents a byte value which will be used by the broker to
determine the routing type when a message is _sent. Use 0 for anycast routing or 1 for multicast
routing.



A message will only be routed to queues which match its _AMQ_ROUTING_TYPE
property value (if any). For example, if a message with an _AMQ_ROUTING_TYPE value
of 1 (i.e. multicast) is sent to an address that only has anycast queues then the
message won’t actually be routed to any of the queues since the routing types don’t
match. If no _AMQ_ROUTING_TYPE is set then the message will be routed to all the
queues on the address according to the queues' routing semantics.

Chapter 23. Address Settings
With address settings you can provide a block of settings which will be applied to any addresses
that match the string in the match attribute. In the below example the settings would only be applied
to the address order.foo address, but it is also possible to use wildcards to apply settings.

For example, if you used the match string queue.# the settings would be applied to all addresses
which start with queue..

Address settings are hierarchical. Therefore, if more than one address-setting would match then
the settings are applied in order of their specificity with the more specific match taking priority. A
match on the any-words delimiter (# by default) is considered less specific than a match without it.
A match with a single word delimiter (* by default) is considered less specific than a match on an
exact queue name. In this way settings can be "layered" so that configuration details don’t need to
be repeated.

Address setting matches can also be "literal" which can be used to match wildcards literally, for
further details see literal matches.

The meaning of the specific settings are explained fully throughout the user manual, however here
is a brief description with a link to the appropriate chapter if available.

Here an example of an address-setting entry that might be found in the broker.xml file.

<address-settings>
 <address-setting match="order.foo">
 <dead-letter-address>DLA</dead-letter-address>
 <auto-create-dead-letter-resources>false</auto-create-dead-letter-resources>
 <dead-letter-queue-prefix></dead-letter-queue-prefix>
 <dead-letter-queue-suffix></dead-letter-queue-suffix>
 <expiry-address>ExpiryQueue</expiry-address>
 <auto-create-expiry-resources>false</auto-create-expiry-resources>
 <expiry-queue-prefix></expiry-queue-prefix>
 <expiry-queue-suffix></expiry-queue-suffix>
 <no-expiry>false</no-expiry>
 <expiry-delay>-1</expiry-delay>
 <min-expiry-delay>-1</min-expiry-delay>
 <max-expiry-delay>-1</max-expiry-delay>
 <redelivery-delay>5000</redelivery-delay>
 <redelivery-delay-multiplier>1.0</redelivery-delay-multiplier>
 <redelivery-collision-avoidance-factor>0.0</redelivery-collision-avoidance-
factor>
 <max-redelivery-delay>10000</max-redelivery-delay>
 <max-delivery-attempts>3</max-delivery-attempts>
 <max-size-bytes>-1</max-size-bytes>
 <max-size-messages>-1</max-size-messages>
 <max-size-bytes-reject-threshold>-1</max-size-bytes-reject-threshold>
 <page-size-bytes>10MB</page-size-bytes>
 <address-full-policy>PAGE</address-full-policy>

 <message-counter-history-day-limit></message-counter-history-day-limit>
 <last-value-queue>false</last-value-queue> <!-- deprecated! see default-last-
value-queue -->
 <default-last-value-queue>false</default-last-value-queue>
 <default-non-destructive>false</default-non-destructive>
 <default-exclusive-queue>false</default-exclusive-queue>
 <default-consumers-before-dispatch>0</default-consumers-before-dispatch>
 <default-delay-before-dispatch>-1</default-delay-before-dispatch>
 <redistribution-delay>-1</redistribution-delay>
 <send-to-dla-on-no-route>false</send-to-dla-on-no-route>
 <slow-consumer-threshold>-1</slow-consumer-threshold>
 <slow-consumer-threshold-measurement-unit>MESSAGES_PER_SECOND</slow-consumer-
threshold-measurement-unit>
 <slow-consumer-policy>NOTIFY</slow-consumer-policy>
 <slow-consumer-check-period>5</slow-consumer-check-period>
 <auto-create-queues>true</auto-create-queues>
 <auto-delete-queues>true</auto-delete-queues>
 <auto-delete-created-queues>false</auto-delete-created-queues>
 <auto-delete-queues-delay>0</auto-delete-queues-delay>
 <auto-delete-queues-message-count>0</auto-delete-queues-message-count>
 <auto-delete-queues-skip-usage-check>false</auto-delete-queues-skip-usage-check>
 <config-delete-queues>OFF</config-delete-queues>
 <config-delete-diverts>OFF</config-delete-diverts>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-delete-addresses>true</auto-delete-addresses>
 <auto-delete-addresses-delay>0</auto-delete-addresses-delay>
 <auto-delete-addresses-skip-usage-check>false</auto-delete-addresses-skip-usage-
check>
 <config-delete-addresses>OFF</config-delete-addresses>
 <management-browse-page-size>200</management-browse-page-size>
 <management-message-attribute-size-limit>256</management-message-attribute-size-
limit>
 <default-purge-on-no-consumers>false</default-purge-on-no-consumers>
 <default-max-consumers>-1</default-max-consumers>
 <default-queue-routing-type>MULTICAST</default-queue-routing-type>
 <default-address-routing-type>MULTICAST</default-address-routing-type>
 <default-consumer-window-size>1048576</default-consumer-window-size>
 <default-ring-size>-1</default-ring-size>
 <retroactive-message-count>0</retroactive-message-count>
 <enable-metrics>true</enable-metrics>
 <enable-ingress-timestamp>false</enable-ingress-timestamp>
 <id-cache-size>20000</id-cache-size>
 <initial-queue-buffer-size>8192</initial-queue-buffer-size>
 </address-setting>
</address-settings>

dead-letter-address

Is the address to which messages are sent when they exceed max-delivery-attempts. If no address
is defined here then such messages will simply be discarded. Read more about undelivered
messages.

auto-create-dead-letter-resources

Whether the broker will automatically create the defined dead-letter-address and a
corresponding dead-letter queue when a message is undeliverable. Read more in the chapter
about undelivered messages.

dead-letter-queue-prefix

The prefix used for automatically created dead-letter queues. Default is empty. Read more in the
chapter about undelivered messages.

dead-letter-queue-suffix

The suffix used for automatically created dead-letter queues. Default is empty. Read more in the
chapter about undelivered messages.

expiry-address

Where to send a message that has expired. If no address is defined here then such messages will
simply be discarded. Read more about message expiry.

auto-create-expiry-resources

Determines whether or not the broker will automatically create the defined expiry-address and
a corresponding expiry queue when a message expired. Read more in the chapter about
undelivered messages.

expiry-queue-prefix

The prefix used for automatically created expiry queues. Default is empty. Read more in the
chapter about message expiry.

expiry-queue-suffix

The suffix used for automatically created expiry queues. Default is empty. Read more in the
chapter about message expiry.

no-expiry

If true this overrides the expiration time for all messages so that they never expire. The default
is false. Read more about message expiry.

expiry-delay

The expiration time that will be used for messages which are using the default expiration time
(i.e. 0). For example, if expiry-delay is set to 10 and a message which is using the default
expiration time (i.e. 0) arrives then its expiration time of 0 will be changed to 10. However, if a
message which is using an expiration time of 20 arrives then its expiration time will remain
unchanged. Setting expiry-delay to -1 will disable this feature. The default is -1. Read more
about message expiry.

min-expiry-delay

max-expiry-delay

These are applied if the aforementioned expiry-delay isn’t set. Unlike expiry-delay, they can
impact the expiration of a message even if that message is using a non-default expiration time.
There are a handful of rules which dictate the behavior of these settings.

max-delivery-attempts

defines how many time a cancelled message can be redelivered before sending to the dead-
letter-address. Read more about undelivered messages.

redelivery-delay

defines how long to wait before attempting redelivery of a cancelled message. Default is 0. Read
more about undelivered messages.

redelivery-delay-multiplier

The number by which the redelivery-delay will be multiplied on each subsequent redelivery
attempt. Default is 1.0. Read more about undelivered messages.

redelivery-collision-avoidance-factor

defines an additional factor used to calculate an adjustment to the redelivery-delay (up or
down). Default is 0.0. Valid values are between 0.0 and 1.0. Read more about undelivered
messages.

max-size-bytes

max-size-messages

page-size-bytes

max-read-page-messages

max-read-page-bytes

All these are used to configure paging on an address. This is explained in the paging
documentation.

max-size-bytes-reject-threshold

is used with the address full BLOCK policy, the maximum size (in bytes) an address can reach
before messages start getting rejected. Works in combination with max-size-bytes for AMQP
clients only. Default is -1 (i.e. no limit).

address-full-policy

This attribute can have one of the following values: PAGE, DROP, FAIL or BLOCK and determines
what happens when an address where max-size-bytes is specified becomes full. The default
value is PAGE. If the value is PAGE then further messages will be paged to disk. If the value is DROP
then further messages will be silently dropped. If the value is FAIL then further messages will be
dropped and an exception will be thrown on the client-side. If the value is BLOCK then client
message producers will block when they try and send further messages. See the Flow Control
and Paging chapters for more info.

message-counter-history-day-limit

is the number of days to keep message counter history for this address assuming that message-
counter-enabled is true. Default is 0.

default-last-value-queue

Whether a queue only uses last values or not. Default is false. This value can be overridden at
the queue level using the last-value boolean. Read more about last value queues.

default-exclusive-queue

Whether a queue will serve only a single consumer. Default is false. This value can be
overridden at the queue level using the exclusive boolean. Read more about exclusive queues.

default-consumers-before-dispatch

The number of consumers needed on a queue bound to the matching address before messages
will be dispatched to those consumers. Default is 0. This value can be overridden at the queue
level using the consumers-before-dispatch boolean. This behavior can be tuned using delay-
before-dispatch on the queue itself or by using the default-delay-before-dispatch address-
setting.

default-delay-before-dispatch

The number of milliseconds the broker will wait for the configured number of consumers to
connect to the matching queue before it will begin to dispatch messages. Default is -1 (wait
forever).

redistribution-delay

How long to wait when the last consumer is closed on a queue before redistributing any
messages. Default is -1. Read more about clusters.

send-to-dla-on-no-route

If a message is sent to an address, but the server does not route it to any queues (e.g. there might
be no queues bound to that address, or none of the queues have filters that match) then
normally that message would be discarded. However, if this parameter is true then such a
message will instead be sent to the dead-letter-address (DLA) for that address, if it exists. Default
is false.

slow-consumer-threshold

The minimum rate of message consumption allowed before a consumer is considered "slow."
Measured in units specified by the slow-consumer-threshold-measurement-unit configuration
option. Default is -1 (i.e. disabled); any other value must be greater than 0 to ensure a queue has
messages, and it is the actual consumer that is slow. A value of 0 will allow a consumer with no
messages pending to be considered slow. Read more about slow consumers.

slow-consumer-threshold-measurement-unit

The units used to measure the slow-consumer-threshold. Valid options are:

• MESSAGES_PER_SECOND

• MESSAGES_PER_MINUTE

• MESSAGES_PER_HOUR

• MESSAGES_PER_DAY

If no unit is specified the default MESSAGES_PER_SECOND will be used. Read more about slow
consumers.

slow-consumer-policy

What should happen when a slow consumer is detected. KILL will kill the consumer’s connection

(which will obviously impact any other client threads using that same connection). NOTIFY will
send a CONSUMER_SLOW management notification which an application could receive and take
action with. Read more about slow consumers.

slow-consumer-check-period

How often to check for slow consumers on a particular queue. Measured in seconds. Default is 5.



This should be at least 2x the maximum time it takes a consumer to process 1
message. For example, if the slow-consumer-threshold is set to 1 and the slow-
consumer-threshold-measurement-unit is set to MESSAGES_PER_MINUTE then this
should be set to at least 2 x 60s i.e. 120s. Read more about slow consumers.

auto-create-queues

Whether or not the broker should automatically create a queue when a message is sent or a
consumer tries to connect to a queue whose name fits the address match. Queues which are auto-
created are durable, non-temporary, and non-transient. Default is true.


Automatic queue creation does not work for the core client. The core API is a
low-level API and is not meant to have such automation.



Automatic queue creation is for queues that would not otherwise be created during
normal operation. For example, when a remote application creates a consumer on
a JMS topic then a queue will be created representing that subscription as
described in the JMS-to-core mapping chapter. This queue will be created
regardless of how auto-create-queues is configured because it is required for
normal operation.

auto-delete-queues

Whether or not the broker should automatically delete auto-created queues when they have
both 0 consumers and the message count is less than or equal to auto-delete-queues-message-
count. Default is true.

auto-delete-created-queues

Whether or not the broker should automatically delete created queues when they have both 0
consumers and the message count is less than or equal to auto-delete-queues-message-count.
Default is false.

auto-delete-queues-delay

How long to wait (in milliseconds) before deleting auto-created queues after the queue has 0
consumers and the message count is less than or equal to auto-delete-queues-message-count.
Default is 0 (delete immediately). The broker’s address-queue-scan-period controls how often (in
milliseconds) queues are scanned for potential deletion. Use -1 to disable scanning. The default
scan value is 30000.

auto-delete-queues-message-count

The message count that the queue must be less than or equal to before deleting auto-created
queues. To disable message count check -1 can be set. Default is 0 (empty queue).

auto-delete-queues-skip-usage-check

A queue will only be auto-deleted by default if it has actually been "used." A queue is considered
"used" if any messages have been sent to it or any consumers have connected to it during its life.
However, there are use-cases where it’s useful to skip this check. When set to true it is
imperative to also set auto-delete-queues-delay to a value greater than 0 otherwise queues may
be deleted almost immediately after being created. In this case the queue will be deleted based
on when it was created rather then when it was last "used." Default is false.


the above auto-delete address settings can also be configured individually at the
queue level when a client auto creates the queue.

For Core API it is exposed in createQueue methods.

For Core JMS you can set it using the destination queue attributes my.destination?auto-
delete=true&auto-delete-delay=120000&auto-delete-message-count=-1

config-delete-queues

How the broker should handle queues deleted on config reload, by delete policy: OFF or FORCE.
Default is OFF. Read more about configuration reload.

config-delete-diverts

How the broker should handle diverts deleted on config reload, by delete policy: OFF or FORCE.
Default is OFF. Read more about configuration reload.

auto-create-addresses

Whether or not the broker should automatically create an address when a message is sent to or
a consumer tries to consume from a queue which is mapped to an address whose name fits the
address match. Default is true.


automatic address creation does not work for the core client. The core API is a
low-level API and is not meant to have such automation.

auto-delete-addresses

Whether or not the broker should automatically delete auto-created addresses once the address
no longer has any queues. Default is true.

auto-delete-addresses-delay

How long to wait (in milliseconds) before deleting auto-created addresses after they no longer
have any queues. Default is 0 (delete immediately). The broker’s address-queue-scan-period
controls how often (in milliseconds) addresses are scanned for potential deletion. Use -1 to
disable scanning. The default scan value is 30000.

auto-delete-addresses-skip-usage-check

An address will only be auto-deleted by default if it has actually been "used." An address is
considered "used" if any queues have been created on it during its life. However, there are use-
cases where it’s useful to skip this check. When set to true it is imperative to also set auto-
delete-addresses-delay to a value greater than 0 otherwise addresses may be deleted almost
immediately after being created. In this case the address will be deleted based on when it was

created rather then when it was last "used." Default is false.

config-delete-addresses

How the broker should handle addresses deleted on config reload, by delete policy: OFF or FORCE.
Default is OFF. Read more about configuration reload.

management-browse-page-size

is the number of messages a management resource can browse. This is relevant for the browse,
list and count-with-filter management methods exposed on the queue control. Default is 200.

management-message-attribute-size-limit

is the number of bytes collected from the message for browse. This is relevant for the browse and
list management methods exposed on the queue control. Message attributes longer than this
value appear truncated. Default is 256. Use -1 to switch this limit off. Note that memory needs to
be allocated for all messages that are visible at a given moment. Setting this value too high may
impact the browser stability due to the large amount of memory that may be required to browse
through many messages.

default-purge-on-no-consumers

defines a queue’s default purge-on-no-consumers setting if none is provided on the queue itself.
Default is false. This value can be overridden at the queue level using the purge-on-no-consumers
boolean. Read more about this functionality.

default-max-consumers

defines a queue’s default max-consumers setting if none is provided on the queue itself. Default is
-1 (i.e. no limit). This value can be overridden at the queue level using the max-consumers
boolean. Read more about this functionality.

default-queue-routing-type

The routing-type for an auto-created queue if the broker is unable to determine the routing-type
based on the client and/or protocol semantics. Default is MULTICAST. Read more about routing
types.

default-address-routing-type

The routing-type for an auto-created address if the broker is unable to determine the routing-
type based on the client and/or protocol semantics. Default is MULTICAST. Read more about
routing types.

default-consumer-window-size

The default consumerWindowSize value for a CORE protocol consumer, if not defined the default will
be set to 1 MiB (1024 * 1024 bytes). The consumer will use this value as the window size if the
value is not set on the client. Read more about flow control.

default-ring-size

The default ring-size value for any matching queue which doesn’t have ring-size explicitly
defined. If not defined the default will be set to -1. Read more about ring queues.

retroactive-message-count

The number of messages to preserve for future queues created on the matching address.
Defaults to 0. Read more about retroactive addresses.

enable-metrics

determines whether or not metrics will be published to any configured metrics plugin for the
matching address. Default is true. Read more about metrics.

enable-ingress-timestamp

determines whether or not the broker will add its time to messages sent to the matching address.
When true the exact behavior will depend on the specific protocol in use. For AMQP messages
the broker will add a long message annotation named x-opt-ingress-time. For core messages
(used by the core and OpenWire protocols) the broker will add a long property named
_AMQ_INGRESS_TIMESTAMP. For STOMP messages the broker will add a frame header named
ingress-timestamp. The value will be the number of milliseconds since the epoch. Default is false.

id-cache-size

defines the maximum size of the duplicate ID cache for an address, as each address has it’s own
cache that helps to detect and prevent the processing of duplicate messages based on their
unique identification. By default, the id-cache-size setting inherits from the global id-cache-
size, with a default of 20000 elements if not explicitly configured. Read more about duplicate id
cache sizes.

initial-queue-buffer-size

defines the initial number of elements allocated initially on the JVM heap for the message
reference buffer. This is allocated for each queue. If there are many queues that are created but
unlikely to be used, this can be configured to a smaller value to prevent large initial allocation.
By default, this value is 8192 if not explicitly configured. This must be a positive power of 2 (i.e. 0
is not an option).

23.1. Literal Matches
A literal match is a match that contains wildcards but should be applied without regard to those
wildcards. In other words, the wildcards should be ignored and the address settings should only be
applied to the literal (i.e. exact) match.

This can be useful when an application uses a wildcard address. For example, if an application
creates a multicast queue on the address orders.# and that queue needs a different configuration
than other matching addresses like orders.retail and orders.wholesale. Generally speaking this
kind of use-case is rare, but wildcard addresses are often used by MQTT clients, and this kind of
configuration flexiblity is useful.

23.1.1. Configuring a Literal Match

If you want to configure a literal match the first thing to do is to configure the literal-match-
markers parameter in broker.xml. This defines the beginning and ending characters used to mark
the literal match, e.g.:

https://en.wikipedia.org/wiki/Unix_time

<core>
 ...
 <literal-match-markers>()</literal-match-markers>
 ...
</core>

By default, no value is defined for literal-match-markers which means that literal matches are
disabled by default. The value must be only 2 characters.

Once literal-match-markers is defined you can then use those markers in the match of the address
setting, e.g.

<address-settings>
 <address-setting match="(orders.#)">
 <enable-metrics>true</enable-metrics>
 </address-setting>
 <address-setting match="orders.#">
 <enable-metrics>false</enable-metrics>
 </address-setting>
</address-settings>

Using these settings metrics will be enabled on the address orders.# and any queues bound directly
on that address, but metrics will not be enabled for other matching addresses like orders.retail or
orders.wholesale and any queues bound to those addresses.

Chapter 24. Wildcard Syntax
Apache ActiveMQ Artemis uses a specific syntax for representing wildcards in security settings,
address settings and when creating consumers.

The syntax is similar to that used by AMQP.

An Apache ActiveMQ Artemis wildcard expression contains words separated by a delimiter. The
default delimiter is . (full stop).

The special characters # and * also have special meaning and can take the place of a word.

To be clear, the wildcard characters cannot be used like wildcards in a regular expression. They
operate exclusively on words separated by a delimiter.

24.1. Matching Any Word
The character # means "match any sequence of zero or more words".

So the wildcard news.europe.# would match:

• news.europe

• news.europe.sport

• news.europe.politics

• news.europe.politics.regional

But news.europe.# would not match:

• news.usa

• news.usa.sport

• entertainment

24.2. Matching a Single Word
The character * means "match a single word".

The wildcard news.* would match:

• news.europe

• news.usa

But news.* would not match:

• news.europe.sport

• news.usa.sport

• news.europe.politics.regional

https://www.amqp.org
https://en.wikipedia.org/wiki/Regular_expression

The wildcard news.*.sport would match:

• news.europe.sport

• news.usa.sport

But news.*.sport would not match:

• news.europe.politics

24.3. Customizing the Syntax
It’s possible to further configure the syntax of the wildcard addresses using the broker
configuration. For that, the <wildcard-addresses> configuration tag is used.

<wildcard-addresses>
 <routing-enabled>true</routing-enabled>
 <delimiter>.</delimiter>
 <any-words>#</any-words>
 <single-word>*</single-word>
</wildcard-addresses>

The example above shows the default configuration.

Chapter 25. Routing Messages With Wild
Cards
Apache ActiveMQ Artemis allows the routing of messages via wildcard addresses.

If a queue is created with an address of say news.# then it will receive any messages sent to
addresses that match this, for instance news.europe or news.usa or news.usa.sport. If you create a
consumer on this queue, this allows a consumer to consume messages which are sent to a hierarchy
of addresses.

 In JMS terminology this allows "topic hierarchies" to be created.

This functionality is enabled by default. To turn it off add the following to the <core> element in
broker.xml, e.g.:

<wildcard-addresses>
 <routing-enabled>false</routing-enabled>
</wildcard-addresses>

For more information on the wild card syntax and how to configure it, take a look at wildcard
syntax chapter, also see the topic hierarchy example in the examples.

Chapter 26. Diverting and Splitting Message
Flows
Apache ActiveMQ Artemis allows you to configure objects called diverts with some simple server
configuration. Diverts allow you to transparently divert messages routed to one address to one or
more other addresses, without making any changes to any client application logic.

Diverts can be exclusive or non-exclusive.

An exclusive divert routes messages the new address(es) only. Messages are not routed to the old
address at all.

A non-exclusive divert routes messags to the old address and a copy of the messages are also sent to
the new address(es). Think of non-exclusive divert as splitting message flow, e.g. there may be a
requirement to monitor every order sent to an order queue.

Multiple diverts can be configured for a single address. When an address has both exclusive and
non-exclusive diverts configured, the exclusive ones are processed first. If any of the exclusive
diverts diverted the message, the non-exclusive ones are not processed.

Diverts can also be configured to have an optional message filter. If specified then only messages
that match the filter will be diverted.

Diverts can apply a particular routing-type to the message, strip the existing routing type, or simply
pass the existing routing-type through. This is useful in situations where the message may have its
routing-type set but you want to divert it to an address using a different routing-type. It’s important
to keep in mind that a message with the anycast routing-type will not actually be routed to queues
using multicast and vice-versa. By configuring the routing-type of the divert you have the flexibility
to deal with any situation. Valid values are ANYCAST, MULTICAST, PASS, & STRIP. The default is STRIP.

Diverts can also be configured to apply a Transformer. If specified, all diverted messages will have
the opportunity of being transformed by the Transformer. When an address has multiple diverts
configured, all of them receive the same, original message. This means that the results of a
transformer on a message are not directly available for other diverts or their filters on the same
address. See the documentation on adding runtime dependencies to understand how to make your
transformer available to the broker.

A divert will only divert a message to an address on the same server. If you want to divert to an
address on a different server a common pattern would be to divert to a local "store-and-forward"
queue and then set up a bridge which consumes from that queue and forwards to an address on a
different server.

Diverts are therefore a very sophisticated concept which when combined with bridges can be used
to create interesting and complex routings. The set of diverts on a server can be thought of as a type
of routing table for messages. Combining diverts with bridges allows you to create a distributed
network of reliable routing connections between multiple geographically distributed servers,
creating your global messaging mesh.

Diverts are defined as xml in the broker.xml file at the core attribute level. There can be zero or
more diverts in the file.

Diverted messages get special properties.

Please see the examples for a full working example at ./examples/features/standard/divert/ showing
you how to configure and use diverts.

Let’s take a look at some divert examples…

26.1. Exclusive Divert
Let’s take a look at an exclusive divert. An exclusive divert diverts all matching messages that are
routed to the old address to the new address. Matching messages do not get routed to the old
address.

Here’s some example xml configuration for an exclusive divert, it’s taken from the divert example:

<divert name="prices-divert">
 <address>priceUpdates</address>
 <forwarding-address>priceForwarding</forwarding-address>
 <filter string="office='New York'"/>
 <transformer-class-name>
 org.apache.activemq.artemis.jms.example.AddForwardingTimeTransformer
 </transformer-class-name>
 <exclusive>true</exclusive>
</divert>

We define a divert called prices-divert that will divert any messages sent to the address
priceUpdates to another local address priceForwarding.

We also specify a message filter string so only messages with the message property office with
value New York will get diverted, all other messages will continue to be routed to the normal
address. The filter string is optional, if not specified then all messages will be considered matched.

In this example a transformer class is specified without any configuration properties. Again this is
optional, and if specified the transformer will be executed for each matching message. This allows
you to change the messages body or properties before it is diverted. In this example the
transformer simply adds a header that records the time the divert happened. See the transformer
chapter for more details about transformer-specific configuration.

This example is actually diverting messages to a local store and forward queue, which is configured
with a bridge which forwards the message to an address on another ActiveMQ Artemis server.
Please see the example for more details.

26.2. Non-exclusive Divert
Now we’ll take a look at a non-exclusive divert. Non exclusive diverts are the same as exclusive

diverts, but they only forward a copy of the message to the new address. The original message
continues to the old address

You can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same way as exclusive diverts with an optional filter
and transformer, here’s an example non-exclusive divert, again from the divert example:

<divert name="order-divert">
 <address>orders</address>
 <forwarding-address>spyTopic</forwarding-address>
 <exclusive>false</exclusive>
</divert>

The above divert example takes a copy of every message sent to the address orders and sends it to a
local address called spyTopic.

26.3. Composite Divert
A composite divert is one which forwards messages to multiple addresses. This pattern is
sometimes referred to as fan-out. Configuration is simple. Just use a comma separated list in
forwarding-address, e.g.:

<divert name="shipping-divert">
 <address>shipping</address>
 <forwarding-address>dallas, chicago, denver</forwarding-address>
 <exclusive>false</exclusive>
</divert>

Chapter 27. Transformers
A transformer, as the name suggests, is a component which transforms a message. For example, a
transformer could modify the body of a message or add or remove properties. Both diverts and
core bridges support.

A transformer is simply a class which implements the interface
org.apache.activemq.artemis.core.server.transformer.Transformer:

public interface Transformer {

 default void init(Map<String, String> properties) { }

 Message transform(Message message);
}

The init method is called immediately after the broker instantiates the class. There is a default
method implementation so implementing init is optional. However, if the transformer needs any
configuration properties it should implement init and the broker will pass the configured
key/value pairs to the transformer using a java.util.Map.

27.1. Configuration
The most basic configuration requires only specifying the transformer’s class name, e.g.:

<transformer-class-name>
 org.foo.MyTransformer
</transformer-class-name>

However, if the transformer needs any configuration properties those can be specified using a
slightly different syntax, e.g.:

<transformer>
 <class-name>org.foo.MyTransformerWithProperties</class-name>
 <property key="transformerKey1" value="transformerValue1"/>
 <property key="transformerKey2" value="transformerValue2"/>
</transformer>

Any transformer implementation needs to be added to the broker’s classpath. See the
documentation on adding runtime dependencies to understand how to make your transformer
available to the broker.

Chapter 28. Filter Expressions
Apache ActiveMQ Artemis provides a powerful filter language based on a subset of the SQL 92
expression syntax.

It is the same as the syntax used for JMS & Jakarta Messaging selectors, but the predefined
identifiers are different. For documentation on JMS selector syntax please the JavaDoc for
javax.jms.Message. For the corresponding Jakarta Messaging JavaDoc see jakarta.jms.Message

Filter expressions are used in several places in Apache ActiveMQ Artemis

• Predefined Queues. When pre-defining a queue, in broker.xml in either the core or jms
configuration a filter expression can be defined for a queue. Only messages that match the filter
expression will enter the queue.

• Core bridges can be defined with an optional filter expression, only matching messages will be
bridged (see Core Bridges).

• Diverts can be defined with an optional filter expression, only matching messages will be
diverted (see Diverts).

• Filter are also used programmatically when creating consumers, queues and in several places
as described in management.

There are some differences between JMS selector expressions and Apache ActiveMQ Artemis core
filter expressions. Whereas JMS selector expressions operate on a JMS message, Apache ActiveMQ
Artemis core filter expressions operate on a core message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core
message in an expression:

AMQUserID

The ID set by the user when the message is sent. This is analogous to the JMSMessageID for JMS-
based clients.

AMQAddress

The address to which the message was sent.

AMQGroupID

The group ID used when sending the message.

AMQPriority

To refer to the priority of a message. Message priorities are integers with valid values from 0 -
9. 0 is the lowest priority and 9 is the highest. e.g. AMQPriority = 3 AND animal = 'aardvark'

AMQExpiration

To refer to the expiration time of a message. The value is a long integer.

AMQDurable

To refer to whether a message is durable or not. The value is a string with valid values: DURABLE

https://docs.oracle.com/javaee/7/api/javax/jms/Message.html
https://jakarta.ee/specifications/messaging/3.0/apidocs/jakarta/jms/message

or NON_DURABLE.

AMQTimestamp

The timestamp of when the message was created. The value is a long integer.

AMQSize

The size of a message in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the
message.

The JMS and Jakarta Messaging specs state that a String property should not get converted to a
numeric when used in a selector. So for example, if a message has the age property set to String 21
then the following selector should not match it: age > 18. Since Apache ActiveMQ Artemis supports
STOMP clients which can only send messages with string properties, that restriction is a bit limiting.
Therefore, if you want your filter expressions to auto-convert String properties to the appropriate
number type, just prefix it with convert_string_expressions:. If you changed the filter expression in
the previous example to be convert_string_expressions:age > 18, then it would match the
aforementioned message.

The JMS and Jakarta Messaging specs also state that property identifiers (and therefore the
identifiers which are valid for use in a filter expression) are an:

unlimited-length sequence of letters and digits, the first of which must be a
letter. A letter is any character for which the method Character.isJavaLetter
returns true. This includes _ and $. A letter or digit is any character for
which the method Character.isJavaLetterOrDigit returns true.

This constraint means that hyphens (i.e. -) cannot be used. However, this constraint can be
overcome by using the hyphenated_props: prefix. For example, if a message had the foo-bar property
set to 0 then the filter expression hyphenated_props:foo-bar = 0 would match it.

28.1. XPath
Apache ActiveMQ Artemis also supports special XPath filters which operate on the body of a
message. The body must be XML. To use an XPath filter use this syntax:

XPATH '<xpath-expression>'

XPath filters are supported with and between producers and consumers using the following
protocols:

• OpenWire JMS

• Core (and Core JMS)

• STOMP

https://en.wikipedia.org/wiki/XPath

• AMQP

Since XPath applies to the body of the message and requires parsing of XML it may be significantly
slower than normal filters.

Large messages are not supported.

The XML parser used for XPath is configured with these default "features":

• http://xml.org/sax/features/external-general-entities: false

• http://xml.org/sax/features/external-parameter-entities: false

• http://apache.org/xml/features/disallow-doctype-decl: true

However, in order to deal with any implementation-specific issues the features can be customized
by using system properties starting with the org.apache.activemq.documentBuilderFactory.feature:
prefix, e.g.:

-Dorg.apache.activemq.documentBuilderFactory.feature:http://xml.org/sax/features/exter
nal-general-entities=true

Chapter 29. Management
Apache ActiveMQ Artemis has an extensive management API that allows a user to modify a server
configuration, create new resources (e.g. addresses and queues), inspect these resources (e.g. how
many messages are currently held in a queue) and interact with it (e.g. to remove messages from a
queue). Apache ActiveMQ Artemis also allows clients to subscribe to management notifications.

There are numerous ways to access Apache ActiveMQ Artemis management API:

• Using JMX — JMX is the standard way to manage Java applications

• Using Jolokia — Jolokia exposes the JMX API of an application through an HTTP interface

• Using the Core Client — management operations are sent to Apache ActiveMQ Artemis server
using Core Client messages

• Using any JMS Client — management operations are sent to Apache ActiveMQ Artemis server
using JMS Client messages

• Web Console — a web application which provides a graphical interface to the management API.

Although there are four different ways to manage Apache ActiveMQ Artemis, each API supports the
same functionality. If it is possible to manage a resource using JMX it is also possible to achieve the
same result using Core messages.

Besides these four management interfaces, a Web Console and a Command Line management utility
are also available to administrators of ActiveMQ Artemis.

The choice depends on your requirements, your application settings, and your environment to
decide which way suits you best.

29.1. The Management API
Regardless of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what operations can be invoked
for this type of resource.

To learn about available management operations, see the Javadoc for these interfaces. They are
located in the org.apache.activemq.artemis.api.core.management package and they are named with
the word Control at the end.

29.1.1. Server Management

The ActiveMQServerControl interface is the entry point for broker management.

• Listing, creating, deploying and destroying queues

A list of deployed queues can be retrieved using the getQueueNames() method.

Queues can be created or destroyed using the management operations createQueue() or
deployQueue() or destroyQueue().

createQueue will fail if the queue already exists while deployQueue will do nothing.

• Listing and closing remote connections

Client’s remote addresses can be retrieved using listRemoteAddresses(). It is also possible to
close the connections associated with a remote address using the closeConnectionsForAddress()
method.

Alternatively, connection IDs can be listed using listConnectionIDs() and all the sessions for a
given connection ID can be listed using listSessions().

• Transaction heuristic operations

In case of a server crash, when the server restarts, it possible that some transaction requires
manual intervention. The listPreparedTransactions() method lists the transactions which are in
the prepared states (the transactions are represented as opaque Base64 Strings.) To commit or
rollback a given prepared transaction, the commitPreparedTransaction() or
rollbackPreparedTransaction() method can be used to resolve heuristic transactions.
Heuristically completed transactions can be listed using the
listHeuristicCommittedTransactions() and listHeuristicRolledBackTransactions methods.

• Enabling and resetting Message counters

Message counters can be enabled or disabled using the enableMessageCounters() or
disableMessageCounters() method. To reset message counters, it is possible to invoke
resetAllMessageCounters() and resetAllMessageCounterHistories() methods.

• Retrieving the server configuration and attributes

The ActiveMQServerControl exposes Apache ActiveMQ Artemis server configuration through all
its attributes (e.g. getVersion() method to retrieve the server’s version, etc.)

• Listing, creating and destroying Core bridges and diverts

A list of deployed core bridges (resp. diverts) can be retrieved using the getBridgeNames() (resp.
getDivertNames()) method.

Core bridges (resp. diverts) can be created or destroyed using the management operations
createBridge() and destroyBridge() (resp. createDivert() and destroyDivert()).

Diverts can be updated using the management operation updateDivert().

• It is possible to stop the server and force failover to occur with any currently attached clients.

To do this use the forceFailover() operation.


Since this method actually stops the server you will probably receive some sort
of error depending on which management service you use to call it.

• The effective configuration of the broker core can be exported as properties using
exportConfigAsProperties(). This operation will write a file to the broker’s tmp dir called

broker_config_as_properties.txt. The content can provide an entry point for using
brokerProperties.


The broker’s tmp dir is configured via the system property java.io.tmpdir. The
default value, set via the launch scripts, is $ARTEMIS_INSTANCE/tmp.

• The status of the broker, a json string, can be obtained through the getStatus() operation. The
status includes identity, uptime, activation state and information about broker properties
configuration and reload.

29.1.2. Address Management

Individual addresses can be managed using the AddressControl interface.

• Modifying roles and permissions for an address

You can add or remove roles associated to a queue using the addRole() or removeRole() methods.
You can list all the roles associated to the queue with the getRoles() method

• Pausing and resuming an Address

The AddressControl can pause and resume an address and all the queues that are bound to it.
Newly added queue will be paused too until the address is resumed. Thus all messages sent to
the address will be received but not delivered. When it is resumed, delivering will occur again.

• Blocking and un blocking an Address

The AddressControl can block and unblock an address. A blocked address will not issue any
more credit to existing producers. New producers will not be granted any credit. When the
address is unblocked, credit granting will resume. In this way, it is possible to drain all the
queues associated with an address to quiesce a broker in a managed way.

29.1.3. Queue Management

The bulk of the management API deals with queues. The QueueControl interface defines the queue
management operations.

Most of the management operations on queues take either a single message ID (e.g. to remove a
single message) or a filter (e.g. to expire all messages with a given property.)


Passing null or an empty string in the filter parameter means that the
management operation will be performed on all messages in a queue.

• Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expireMessages() method. If an expiry
address is defined, messages will be sent to it, otherwise they are discarded.

Messages can also be sent to a dead letter address with the sendMessagesToDeadLetterAddress()
method. It returns the number of messages which are sent to the dead letter address. If a dead

letter address is not defined, message are removed from the queue and discarded.

Messages can also be moved from a queue to another queue by using the moveMessages()
method.

• Listing and removing messages

Messages can be listed from a queue by using the listMessages() method which returns an
array of Map, one Map for each message.

Messages can also be removed from the queue by using the removeMessages() method which
returns a boolean for the single message ID variant or the number of removed messages for the
filter variant. The removeMessages() method takes a filter argument to remove only filtered
messages. Setting the filter to an empty string will in effect remove all messages.

• Counting messages

The number of messages in a queue is returned by the getMessageCount() method. Alternatively,
the countMessages() will return the number of messages in the queue which match a given filter.

• Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which
returns a boolean for the single message ID variant or the number of updated messages for the
filter variant.

• Message counters

Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see Message Counters section). The message counters can
also be reset for a single queue using the resetMessageCounter() method.

• Retrieving the queue attributes

The QueueControl exposes queue settings through its attributes (e.g. getFilter() to retrieve the
queue’s filter if it was created with one, isDurable() to know whether the queue is durable or
not, etc.)

• Pausing and resuming Queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it’s resumed, it’ll begin delivering the queued
messages, if any.

• Disabling and Enabling Queues

The QueueControl can disable and enable the underlying queue. When a queue is disabled, it will
not longer have messages routed to it. When it’s enabled, it’ll begin having messages routed to it
again.

This is useful where you may need to disable message routing to a queue but wish to keep
consumers active to investigate issues, without causing further message build up in the queue.

29.1.4. Other Resources Management

Apache ActiveMQ Artemis allows to start and stop its remote resources (acceptors, diverts, bridges,
etc.) so that a server can be taken off line for a given period of time without stopping it completely
(e.g. if other management operations must be performed such as resolving heuristic transactions).
These resources are:

• Acceptors

They can be started or stopped using the start() or. stop() method on the AcceptorControl
interface. The acceptors parameters can be retrieved using the AcceptorControl attributes (see
Understanding Acceptors)

• Diverts

They can be started or stopped using the start() or stop() method on the DivertControl
interface. Diverts parameters can be retrieved using the DivertControl attributes (see Diverting
and Splitting Message Flows)

• Bridges

They can be started or stopped using the start() (resp. stop()) method on the BridgeControl
interface. Bridges parameters can be retrieved using the BridgeControl attributes (see Core
bridges)

• Broadcast groups

They can be started or stopped using the start() or stop() method on the BroadcastGroupControl
interface. Broadcast groups parameters can be retrieved using the BroadcastGroupControl
attributes (see Clusters)

• Cluster connections

They can be started or stopped using the start() or stop() method on the
ClusterConnectionControl interface. Cluster connections parameters can be retrieved using the
ClusterConnectionControl attributes (see Clusters)

29.2. Management Via JMX
Apache ActiveMQ Artemis can be managed using JMX.

The management API is exposed by Apache ActiveMQ Artemis using MBeans. By default, Apache
ActiveMQ Artemis registers its resources with the domain org.apache.activemq.artemis. For
example, the ObjectName to manage the anycast queue exampleQueue on the address exampleAddress
is:

org.apache.activemq.artemis:broker=<brokerName>,component=addresses,address="exampleAd
dress",subcomponent=queues,routing-type="anycast",queue="exampleQueue"

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

and the MBean is:

org.apache.activemq.artemis.api.core.management.QueueControl

The MBean’s ObjectName is built using the helper class
org.apache.activemq.artemis.api.core.management.ObjectNameBuilder. Example usage of the
ObjectNameBuilder to obtain ActiveMQServerControl's name:

brokerName = "0.0.0.0"; // configured e.g. in broker.xml <broker-name> element
objectNameBuilder = ObjectNameBuilder.create(ArtemisResolver.DEFAULT_DOMAIN,
brokerName, true);
serverObjectName = objectNameBuilder.getActiveMQServerObjectName()

Managing Apache ActiveMQ Artemis using JMX is identical to management of any Java Applications
using JMX. It can be done by reflection or by creating proxies of the MBeans.

29.2.1. Configuring JMX

By default, JMX is enabled to manage Apache ActiveMQ Artemis. It can be disabled by setting jmx-
management-enabled to false in broker.xml:

<jmx-management-enabled>false</jmx-management-enabled>

Role Based Authorisation for JMX

Artemis uses the Java Virtual Machine’s Platform MBeanServer by default. This is guarded using role
based authorisation that leverages the broker’s JAAS plugin support.

The RBAC used to restrict access to Mbeans and their operations can be configured in one of two
ways. Via security-settings in broker.xml, described in JMX authorization in broker.xml, or via the
authorization element in the management.xml that is described below.

JMX authorisation in management.xml

There are 3 elements within the authorisation element, allowlist, default-access and role-access.
Let’s discuss each in turn.

Allowlist contains a list of MBeans that will bypass the authorisation, this is typically used for any
MBeans that are needed by the console to run etc. The default configuration is:

<allowlist>
 <entry domain="hawtio"/>
</allowlist>

This means that any MBean with the domain hawtio will be allowed access without authorisation.
for instance hawtio:plugin=artemis. You can also use wildcards for the MBean properties so the

following would also match.

<allowlist>
 <entry domain="hawtio" key="type=*"/>
</allowlist>


The allowlist element has replaced the whitelist element which is now
deprecated

The role-access defines how roles are mapped to particular MBeans and its attributes and methods.
The default configuration looks like:

<role-access>
 <match domain="org.apache.activemq.artemis">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
 </match>
</role-access>

This contains 1 match and will be applied to any MBean that has the domain
org.apache.activemq.artemis. Any access to any MBeans that have this domain are controlled by the
access elements which contain a method and a set of roles. The method being invoked will be used
to pick the closest matching method and the roles for this will be applied for access. For instance if
you try to invoke a method called listMessages on an MBean with the org.apache.activemq.artemis
domain then this would match the access with the method of list*. You could also explicitly
configure this by using the full method name, like so:

<access method="listMessages" roles="view,update,amq"/>

You can also match specific MBeans within a domain by adding a key attribute that is used to match
one of the properties on the MBean, like:

<match domain="org.apache.activemq.artemis" key="subcomponent=queues">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

You could also match a specific queue for instance:

org.apache.activemq.artemis:broker=<brokerName>,component=addresses,address="exampleAd
dress",subcomponent=queues,routing-type="anycast",queue="exampleQueue"

by configuring:

<match domain="org.apache.activemq.artemis" key="queue=exampleQueue">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

You can also use wildcards for the MBean properties so the following would also match, allowing
prefix match for the MBean properties.

<match domain="org.apache.activemq.artemis" key="queue=example*">
 <access method="list*" roles="view,update,amq"/>
 <access method="get*" roles="view,update,amq"/>
 <access method="is*" roles="view,update,amq"/>
 <access method="set*" roles="update,amq"/>
 <access method="*" roles="amq"/>
</match>

In case of multiple matches, the exact matches have higher priority than the wildcard matches and
the longer wildcard matches have higher priority than the shorter wildcard matches.

Access to JMX MBean attributes are converted to method calls so these are controlled via the set*,
get* and is*. The * access is the catch-all for everything other method that isn’t specifically
matched.

The default-access element is basically the catch-all for every method call that isn’t handled via the
role-access configuration. This has the same semantics as a match element.

JMX authorization in broker.xml

The existing security-settings in broker.xml can be used for JMX RBAC.

Using the view and edit permissions on matches in security-settings provides an alternative to the
authorization section in management.xml. Using a single security model based on addresses, with
reloadable configuration, simplifies operation.

An MBeanServer interceptor that delegates to the broker security manager must be configured
with a JVM system property that allows it to be added to all MBeanServers in the JVM.

This is configured via a system property as follows:

 java -Djavax.management.builder.initial
=org.apache.activemq.artemis.core.server.management.ArtemisRbacMBeanServerBuilder


When this property is provided, the authorization section of management.xml
MUST be omitted/removed as that depends on an alternative MBeanServer
interceptor and builder.

The security-settings match addresses used for JMX RBAC use the mops. (shorthand for management
operations) prefix.

The MBeanServer guard maps JMX MBean ObjectNames to a hierarchical address of the general
form:

mops<.jmx domain><.type><.component><.name>[.operation]

 for the broker domain, the domain is omitted.

For example, to give the admin role view and edit permissions on all MBeans, use the following
security-setting:

<security-setting match="mops.#">
 <permission type="view" roles="admin"/>
 <permission type="edit" roles="admin"/>
</security-setting>

To grant the managerRole role view permission to just the activemq.management address, target the
address component with name activemq.management and with .* to include all operations.

<security-setting match="mops.address.activemq.management.*">
 <permission type="view" roles="managerRole"/>
</security-setting>

To ensure no user has permission to force a failover using the broker (server control) MBean, use
the following that defines the empty roles set for a particular mutating operation on the broker
component:

<security-setting match="mops.broker.forceFailover">
 <permission type="edit" roles=""/>
</security-setting>

Local JMX Access with JConsole

Due to the authorisation which is enabled by default Apache ActiveMQ Artemis can not be managed

locally using JConsole when connecting as a local process. This is because JConsole does not pass
any authentication information when connecting this way which means the user cannot therefore
be authorised for any management operations. In order to use JConsole the user will either have to
disable authorisation by completely removing the authorisation element from management.xml or by
enabling remote access and providing the proper username and password credentials (discussed
next).

Remote JMX Access

By default, remote JMX access to Artemis is disabled for security reasons.

Artemis has a JMX agent which allows access to JMX MBeans remotely. This is configured via the
connector element in the management.xml configuration file. To enable this you simply add the
following xml:

<connector connector-port="1099"/>

This exposes the agent remotely on the port 1099. If you were connecting via JConsole you would
connect as a remote process using the service url:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

You’d be able to supply an appropriate user name and password in this case as well.

You can also configure the connector using the following:

connector-host

The host to expose the agent on.

connector-port

The port to expose the agent on.

rmi-registry-port

The port that the RMI registry binds to. If not set, the port is always random. Set to avoid
problems with remote JMX connections tunnelled through firewall.

jmx-realm

The jmx realm to use for authentication, defaults to activemq to match the JAAS configuration.

object-name

The object name to expose the remote connector on; default is connector:name=rmi.

secured

Whether the connector is secured using SSL.

key-store-path

The location of the keystore.

key-store-password

The keystore password. This can be masked.

key-store-provider

The provider; JKS by default.

trust-store-path

The location of the truststore.

trust-store-password

The trustore password. This can be masked.

trust-store-provider

The provider; JKS by default.

password-codec

The fully qualified class name of the password codec to use. See the password masking
documentation for more details on how this works.



It is important to note that the rmi registry will pick an ip address to bind to, If you
have a multi IP addresses/NICs present on the system then you can choose the ip
address to use by adding the following to artemis.profile
-Djava.rmi.server.hostname=localhost



Remote connections using the default JVM Agent not enabled by default as Artemis
exposes the MBean Server via its own configuration. This is so Artemis can
leverage the JAAS authentication layer via JMX. If you want to expose this then you
will need to disable both the connector and the authorisation by removing them
from the management.xml configuration. Please refer to Java Management guide to
configure the server for remote management (system properties must be set in
artemis.profile).

By default, Apache ActiveMQ Artemis server uses the JMX domain "org.apache.activemq.artemis".
To manage several Apache ActiveMQ Artemis servers from the same MBeanServer, the JMX domain
can be configured for each individual Apache ActiveMQ Artemis server by setting jmx-domain in
broker.xml:

<!-- use a specific JMX domain for ActiveMQ Artemis MBeans -->
<jmx-domain>my.org.apache.activemq</jmx-domain>

29.2.2. Example

See the JMX Management Example which shows how to use a remote connection to JMX and MBean
proxies to manage Apache ActiveMQ Artemis.

https://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html

29.2.3. Exposing JMX using Jolokia

The default broker configuration ships with the Jolokia HTTP agent deployed as a web application.
Jolokia is a remote JMX-over-HTTP bridge that exposes MBeans. For a full guide as to how to use it
refer to Jolokia documentation.

Reading an Attribute

A simple example to check whether a broker is active would be to use a curl command like this:

$ curl -s -H "Origin: http://localhost" -u myUser:myPass
http://localhost:8161/console/jolokia/read/org.apache.activemq.artemis:broker=\"0.0.0.
0\"/Active

Or you could send a JSON formatted POST request instead of using the URL

$ curl -s -H "Origin: http://localhost" -u myUser:myPass --header "Content-type:
application/json" --request POST --data '{"attribute": "Active", "mbean":
"org.apache.activemq.artemis:broker=\"0.0.0.0\"", "type": "read"}'
http://localhost:8161/console/jolokia

By default it’s necessary to pass the Origin header due to the CORS checking which is configured in
etc/jolokia-access.xml.

Either such curl command would give you back something like the following (after formatting):

{
 "request": {
 "mbean": "org.apache.activemq.artemis:broker=\"0.0.0.0\"",
 "attribute": "Version",
 "type": "read"
 },
 "value": "true",
 "timestamp": 1663086398,
 "status": 200
}

The value of the attribute is contained in value (i.e. true). You could easily parse this JSON data with
a tool like jq which is available in most Linux distributions, e.g.:

$ curl -s -H "Origin: http://localhost" -u myUser:myPass --header "Content-type:
application/json" --request POST --data '{"attribute": "Active", "mbean":
"org.apache.activemq.artemis:broker=\"0.0.0.0\"", "type": "read"}'
http://localhost:8161/console/jolokia | jq -r '.value'

This command would simply return:

https://jolokia.org
https://jolokia.org/reference/html/manual/jolokia_protocol.html
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://jqlang.github.io/jq/

true

See more details on Jolokia’s read functionality in the Jolokia documentation.

Executing an Operation

Aside from reading an attribute the next most common task is executing an operation. For example,
you can list the connections to the broker with curl and parse the output with jq like this:

$ curl -s -H "Origin: http://localhost" -u myUser:myPass
"http://localhost:8161/console/jolokia/exec/org.apache.activemq.artemis:broker=\"0.0.0
.0\"/listConnections/\"\"/-1/-1" | jq '.value | fromjson'

Or you could send a JSON formatted POST request instead of using the URL

$ curl -s -H "Origin: http://localhost" -u myUser:myPass --header "Content-type:
application/json" --request POST --data '{"operation": "listConnections", "mbean":
"org.apache.activemq.artemis:broker=\"0.0.0.0\"", "type": "exec", "arguments": ["",
-1, -1] }' http://localhost:8161/console/jolokia | jq '.value | fromjson'

Either such command would give you back something like the following (after formatting):

{
 "data": [
 {
 "connectionID": "bd8d4635",
 "remoteAddress": "127.0.0.1:55754",
 "users": "",
 "creationTime": "Wed Jan 1 12:00:00 CDT 2020",
 "implementation": "RemotingConnectionImpl",
 "protocol": "CORE",
 "clientID": "",
 "localAddress": "tcp:///127.0.0.1:61616",
 "sessionCount": 2
 },
 {
 "connectionID": "2a7ac661",
 "remoteAddress": "127.0.0.1:54394",
 "users": "",
 "creationTime": "Wed Jan 1 12:00:00 CDT 2020",
 "implementation": "OpenWireConnection",
 "protocol": "OPENWIRE",
 "clientID": "ID:myMachine-34439-1727292626395-0:1",
 "localAddress": "tcp:///127.0.0.1:61616",
 "sessionCount": 3
 }
],

https://jolokia.org/reference/html/manual/jolokia_protocol.html#read

 "count": 2
}

You could also leverage the Management Method Option Syntax to get more specific results.

$ curl -s -H "Origin: http://localhost" -u myUser:myPass
"http://localhost:8161/console/jolokia/exec/org.apache.activemq.artemis:broker=\"0.0.0
.0\"/listConnections/\{\"field\":\"protocol\",\"operation\":\"EQUALS\",\"value\":\"OPE
NWIRE\"\}/-1/-1" | jq '.value | fromjson'

Or you could send a JSON formatted POST request instead of using the URL

$ curl -s -H "Origin: http://localhost" -u myUser:myPass --header "Content-type:
application/json" --request POST --data '{"operation": "listConnections", "mbean":
"org.apache.activemq.artemis:broker=\"0.0.0.0\"", "type": "exec", "arguments": [
"{\"field\":\"protocol\",\"operation\":\"EQUALS\",\"value\":\"OPENWIRE\"}", -1, -1]
}' http://localhost:8161/console/jolokia | jq '.value | fromjson'

Either such command would give you back something like the following (after formatting):

{
 "data": [
 {
 "connectionID": "2a7ac661",
 "remoteAddress": "127.0.0.1:54394",
 "users": "",
 "creationTime": "Wed Jan 1 12:00:00 CDT 2020",
 "implementation": "OpenWireConnection",
 "protocol": "OPENWIRE",
 "clientID": "ID:myMachine-34439-1727292626395-0:1",
 "localAddress": "tcp:///127.0.0.1:61616",
 "sessionCount": 3
 }
],
 "count": 1
}

See more details on Jolokia’s exec functionality in the Jolokia documentation.

29.2.4. Management Method Option Syntax

When there are lots of these resources to manage it can sometimes be difficult to find a particular
resource. For example, if there are 1,000 connections to the broker and you just want to manage
one particular connection that is using a specific client ID. A handful of management operations
support a special JSON syntax to filter results based on the following inputs:

• field (see the list of fields for each management operation below)

https://jolokia.org/reference/html/manual/jolokia_protocol.html#exec

• operation

◦ CONTAINS

◦ NOT_CONTAINS

◦ EQUALS

◦ NOT_EQUALS

◦ GREATER_THAN

◦ LESS_THAN

• value

• sortField (optional)

• sortOrder (optional)

◦ asc

◦ desc

Here are the methods which support this syntax along with the available fields:

listConnections

• connectionID

• clientID

• users

• protocol

• sessionCount

• remoteAddress

• localAddress

• sessionID

• creationTime

• implementation

• Example:

{
 "field": "protocol",
 "operation": "EQUALS",
 "value": "OPENWIRE"
}

listSessions

• id

• connectionID

• consumerCount

• producerCount

• user

• validatedUser

• protocol

• clientID

• localAddress

• remoteAddress

• creationTime

• Example:

{
 "field": "remoteAddress",
 "operation": "CONTAINS",
 "value": "127.0.0.1"
}

listAddresses

• id

• name

• routingTypes

• producerId

• queueCount

• internal

• Example:

{
 "field": "name",
 "operation": "CONTAINS",
 "value": "shipping"
}

listQueues

• id

• name

• consumerID

• address

• maxConsumers

• filter

• messageCount

• consumerCount

• deliveringCount

• messagesAdded

• messagesAcked

• messagesExpired

• routingType

• user

• autoCreated

• durable

• paused

• temporary

• purgeOnNoConsumers

• messagesKilled

• directDeliver

• lastValue

• exclusive

• scheduledCount

• lastValueKey

• groupRebalance

• groupRebalancePauseDispatch

• groupBuckets

• groupFirstKey

• enabled

• ringSize

• consumersBeforeDispatch

• delayBeforeDispatch

• autoDelete

• internalQueue

• Example:

{
 "field": "consumerCount",
 "operation": "GREATER_THAN",
 "value": "7"
}

listConsumers

• id or consumerID

• sequentialId or sequentialId

• session or sessionID

• connection or connectionID

• queue or queueName

• filter

• address

• user

• validatedUser

• protocol

• clientID

• localAddress

• remoteAddress

• queueType

• browseOnly

• creationTime

• messagesInTransit or deliveringCount

• messagesInTransitSize

• messagesDelivered

• messagesDeliveredSize

• messagesAcknowledged

• messagesAcknowledgedAwaitingCommit

• lastDeliveredTime

• lastAcknowledgedTime

• status

• Example:

{
 "field": "messagesAcknowledged",
 "operation": "LESS_THAN",
 "value": "10"
}

listProducers

• id

• name

• session or sessionID

• connectionID

• address or destination

• user

• validatedUser

• protocol

• clientID

• localAddress

• remoteAddress

• creationTime

• msgSent

• msgSizeSent

• lastProducedMessageID

• Example:

{
 "field": "validatedUser",
 "operation": "EQUALS",
 "value": "bob"
}

Sorting

Results can be sorted by any field in either ascending (asc) or descending (desc) order. For example,
use something like this in a call to listConnections to get all the AMQP connections with the newest
connections first.

{
 "field": "protocol",
 "operation": "EQUALS",
 "value": "AMQP",
 "sortField": "creationTime",
 "sortOrder": "desc"
}

Pagination

These methods also support pagination. In other words, the results can be divided into groups and
then iterated through. The second parameter is the "page number" (i.e. which page to inspect) and
the third parameter is the "page size" (i.e. how many results to return on each page). This is how, for
example, the web console displays paginated results.

To disable pagination pass -1 for either page number of page size (or both).

29.2.5. JMX and the Web Console

The web console that ships with Artemis uses Jolokia under the covers which in turn uses JMX. This
will use the authentication configuration as described in the Role Based Authorisation for JMX
section. This means that when MBeans are accessed via the console the credentials used to log into
the console and the roles associated with them. By default, access to the console is only allow via
users with the amq role. This is configured in the artemis.profile via the system property
-Dhawtio.role=amq. You can configure multiple roles by changing this to
-Dhawtio.roles=amq,view,update.

If a user doesn’t have the correct role to invoke a specific operation then this will display an
authorisation exception in the console.

ArtemisRbacMBeanServerBuilder and ArtemisRbacInvocationHandler

The ArtemisRbacMBeanServerBuilder class, when configured as value for the system property
javax.management.builder.initial will cause the ArtemisRbacInvocationHandler to be installed on
every JMX MBeanServer in the JVM. The ArtemisRbacInvocationHandler intercepts all operations
on the MBeanServer and chooses to guard a subsection of those operations.

For guarded operations the view or edit permissions are required to make an invocation. If the
current authenticated subject does not have the required roles to grant those permissions, a
security exception is thrown.

For query operations on the MBeanServer, the results of the query are limited to entries that have
the required view permission.

29.3. Using Management Message API
The management message API in ActiveMQ Artemis is accessed by sending Core Client messages to
a special address, the management address.

Management messages are regular Core Client messages with well-known properties that the server
needs to understand to interact with the management API:

• The name of the managed resource

• The name of the management operation

• The parameters of the management operation

When such a management message is sent to the management address, Apache ActiveMQ Artemis
server will handle it, extract the information, invoke the operation on the managed resources and
send a management reply to the management message’s reply-to address (specified by
ClientMessageImpl.REPLYTO_HEADER_NAME).

A ClientConsumer can be used to consume the management reply and retrieve the result of the
operation (if any) stored in the reply’s body. For portability, results are returned as a JSON String
rather than Java Serialization (the

https://json.org

org.apache.activemq.artemis.api.core.management.ManagementHelper can be used to convert the JSON
string to Java objects).

These steps can be simplified to make it easier to invoke management operations using Core
messages:

1. Create a ClientRequestor to send messages to the management address and receive replies

2. Create a ClientMessage

3. Use the helper class org.apache.activemq.artemis.api.core.management.ManagementHelper to fill
the message with the management properties

4. Send the message using the ClientRequestor

5. Use the helper class org.apache.activemq.artemis.api.core.management.ManagementHelper to
retrieve the operation result from the management reply.

For example, to find out the number of messages in the queue exampleQueue:

ClientSession session = ...
ClientRequestor requestor = new ClientRequestor(session, "activemq.management");
ClientMessage message = session.createMessage(false);
ManagementHelper.putAttribute(message, "queue.exampleQueue", "messageCount");
session.start();
ClientMessage reply = requestor.request(m);
int count = (Integer) ManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

Management operation name and parameters must conform to the Java interfaces defined in the
management packages.

Names of the resources are built using the helper class
org.apache.activemq.artemis.api.core.management.ResourceNames and are straightforward (e.g.
queue.exampleQueue for QueueControl of the Queue exampleQueue, or broker for the
ActiveMQServerControl).


The ManagementHelper class can be used only with Core JMS messages. When called
with a message from a different JMS library, an exception will be thrown.

29.3.1. Configuring Management

The management address to send management messages is configured in broker.xml:

<management-address>activemq.management</management-address>

By default, the address is activemq.management.

The management address requires a special user permission manage to be able to receive and handle
management messages. This is also configured in broker.xml:

<!-- users with the admin role will be allowed to manage -->
<!-- Apache ActiveMQ Artemis using management messages -->
<security-setting match="activemq.management">
 <permission type="manage" roles="admin" />
</security-setting>

29.3.2. Fine grained RBAC on management messages

There is optional RBAC on the content of management messages sent to the management address.
RBAC is enabled through configuration by setting the attribute management-message-rbac to true.


The manage permission is required to execute management operations via
messages. The view and edit permissions must be used in conjunction with the
manage permission.

When enabled, more fine-grained permissions on the content of management messages sent to the
management address can be configured through the security-settings.

The security-settings match addresses used for RBAC follow the general hierarchical form of:
management-rbac-prefix, component type, component name, operation. Where the values are
extracted from the management message headers.

<management-rbac-prefix>.<resource type>.<resource name>.<operation>

Immutable operations and attribute access will require the view permission, all other operations
will require the edit permission.

In the following example the dataImport role can only access the id attribute of queues, which is the
only management operation that is required by the data import command line tool.

<security-setting match="mops.queue.*.getID">
 <permission type="view" roles="dataImport" />
 <permission type="manage" roles="dataImport" />
</security-setting>

If you want the admin role to have full access, use a wildcard after the management-rbac-prefix and
grant both the view and edit permissions:

<security-setting match="mops.#">
 <permission type="view" roles="admin" />
 <permission type="update" roles="admin" />
 <permission type="manage" roles="admin" />
</security-setting>

29.3.3. Management Example

See the Management Example which shows how to use JMS messages to manage the Apache
ActiveMQ Artemis server.

29.4. Management Notifications
Apache ActiveMQ Artemis emits notifications to inform listeners of potentially interesting events
(creation of new resources, security violation, etc.).

These notifications can be received by two different ways:

• JMX notifications

• Notification messages

29.4.1. JMX Notifications

If JMX is enabled (see Configuring JMX section), JMX notifications can be received by subscribing to
org.apache.activemq.artemis:type=Broker,brokerName=<broker name>,module=Core,serviceType=Server
for notifications on resources.

29.4.2. Notification Messages

Apache ActiveMQ Artemis defines a special management notification address. Queues can be bound
to this address so that clients will receive management notifications as messages.

A client which wants to receive management notifications must create a queue bound to the
management notification address. It can then receive the notifications from its queue.

Notifications messages are regular messages with additional properties corresponding to the
notification (its type, when it occurred, the resources which were concerned, etc.).

Since notifications are regular messages, it is possible to use message selectors to filter out
notifications and receives only a subset of all the notifications emitted by the server.

Configuring The Management Notification Address

The management notification address to receive management notifications is configured in
broker.xml:

<management-notification-address>activemq.notifications</management-notification-
address>

By default, the address is activemq.notifications.

Suppressing Session Notifications

Some messaging patterns can generate a lot of SESSION_CREATED and SESSION_CLOSED notifications. In
a clustered environment this will come with some computational overhead. If these notifications

are not otherwise used they can be disabled through:

<suppress-session-notifications>true</suppress-session-notifications>

The only time these notifications are required is in a cluster with MQTT clients where unique client
ID utilization needs to be enforced. Default value is false

Receiving Notification Messages

Apache ActiveMQ Artemis’s Core JMS Client can be used to receive notifications:

Topic notificationsTopic = ActiveMQJMSClient.createTopic("activemq.notifications");

Session session = ...
MessageConsumer notificationConsumer = session.createConsumer(notificationsTopic);
notificationConsumer.setMessageListener(new MessageListener() {
 public void onMessage(Message notif) {
 System.out.println("------------------------");
 System.out.println("Received notification:");
 try {
 Enumeration propertyNames = notif.getPropertyNames();
 while (propertyNames.hasMoreElements()) {
 String propertyName = (String)propertyNames.nextElement();
 System.out.format(" %s: %s\n", propertyName, notif.getObjectProperty
(propertyName));
 }
 } catch (JMSException e) {
 }
 System.out.println("------------------------");
 }
});

29.4.3. Example

See the Management Notification Example which shows how to use a JMS MessageListener to
receive management notifications from ActiveMQ Artemis server.

29.4.4. Notification Types and Headers

Below is a list of all the different kinds of notifications as well as which headers are on the
messages. Every notification has a _AMQ_NotifType (value noted in parentheses) and
_AMQ_NotifTimestamp header. The timestamp is the un-formatted result of a call to
java.lang.System.currentTimeMillis().

BINDING_ADDED (0)

_AMQ_Binding_Type, _AMQ_Address, _AMQ_ClusterName, _AMQ_RoutingName, _AMQ_Binding_ID,
_AMQ_Distance, _AMQ_FilterString

BINDING_REMOVED (1)

_AMQ_Address, _AMQ_ClusterName, _AMQ_RoutingName, _AMQ_Binding_ID, _AMQ_Distance,
_AMQ_FilterString

CONSUMER_CREATED (2)

_AMQ_Address, _AMQ_ClusterName, _AMQ_RoutingName, _AMQ_Distance, _AMQ_ConsumerCount, _AMQ_User,
_AMQ_ValidatedUser, _AMQ_RemoteAddress, _AMQ_SessionName, _AMQ_FilterString, _AMQ_CertSubjectDN

CONSUMER_CLOSED (3)

_AMQ_Address, _AMQ_ClusterName, _AMQ_RoutingName, _AMQ_Distance, _AMQ_ConsumerCount, _AMQ_User,
_AMQ_RemoteAddress, _AMQ_SessionName, _AMQ_FilterString

SECURITY_AUTHENTICATION_VIOLATION (6)

_AMQ_User, _AMQ_CertSubjectDN, _AMQ_RemoteAddress

SECURITY_PERMISSION_VIOLATION (7)

_AMQ_Address, _AMQ_CheckType, _AMQ_User

DISCOVERY_GROUP_STARTED (8)

name

DISCOVERY_GROUP_STOPPED (9)

name

BROADCAST_GROUP_STARTED (10)

name

BROADCAST_GROUP_STOPPED (11)

name

BRIDGE_STARTED (12)

name

BRIDGE_STOPPED (13)

name

CLUSTER_CONNECTION_STARTED (14)

name

CLUSTER_CONNECTION_STOPPED (15)

name

ACCEPTOR_STARTED (16)

factory, id

ACCEPTOR_STOPPED (17)

factory, id

PROPOSAL (18)

_JBM_ProposalGroupId, _JBM_ProposalValue, _AMQ_Binding_Type, _AMQ_Address, _AMQ_Distance

PROPOSAL_RESPONSE (19)

_JBM_ProposalGroupId, _JBM_ProposalValue, _JBM_ProposalAltValue, _AMQ_Binding_Type,
_AMQ_Address, _AMQ_Distance

CONSUMER_SLOW (21)

_AMQ_Address, _AMQ_ConsumerCount, _AMQ_RemoteAddress, _AMQ_ConnectionName, _AMQ_ConsumerName,
_AMQ_SessionName

ADDRESS_ADDED (22)

_AMQ_Address, _AMQ_Routing_Type

ADDRESS_REMOVED (23)

_AMQ_Address, _AMQ_Routing_Type

CONNECTION_CREATED (24)

_AMQ_ConnectionName, _AMQ_RemoteAddress

CONNECTION_DESTROYED (25)

_AMQ_ConnectionName, _AMQ_RemoteAddress

SESSION_CREATED (26)

_AMQ_ConnectionName, _AMQ_User, _AMQ_SessionName

SESSION_CLOSED (27)

_AMQ_ConnectionName, _AMQ_User, _AMQ_SessionName

MESSAGE_DELIVERED (28)

_AMQ_Address, _AMQ_Routing_Type, _AMQ_RoutingName, _AMQ_ConsumerName, _AMQ_Message_ID

MESSAGE_EXPIRED (29)

_AMQ_Address, _AMQ_Routing_Type, _AMQ_RoutingName, _AMQ_ConsumerName, _AMQ_Message_ID

29.5. Message Counters
Message counters can be used to obtain information on queues over time as Apache ActiveMQ
Artemis keeps a history on queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be
possible to query the number of messages in a queue at regular interval. However, this would not
be enough to know if the queue is used: the number of messages can remain constant because
nobody is sending or receiving messages from the queue or because there are as many messages
sent to the queue than messages consumed from it. The number of messages in the queue remains
the same in both cases but its use is widely different.

Message counters give additional information about the queues:

count

The total number of messages added to the queue since the server was started

countDelta

the number of messages added to the queue since the last message counter update

messageCount

The current number of messages in the queue

messageCountDelta

The overall number of messages added/removed from the queue since the last message counter
update. For example, if messageCountDelta is equal to -10 this means that overall 10 messages
have been removed from the queue (e.g. 2 messages were added and 12 were removed)

lastAddTimestamp

The timestamp of the last time a message was added to the queue

lastAckTimestamp

The timestamp of the last time a message from the queue was acknowledged

updateTimestamp

The timestamp of the last message counter update

These attributes can be used to determine other meaningful data as well. For example, to know
specifically how many messages were consumed from the queue since the last update simply
subtract the messageCountDelta from countDelta.

29.5.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory.

To enable message counters, you can set it to true in broker.xml:

<message-counter-enabled>true</message-counter-enabled>

Message counters keep a history of the queue metrics (10 days by default) and sample all the
queues at regular interval (10 seconds by default). If message counters are enabled, these values
should be configured to suit your messaging use case in broker.xml:

<!-- keep history for a week -->
<message-counter-max-day-history>7</message-counter-max-day-history>
<!-- sample the queues every minute (60000ms) -->
<message-counter-sample-period>60000</message-counter-sample-period>

Message counters can be retrieved using the Management API. For example, to retrieve message
counters on a queue using JMX:

// retrieve a connection to Apache ActiveMQ Artemis's MBeanServer
MBeanServerConnection mbsc = ...
QueueControlMBean queueControl = (QueueControl)MBeanServerInvocationHandler
.newProxyInstance(mbsc,
 on,
 QueueControl.class,
 false);
// message counters are retrieved as a JSON String
String counters = queueControl.listMessageCounter();
// use the MessageCounterInfo helper class to manipulate message counters more easily
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",
messageCounter.getMessageCount(),
messageCounter.getMessageCountDelta());

29.5.2. Example

See the Message Counter Example which shows how to use message counters to retrieve
information on a queue.

Chapter 30. Management Console
Apache ActiveMQ Artemis ships by default with a management console. It is powered by Hawt.io.

Its purpose is to expose the Management API via a user friendly web ui.

30.1. Login
To access the management console use a browser and go to the URL http://localhost:8161/console.

A login screen will be presented, if your broker is secure, you will need to use a user with admin
role, if it is unsecure simply enter any user/password.

30.2. Security
The management console communicates with the broker via HTTP(S). The broker uses the Jolokia
JMX-HTTP bridge to convert the contents of these HTTP requests into a JMX operations and then
returns the results.

Security for Jolokia is configured via etc/jolokia-access.xml. You can read more about the contents
of this file in the Jolokia Security Guide. By default the console is locked down to localhost. Pay
particular attention to the <cors> restrictions when exposing the console web endpoint over the
network.


Any request with an Origin header using the HTTPS scheme which is ultimately
received by Jolokia via HTTP is discarded by default since it is deemed insecure. If
you use a TLS proxy that transforms secure requests to insecure requests (e.g. in a

http://hawt.io
http://localhost:8161/console
https://jolokia.org/
https://jolokia.org/
https://jolokia.org/reference/html/manual/security.html

Kubernetes environment) then consider changing the proxy to preserve HTTPS
and switching the embedded web server to HTTPS. If that isn’t feasible then you
can accept the risk by specifying following element

<cors>
 ...
 <ignore-scheme/>
 ...
</cors>

Problems with Jolokia security are often observed as the ability to login to the console, but the
console is blank.

30.3. Console
Once logged in you should be presented with a screen similar to.

30.3.1. Navigation Menu

On the top right is small menu area you will see some icons.

• question mark This will open a menu with the following items

◦ Help This will navigate to the console user guide

◦ About this will load an about screen, here you will be able to see and validate versions

• person will provide a drop down menu with

◦ Preferences this will open the preferences page

◦ Log out self descriptive.

30.3.2. Navigation Tabs

Running below the Navigation Menu you will see several default feature tabs. The 1st 2 are specific
to Artemis. The rest of this document will feature on these 2 tabs.

• Artemis This shows detailed information of Apache ActiveMQ Artemis specific functionality in a
tabular format.

• Artemis JMX This is a JMX view of Apache ActiveMQ Artemis specific functionality.

• JMX This exposes the raw Jolokia JMX so you can browse/access all the JMX endpoints exposed by
the JVM.

• Runtime This allows you to monitor the thread usage and their state as well as view metrics etc..

In previous versions there was a "Connect" tab which could be used to connect to a remote broker
from the same console. This was disabled by default for security purposes, but it can be enabled
again by removing -Dhawtio.disableProxy=true from artemis.profile (or artemis.profile.cmd on
Windows).

You can install further hawtio plugins if you wish to have further functionality.

30.4. Artemis Tab
Click Artemis in the left navigation bar to see the Artemis specific plugin. The Artemis tab shows
view of information in a tabular format. (The Artemis tab won’t appear if there is no broker in this
JVM).

30.4.1. Status Tab

The Status tan shows the basic health of the broker.

Acceptors

This expands to show and expose details of the current configured acceptors.

Broker Network

This expands to show and expose details of the current Cluster of Brokers.

30.4.2. Connections Tab

This shows a table of all the brokers connections from clients and other Brokers.

30.4.3. Sessions Tab

This shows a table of all sessions that belong ti connected clients.

30.4.4. Producers Tab

This shows a table of all client producers including message sent information.

30.4.5. Consumers Tab

This shows a table of all client consumers including message delivered information.

30.4.6. Addresses Tab

This shows a table of all the Broker’s addresses

Key Operations

Creating a new Address

To create a new address simply click on the 'Create Address' button and filling in the form
presented

You can also perform operations on an address by clicking on the 3 dots and choosing the
appropriate operation.

30.4.7. Queues Tab

This shows a table of all the Broker’s queues

30.5. Artemis JMX Tab
Click Artemis JMX in the left navigation bar to see the Artemis JMX specific plugin. (The Artemis JMX
tab won’t appear if there is no broker in this JVM). The Artemis JMX plugin works very much the
same as the JMX plugin however with a focus on interacting with an Artemis broker.

30.5.1. Tree View

The tree view on the left-hand side shows the top level JMX tree of each broker instance running in
the JVM. Expanding the tree will show the various MBeans registered by Artemis that you can
inspect via the Attributes tab.

30.5.2. Key Operations

Creating a new Address

To create a new address simply click on the broker or the address folder in the jmx tree and click
on the create tab.

Once you have created an address you should be able to Send to it by clicking on it in the jmx tree
and clicking on the send tab.

Creating a new Queue

To create a new queue click on the address you want to bind the queue to and click on the create
tab.

Once you have created a queue you should be able to Send a message to it or Browse it or view the
Attributes or Charts. Simply click on the queue in th ejmx tree and click on the appropriate tab.

You can also see a graphical view of all brokers, addresses, queues and their consumers using the
Diagram tab.

30.6. Status Logging
When the broker starts it will detect the presence of the web console and log status information,
e.g.:

INFO [org.apache.activemq.artemis] AMQ241002: Artemis Jolokia REST API available at
http://localhost:8161/console/jolokia
INFO [org.apache.activemq.artemis] AMQ241004: Artemis Console available at
http://localhost:8161/console

The web console is detected by inspecting the value of the <display-name> tag in the war file’s WEB-
INF/web.xml descriptor. By default it looks for hawtio. However, if this value is changed for any
reason the broker can look for this new value by setting the following system property

-Dorg.apache.activemq.artemis.webConsoleDisplayName=newValue

Chapter 31. Metrics
Apache ActiveMQ Artemis can export metrics to a variety of monitoring systems via the
Micrometer vendor-neutral application metrics facade.

Important runtime metrics have been instrumented via the Micrometer API, and all a user needs to
do is implement org.apache.activemq.artemis.core.server.metrics.ActiveMQMetricsPlugin in order
to instantiate and configure a io.micrometer.core.instrument.MeterRegistry implementation.
Relevant implementations of MeterRegistry are available from the Micrometer code-base.

This is a simple interface:

public interface ActiveMQMetricsPlugin extends Serializable {

 ActiveMQMetricsPlugin init(Map<String, String> options);

 MeterRegistry getRegistry();

 default void registered(ActiveMQServer server) { }
}

When the broker starts it will call init and pass in the options which can be specified in XML as
key/value properties. At this point the plugin should instantiate and configure the
io.micrometer.core.instrument.MeterRegistry implementation.

Later during the broker startup process it will call getRegistry in order to get the MeterRegistry
implementation and use it for registering meters. Once registered, it will call registered to provide
the plugin with a handle to the server. The plugin can then use that handle later to inspect whether
the broker is operational and not in a startup or shutdown phase.

The broker ships with two ActiveMQMetricsPlugin implementations:

org.apache.activemq.artemis.core.server.metrics.plugins.LoggingMetricsPlugin

This plugin simply logs metrics. It’s not very useful for production, but can serve as a
demonstration of the Micrometer integration. It takes no key/value properties for configuration.

org.apache.activemq.artemis.core.server.metrics.plugins.SimpleMetricsPlugin

This plugin is used for testing. It is in-memory only and provides no external output. It takes no
key/value properties for configuration.

31.1. Exported Metrics
The following metrics are exported, categorized by component. A description for each metric is
exported along with the metric itself therefore the description will not be repeated here.

Every metric is "tagged" with the broker tag (configured via <name> in broker.xml). A tag is a piece of
metadata that gives context to the metric. These tags are the foundation of what is sometimes
referred to as "dimensional metrics." Metrics may have additional tags, but at the very least they

https://micrometer.io/
https://github.com/micrometer-metrics/micrometer/tree/master/implementations

will all have the broker tag.

Lastly, all metrics specifically for ActiveMQ Artemis are prefixed with artemis..

31.1.1. Broker

• connection.count

• total.connection.count

• address.memory.usage

• address.memory.usage.percentage

• disk.store.usage

• replica.sync

• active

• authentication.count tagged by result - either success or failure

• authorization.count tagged by result - either success or failure

31.1.2. Address

These metrics are tagged with the address tag which reflects the name of the corresponding
address.

• routed.message.count

• unrouted.message.count

• address.size

• number.of.pages

31.1.3. Queue

These metrics are tagged with the address & queue tags which reflects the name of the
corresponding address & queue respectively.

• message.count

• durable.message.count

• persistent.size

• durable.persistent.size

• delivering.message.count

• delivering.durable.message.count

• delivering.persistent.size

• delivering.durable.persistent.size

• scheduled.message.count

• scheduled.durable.message.count

• scheduled.persistent.size

• scheduled.durable.persistent.size

• messages.acknowledged

• messages.added

• messages.killed

• messages.expired

• consumer.count

It may appear that some higher level broker metrics are missing (e.g. total message count).
However, these metrics can be deduced by aggregating the lower level metrics (e.g. aggregate the
message.count metrics from all queues to get the total).

31.1.4. Optional metrics

There are a handful of other useful metrics that are related to the JVM, the underlying operating
system, etc. These metrics are provided specifically by Micrometer and therefore do not have the
artmemis. prefix.

JVM memory metrics

Gauges buffer and memory pool utilization. Underlying data gathered from Java’s
BufferPoolMXBeans and MemoryPoolMXBeans.

Enabled by default.

JVM GC

Gauges max and live data size, promotion and allocation rates, and the number of times the GC
pauses (or concurrent phase time in the case of CMS). Underlying data gathered from Java’s
MemoryPoolMXBeans.

Disabled by default.

JVM thread

Gauges thread peak, the number of daemon threads, and live threads. Underlying data gathered
from Java’s ThreadMXBean.

Disabled by default.

Netty Allocator

Collects metrics from Netty’s PooledByteBufAllocatorMetric.

Disabled by default. File descriptors:: Gauges current and max-allowed open files.

Disabled by default.

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/BufferPoolMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/MemoryPoolMXBean.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/ThreadMXBean.html
https://netty.io/4.1/api/io/netty/buffer/PooledByteBufAllocatorMetric.html

Processor

Gauges system CPU count, CPU usage, and 1-minute load average as well as process CPU usage.

Disabled by default.

Uptime

Gauges process start time and uptime.

Disabled by default.

Logging

Counts the number of logging events per logging category (e.g. WARN, ERROR, etc.).

Disabled by default.



This works exclusively with Log4j2 (i.e the default logging implementation shipped
with the broker). If you’re embedding the broker and using a different logging
implementation (e.g. Log4j 1.x, JUL, Logback, etc.) and you enable these metrics
then the broker will fail to start with a java.lang.NoClassDefFoundError as it
attempts to locate Log4j2 classes that don’t exist on the classpath.

Security caches

The following authentication & authorization cache metrics are exported. They are all tagged by
cache (either authentication or authorization). Additional tags are noted.

• cache.size

• cache.puts

• cache.gets tagged by result - either hit or miss

• cache.evictions

• cache.eviction.weight

Disabled by default.

Executor Services

Metrics for executor services cover both the major instances of
java.util.concurrent.ExecutorService used by the broker to manage threads as well as
EventExecutors associated with instances of Netty’s EventLoopGroup.

Executor service metrics are disabled by default.

Java Executor Services

All metrics are tagged with the name of the broker and with the executor service name which
corresponds to the role it plays within the broker (e.g. general, io, paging, scheduled).

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ExecutorService.html
https://netty.io/4.1/api/io/netty/util/concurrent/EventExecutor.html
https://netty.io/4.1/api/io/netty/channel/EventLoopGroup.html

• executor

• executor.completed

• executor.active

• executor.idle

• executor.queued

• executor.queue.remaining

• executor.pool.core

• executor.pool.size

• executor.pool.max

Any ExecutorService instance used to schedule tasks also has these metrics:

• executor.scheduled.repetitively

• executor.scheduled.once

Netty Event Executors

All metrics are tagged with the name of the broker and with the name of the underlying Netty
EventExecutor.

• netty.eventexecutor.tasks.pending

31.2. Configuration
Metrics for all addresses and queues are enabled by default. If you want to disable metrics for a
particular address or set of addresses you can do so by setting the enable-metrics address-setting to
false.

In broker.xml use the metrics element to configure which general broker and JVM metrics are
reported and to configure the plugin itself. Here’s a configuration with all optional metrics:

<metrics>
 <jvm-memory>true</jvm-memory> <!-- defaults to true -->
 <jvm-gc>true</jvm-gc> <!-- defaults to false -->
 <jvm-threads>true</jvm-threads> <!-- defaults to false -->
 <netty-pool>true</netty-pool> <!-- defaults to false -->
 <file-descriptors>true</file-descriptors> <!-- defaults to false -->
 <processor>true</processor> <!-- defaults to false -->
 <uptime>true</uptime> <!-- defaults to false -->
 <logging>true</logging> <!-- defaults to false -->
 <security-caches>true</security-caches> <!-- defaults to false -->
 <executor-services>true</executor-services> <!-- defaults to false -->
 <plugin class-
name="org.apache.activemq.artemis.core.server.metrics.plugins.LoggingMetricsPlugin"/>
</metrics>

The plugin can also be configured with key/value properties in order to customize the
implementation as necessary, e.g.:

<metrics>
 <plugin class-name="org.example.MyMetricsPlugin">
 <property key="host" value="example.org" />
 <property key="port" value="5162" />
 <property key="foo" value="10" />
 </plugin>
</metrics>

Chapter 32. Core Bridges
The function of a bridge is to consume messages from a source queue, and forward them to a target
address, typically on a different Apache ActiveMQ Artemis server.

The source and target servers do not have to be in the same cluster which makes bridging suitable
for reliably sending messages from one cluster to another, for instance across a WAN, or internet
and where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to
network failure, the bridge will retry connecting to the target until it comes back online. When it
comes back online it will resume operation as normal.

In summary, bridges are a way to reliably connect two separate Apache ActiveMQ Artemis servers
together. With a core bridge both source and target servers must be Apache ActiveMQ Artemis
servers.

Bridges can be configured to provide once and only once delivery guarantees even in the event of
the failure of the source or the target server. They do this by using duplicate detection (described in
Duplicate Detection).



Although they have similar function, don’t confuse core bridges with JMS bridges!

Core bridges are for linking an Apache ActiveMQ Artemis node with another
Apache ActiveMQ Artemis node and do not use the JMS API. A JMS Bridge is used
for linking any two JMS 1.1 compliant JMS providers. So, a JMS Bridge could be
used for bridging to or from different JMS compliant messaging system. It’s always
preferable to use a core bridge if you can. Core bridges use duplicate detection to
provide once and only once guarantees. To provide the same guarantee using a JMS
bridge you would have to use XA which has a higher overhead and is more
complex to configure.

32.1. Configuring Core Bridges
Bridges are configured in broker.xml. Let’s kick off with an example:

<bridge name="my-bridge">
 <queue-name>sausage-factory</queue-name>
 <forwarding-address>mincing-machine</forwarding-address>
 <ha>true</ha>
 <filter string="name='aardvark'"/>
 <transformer-class-name>
 org.apache.activemq.artemis.jms.example.HatColourChangeTransformer
 </transformer-class-name>
 <min-large-message-size>102400</min-large-message-size>
 <check-period>30000</check-period>
 <connection-ttl>60000</connection-ttl>
 <retry-interval>2000</retry-interval>

 <retry-interval-multiplier>1.0</retry-interval-multiplier>
 <max-retry-interval>2000</max-retry-interval>
 <initial-connect-attempts>-1</initial-connect-attempts>
 <reconnect-attempts>-1</reconnect-attempts>
 <use-duplicate-detection>true</use-duplicate-detection>
 <confirmation-window-size>10000000</confirmation-window-size>
 <producer-window-size>1048576</producer-window-size>
 <user>foouser</user>
 <password>foopassword</password>
 <reconnect-attempts-same-node>10</reconnect-attempts-same-node>
 <routing-type>PASS</routing-type>
 <concurrency>1</concurrency>
 <static-connectors>
 <connector-ref>remote-connector</connector-ref>
 </static-connectors>
 <!-- alternative to static-connectors
 <discovery-group-ref discovery-group-name="bridge-discovery-group"/>
 -->
 <client-id>myClientID</client-id>
</bridge>

In the above example we have shown all the parameters its possible to configure for a bridge. In
practice you might use many of the defaults so it won’t be necessary to specify them all explicitly.

Let’s take a look at all the parameters in turn:

name

All bridges must have a unique name in the server.

queue-name

This is the unique name of the local queue that the bridge consumes from, it’s a mandatory
parameter.

The queue must already exist by the time the bridge is instantiated at start-up.

forwarding-address

This is the address on the target server that the message will be forwarded to. If a forwarding
address is not specified, then the original address of the message will be retained.

ha

This optional parameter determines whether or not this bridge should support high availability.
True means it will connect to any available server in a cluster and support failover. The default
value is false.

filter-string

An optional filter string can be supplied. If specified then only messages which match the filter
expression specified in the filter string will be forwarded. The filter string follows the ActiveMQ
Artemis filter expression syntax described in Filter Expressions.

transformer-class-name

An optional transformer can be specified. This gives you the opportunity to transform the
message’s header or body before forwarding it. See the transformer chapter for more details
about transformer-specific configuration.

min-large-message-size

Any message larger than this size (in bytes) is considered a large message (to be sent in chunks).
Supports byte notation like "K", "MB", "MiB", "GB", etc. Default is 102400 (i.e. 100KiB).

check-period

Sets the period (in milliseconds) used to check if the bridge client has failed to receive pings
from the server. Use -1 to disable this check. Default is 30000.

connection-ttl

How long (in milliseconds) the remote server will keep the connection alive in the absence of
any data arriving from the bridge. This should be greater than the check-period. Default is 60000.

retry-interval

This optional parameter determines the period in milliseconds between subsequent
reconnection attempts, if the connection to the target server has failed. The default value is 2000
milliseconds.

retry-interval-multiplier

This optional parameter determines a multiplier to apply to the time since the last retry to
compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let’s take an example:

If we set retry-interval to 1000 ms and we set retry-interval-multiplier to 2.0, then, if the first
reconnect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between subsequent
reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

max-retry-interval

This enforces a limit on retry-interval since it can grow due to retry-interval-multiplier.
Default is 2000.

initial-connect-attempts

This optional parameter determines the total number of initial connect attempts the bridge will
make before giving up and shutting down. A value of -1 signifies an unlimited number of
attempts. The default value is -1.

reconnect-attempts

This optional parameter determines the total number of reconnect attempts the bridge will
make before giving up and shutting down. A value of -1 signifies an unlimited number of
attempts. The default value is -1.

use-duplicate-detection

This optional parameter determines whether the bridge will automatically insert a duplicate id
property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from
the source server. If the connection fails or server crashes, then, when the bridge resumes it will
resend unacknowledged messages. This might result in duplicate messages being sent to the
target server. By enabling duplicate detection allows these duplicates to be screened out and
ignored.

This allows the bridge to provide a once and only once delivery guarantee without using
heavyweight methods such as XA (see Duplicate Detection for more information).

The default value for this parameter is true.

confirmation-window-size

This optional parameter determines the confirmation-window-size to use for the connection used
to forward messages to the target node. Supports byte notation like "K", "MB", "MiB", "GB", etc.
This attribute is described in section Client failover attributes



When using the bridge to forward messages to an address which uses the BLOCK
address-full-policy from a queue which has a max-size-bytes set it’s important
that confirmation-window-size is less than or equal to max-size-bytes to prevent
the flow of messages from ceasing.

producer-window-size

This optional parameter determines the producer flow control through the bridge. Use -1 to
disable. Supports byte notation like "K", "MB", "MiB", "GB", etc. Default is 1048576 (i.e. 1MiB).

user

This optional parameter determines the user name to use when creating the bridge connection
to the remote server. If it is not specified the default cluster user specified by cluster-user in
broker.xml will be used.

password

This optional parameter determines the password to use when creating the bridge connection to
the remote server. If it is not specified the default cluster password specified by cluster-password
in broker.xml will be used.

reconnect-attempts-same-node

This configures the number of times reconnection attempts will be made to the same node on
the topology before reverting back to the initial connector(s). Default is 10.

routing-type

Bridges can apply a particular routing-type to the messages it forwards, strip the existing routing
type, or simply pass the existing routing-type through. This is useful in situations where the
message may have its routing-type set but you want to bridge it to an address using a different
routing-type. It’s important to keep in mind that a message with the anycast routing-type will not

actually be routed to queues using multicast and vice-versa. By configuring the routing-type of
the bridge you have the flexibility to deal with any situation. Valid values are ANYCAST, MULTICAST,
PASS, & STRIP. The default is PASS.

concurrency

For bridging high latency networks, and particularly for destinations with a high throughput,
more workers might have to be commited to the bridge. This is done with the concurrency
parameter. Increasing the concurrency will get reflected by more consumers and producers
showing up on the bridged destination, allowing for increased parallelism across high latency
networks. The default is 1.

When using a concurrency value greater than 1 multiple bridges will be created and named with
an index. For example, if a bridge named myBridge was configured with a concurrency of 3 then
actually 3 bridges would be created named myBridge-0, myBridge-1, and myBridge-2. This is
important to note for management operations as each bridge will have its own associated
BridgeControl.

static-connectors

Pick either this or discovery-group-ref to connect the bridge to the target server.

The static-connectors is a list of connector-ref elements pointing to connector elements defined
elsewhere. A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as
well as the server connection parameters (host, port etc). For more information about what
connectors are and how to configure them, please see Configuring the Transport.

discovery-group-ref

Pick either this or static-connector to connect the bridge to the target server.

The discovery-group-ref element has one attribute - discovery-group-name. This attribute points
to a discovery-group defined elsewhere. For more information about what discovery-groups are
and how to configure them, please see Discovery Groups.

client-id

An optional identifier to use for the bridge connection. This can help with identifying the
connection on the remote broker (e.g. via the web console). Default is empty (i.e. unset).

Chapter 33. Clusters

33.1. Overview
Apache ActiveMQ Artemis clusters allow groups of Apache ActiveMQ Artemis servers to be grouped
together in order to share message processing load. Each active node in the cluster is an active
Apache ActiveMQ Artemis server which manages its own messages and handles its own
connections.

The cluster is formed by each node declaring cluster connections to other nodes in the core
configuration file broker.xml. When a node forms a cluster connection to another node, internally it
creates a core bridge (as described in Core Bridges) connection between it and the other node, this
is done transparently behind the scenes - you don’t have to declare an explicit bridge for each node.
These cluster connections allow messages to flow between the nodes of the cluster to balance load.

Nodes can be connected together to form a cluster in many different topologies, we will discuss a
couple of the more common topologies later in this chapter.

We’ll also discuss client side load balancing, where we can balance client connections across the
nodes of the cluster, and we’ll consider message redistribution where Apache ActiveMQ Artemis
will redistribute messages between nodes to avoid starvation.

Another important part of clustering is server discovery where servers can broadcast their
connection details so clients or other servers can connect to them with the minimum of
configuration.



Once a cluster node has been configured it is common to simply copy that
configuration to other nodes to produce a symmetric cluster. However, care must
be taken when copying the Apache ActiveMQ Artemis files. Do not copy the Apache
ActiveMQ Artemis data (i.e. the bindings, journal, paging, and large-messages
directories) from one node to another. When a node is started for the first time
and initializes its journal files it also persists a special identifier to the journal
directory. This id must be unique among nodes in the cluster or the cluster will not
form properly.

33.2. Performance Considerations
It is important to note that while the goal of clustering is to increase overall message throughput via
horizontal scaling it is not a "silver bullet." In certain situations clustering can, in fact, reduce
message throughput so care must be taken when choosing a clustered configuration. Here’s a few
general guidelines:

1. Establish a clear, concrete performance goal. Performance testing & tuning are often difficult
and tedious activities. Small, relative gains will tempt you to keep going, and without a goal you
will never know when to stop. You need a goal to know "how good is good enough."

2. Start simple. Benchmark your use-case with a single broker first. A single broker can handle
millions of messages per second in certain use-cases. If you can’t meet your performance goal

with a single broker only then move to a clustered configuration. Only add complexity when
there is a clear benefit.

The main way a cluster can reduce overall message throughput is if there are are not enough
producers & consumers on each node leading to message build-up on some nodes and consumer
starvation others. The cluster has mechanisms to deal with this (i.e. message load-balancing &
redistribution, which will be covered later), but you really don’t want the broker to intervene and
move messages between nodes unless absolutely necessary because that adds latency.

Therefore, when thinking in performance terms the main question one must answer when
choosing a clustered configuration is: Do I have enough clients so that each node in the cluster has
sufficient consumers to receive all the messages produced on that node? If the answer to that
question is "yes" then clustering may, in fact, improve overall message throughput for you. If the
answer to that question is "no" then you’re likely to get better performance from either a smaller
cluster or just a single broker.

Also keep in mind that a connection router may improve performance of your cluster by grouping
related consumers and producers together on the same node.

33.3. Server discovery
Server discovery is a mechanism by which servers can propagate their connection details to:

• Messaging clients. A messaging client wants to be able to connect to the servers of the cluster
without having specific knowledge of which servers in the cluster are up at any one time.

• Other servers. Servers in a cluster want to be able to create cluster connections to each other
without having prior knowledge of all the other servers in the cluster.

This information, let’s call it the Cluster Topology, is actually sent around normal Apache ActiveMQ
Artemis connections to clients and to other servers over cluster connections. This being the case we
need a way of establishing the initial first connection. This can be done using dynamic discovery
techniques like UDP and JGroups, or by providing a list of initial connectors.

33.3.1. Dynamic Discovery

Server discovery uses UDP multicast or JGroups to broadcast server connection settings.

Broadcast Groups

A broadcast group is the means by which a server broadcasts connectors over the network. A
connector defines a way in which a client (or other server) can make connections to the server. For
more information on what a connector is, please see Configuring the Transport.

The broadcast group takes a connector and broadcasts it on the network. Depending on which
broadcasting technique you configure, it uses either UDP or JGroups to broadcast connector
information.

Broadcast groups are defined in the server configuration file broker.xml. There can be many
broadcast groups per Apache ActiveMQ Artemis server. All broadcast groups must be defined in a

https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/
https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.jgroups.org/

broadcast-groups element.

Let’s take a look at an example broadcast group from broker.xml that defines a UDP broadcast
group:

<broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <local-bind-address>172.16.9.3</local-bind-address>
 <local-bind-port>5432</local-bind-port>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <broadcast-period>2000</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
</broadcast-groups>

Some of the broadcast group parameters are optional and you’ll normally use the defaults, but we
specify them all in the above example for clarity. Let’s discuss each one in turn:

name

attribute. Each broadcast group in the server must have a unique name.

local-bind-address

This is the local bind address that the datagram socket is bound to. If you have multiple network
interfaces on your server, you would specify which one you wish to use for broadcasts by setting
this property. If this property is not specified then the socket will be bound to the wildcard
address, an IP address chosen by the kernel. This is a UDP specific attribute.

local-bind-port

If you want to specify a local port to which the datagram socket is bound you can specify it here.
Normally you would just use the default value of -1 which signifies that an anonymous port
should be used. This parameter is always specified in conjunction with local-bind-address. This
is a UDP specific attribute.

group-address

This is the multicast address to which the data will be broadcast. It is a class D IP address in the
range 224.0.0.0 to 239.255.255.255, inclusive. The address 224.0.0.0 is reserved and is not
available for use. This parameter is mandatory. This is a UDP specific attribute.

group-port

This is the UDP port number used for broadcasting. This parameter is mandatory. This is a UDP
specific attribute.

broadcast-period

This is the period in milliseconds between consecutive broadcasts. This parameter is optional,
the default value is 2000 milliseconds.

connector-ref

This specifies the connector and optional backup connector that will be broadcasted (see
Configuring the Transport for more information on connectors).

Here is another example broadcast group that defines a JGroups broadcast group:

<broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <broadcast-period>2000</broadcast-period>
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
</broadcast-groups>

To be able to use JGroups to broadcast, one must specify two attributes, i.e. jgroups-file and
jgroups-channel, as discussed in details as following:

jgroups-file

attribute. This is the name of JGroups configuration file. It will be used to initialize JGroups
channels. Make sure the file is in the java resource path so that Apache ActiveMQ Artemis can
load it. The typical location for the file is the etc directory from the broker instance.

jgroups-channel

attribute. The name that JGroups channels connect to for broadcasting.


The JGroups attributes (jgroups-file and jgroups-channel) and UDP specific
attributes described above are exclusive of each other. Only one set can be
specified in a broadcast group configuration. Don’t mix them!

The following is an example of a JGroups file

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:org:jgroups"
 xsi:schemaLocation="urn:org:jgroups
http://www.jgroups.org/schema/jgroups.xsd">
 <TCP bind_addr="${jgroups.bind_addr:site_local}"
 bind_port="${jgroups.bind_port:7800}"
 external_addr="${jgroups.external_addr}"
 external_port="${jgroups.external_port}"
 thread_pool.min_threads="0"
 thread_pool.max_threads="200"
 thread_pool.keep_alive_time="30000"/>
 <RED/>

 <!-- a location that can be found by both server's running -->
 <FILE_PING location="../file.ping.dir"/>
 <MERGE3 min_interval="10000"

 max_interval="30000"/>
 <FD_SOCK2/>
 <FD_ALL3 timeout="40000" interval="5000" />
 <VERIFY_SUSPECT2 timeout="1500" />
 <BARRIER />
 <pbcast.NAKACK2 use_mcast_xmit="false" />
 <UNICAST3 />
 <pbcast.STABLE desired_avg_gossip="50000"
 max_bytes="4M"/>
 <pbcast.GMS print_local_addr="true" join_timeout="2000"/>
 <UFC max_credits="2M"
 min_threshold="0.4"/>
 <MFC max_credits="2M"
 min_threshold="0.4"/>
 <FRAG2 frag_size="60K" />
 <!--RSVP resend_interval="2000" timeout="10000"/-->
 <pbcast.STATE_TRANSFER/>
</config>

As it shows, the file content defines a jgroups protocol stacks. If you want Apache ActiveMQ Artemis
to use this stacks for channel creation, you have to make sure the value of jgroups-file in your
broadcast-group/discovery-group configuration to be the name of this jgroups configuration file.
For example if the above stacks configuration is stored in a file named "jgroups-stacks.xml" then
your jgroups-file should be like

<jgroups-file>jgroups-stacks.xml</jgroups-file>

Discovery Groups

While the broadcast group defines how connector information is broadcasted from a server, a
discovery group defines how connector information is received from a broadcast endpoint (a UDP
multicast address or JGroup channel).

A discovery group maintains a list of connector pairs - one for each broadcast by a different server.
As it receives broadcasts on the broadcast endpoint from a particular server it updates its entry in
the list for that server.

If it has not received a broadcast from a particular server for a length of time it will remove that
server’s entry from its list.

Discovery groups are used in two places in Apache ActiveMQ Artemis:

• By cluster connections so they know how to obtain an initial connection to download the
topology

• By messaging clients so they know how to obtain an initial connection to download the topology

Although a discovery group will always accept broadcasts, its current list of available primary and
backup servers is only ever used when an initial connection is made, from then server discovery is

done over the normal Apache ActiveMQ Artemis connections.



Each discovery group must be configured with broadcast endpoint (UDP or
JGroups) that matches its broadcast group counterpart. For example, if broadcast
is configured using UDP, the discovery group must also use UDP, and the same
multicast address.

Defining Discovery Groups on the Server

For cluster connections, discovery groups are defined in the server side configuration file
broker.xml. All discovery groups must be defined inside a discovery-groups element. There can be
many discovery groups defined by Apache ActiveMQ Artemis server. Let’s look at an example:

<discovery-groups>
 <discovery-group name="my-discovery-group">
 <local-bind-address>172.16.9.7</local-bind-address>
 <group-address>231.7.7.7</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

We’ll consider each parameter of the discovery group:

name

attribute. Each discovery group must have a unique name per server.

local-bind-address

If you are running with multiple network interfaces on the same machine, you may want to
specify that the discovery group listens only a specific interface. To do this you can specify the
interface address with this parameter. This parameter is optional. This is a UDP specific
attribute.

group-address

This is the multicast IP address of the group to listen on. It should match the group-address in the
broadcast group that you wish to listen from. This parameter is mandatory. This is a UDP specific
attribute.

group-port

This is the UDP port of the multicast group. It should match the group-port in the broadcast
group that you wish to listen from. This parameter is mandatory. This is a UDP specific attribute.

refresh-timeout

This is the period the discovery group waits after receiving the last broadcast from a particular
server before removing that servers connector pair entry from its list. You would normally set
this to a value significantly higher than the broadcast-period on the broadcast group otherwise
servers might intermittently disappear from the list even though they are still broadcasting due

to slight differences in timing. This parameter is optional, the default value is 10000 milliseconds
(10 seconds).

Here is another example that defines a JGroups discovery group:

<discovery-groups>
 <discovery-group name="my-broadcast-group">
 <jgroups-file>test-jgroups-file_ping.xml</jgroups-file>
 <jgroups-channel>activemq_broadcast_channel</jgroups-channel>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

To receive broadcast from JGroups channels, one must specify two attributes, jgroups-file and
jgroups-channel, as discussed in details as following:

jgroups-file

attribute. This is the name of JGroups configuration file. It will be used to initialize JGroups
channels. Make sure the file is in the java resource path so that Apache ActiveMQ Artemis can
load it.

jgroups-channel

attribute. The name that JGroups channels connect to for receiving broadcasts.


The JGroups attributes (jgroups-file and jgroups-channel) and UDP specific
attributes described above are exclusive of each other. Only one set can be
specified in a discovery group configuration. Don’t mix them!

Discovery Groups on the Client Side

Let’s discuss how to configure an Apache ActiveMQ Artemis client to use discovery to discover a list
of servers to which it can connect. The way to do this differs depending on whether you’re using
JMS or the core API.

Configuring client discovery

Use the udp URL scheme and a host:port combination matches the group-address and group-port
from the corresponding broadcast-group on the server:

udp://231.7.7.7:9876

Connections created using this URI will be load-balanced across the list of servers that the discovery
group maintains by listening on the multicast address specified in the discovery group
configuration.

The aforementioned refreshTimeout parameter can be set directly in the URI.

There is also a URL parameter named initialWaitTimeout. If the corresponding JMS connection

factory or core session factory is used immediately after creation then it may not have had enough
time to received broadcasts from all the nodes in the cluster. On first usage, the connection factory
will make sure it waits this long since creation before creating the first connection. The default
value for this parameter is 10000 milliseconds.

33.3.2. Discovery using static Connectors

Sometimes it may be impossible to use UDP on the network you are using. In this case its possible to
configure a connection with an initial list of possible servers. This could be just one server that you
know will always be available or a list of servers where at least one will be available.

This doesn’t mean that you have to know where all your servers are going to be hosted, you can
configure these servers to use the reliable servers to connect to. Once they are connected their
connection details will be propagated via the server it connects to

Configuring a Cluster Connection

For cluster connections there is no extra configuration needed, you just need to make sure that any
connectors are defined in the usual manner, (see Configuring the Transport for more information
on connectors). These are then referenced by the cluster connection configuration.

Configuring a Client Connection

A static list of possible servers can also be used by a normal client.

Configuring client discovery

A list of servers to be used for the initial connection attempt can be specified in the connection URI
using a syntax with (), e.g.:

(tcp://myhost:61616,tcp://myhost2:61616)?reconnectAttempts=5

The brackets are expanded so the same query can be appended after the last bracket for ease.

33.4. Server-Side Message Load Balancing
If cluster connections are defined between nodes of a cluster, then Apache ActiveMQ Artemis will
load balance messages arriving at a particular node from a client.

Let’s take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric cluster
(described in Symmetrical Clusters section). We have a queue called OrderQueue deployed on each
node of the cluster.

We have client Ca connected to node A, sending orders to the server. We have also have order
processor clients Pa, Pb, Pc, and Pd connected to each of the nodes A, B, C, D. If no cluster
connection was defined on node A, then as order messages arrive on node A they will all end up in
the OrderQueue on node A, so will only get consumed by the order processor client attached to node
A, Pa.

If we define a cluster connection on node A, then as ordered messages arrive on node A instead of
all of them going into the local OrderQueue instance, they are distributed in a round-robin fashion
between all the nodes of the cluster. The messages are forwarded from the receiving node to other
nodes of the cluster. This is all done on the server side, the client maintains a single connection to
node A.

For example, messages arriving on node A might be distributed in the following order between the
nodes: B, D, C, A, B, D, C, A, B, D. The exact order depends on the order the nodes started up, but the
algorithm used is round robin.

Apache ActiveMQ Artemis cluster connections can be configured to always blindly load balance
messages in a round robin fashion irrespective of whether there are any matching consumers on
other nodes, but they can be a bit cleverer than that and also be configured to only distribute to
other nodes if they have matching consumers. We’ll look at both these cases in turn with some
examples, but first we’ll discuss configuring cluster connections in general.

33.4.1. Configuring Cluster Connections

Cluster connections group servers into clusters so that messages can be load balanced between the
nodes of the cluster. Let’s take a look at a typical cluster connection. Cluster connections are always
defined in broker.xml inside a cluster-connection element. There can be zero or more cluster
connections defined per Apache ActiveMQ Artemis server.

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address></address>
 <connector-ref>netty-connector</connector-ref>
 <check-period>1000</check-period>
 <connection-ttl>5000</connection-ttl>
 <min-large-message-size>50000</min-large-message-size>
 <call-timeout>5000</call-timeout>
 <retry-interval>500</retry-interval>
 <retry-interval-multiplier>1.0</retry-interval-multiplier>
 <max-retry-interval>5000</max-retry-interval>
 <initial-connect-attempts>-1</initial-connect-attempts>
 <reconnect-attempts>-1</reconnect-attempts>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>ON_DEMAND</message-load-balancing>
 <max-hops>1</max-hops>
 <confirmation-window-size>32000</confirmation-window-size>
 <call-failover-timeout>30000</call-failover-timeout>
 <notification-interval>1000</notification-interval>
 <notification-attempts>2</notification-attempts>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 <client-id></client-id>
 </cluster-connection>
</cluster-connections>

In the above cluster connection all parameters have been explicitly specified. The following shows

all the available configuration options

address

Each cluster connection only applies to addresses that match the specified address field. An
address is matched on the cluster connection when it begins with the string specified in this
field. The address field on a cluster connection also supports comma separated lists and an
exclude syntax !. To prevent an address from being matched on this cluster connection, prepend
a cluster connection address string with !.

In the case shown above the cluster connection will load balance messages sent to all addresses
(since it’s empty).

The address can be any value and you can have many cluster connections with different values
of address, simultaneously balancing messages for those addresses, potentially to different
clusters of servers. By having multiple cluster connections on different addresses a single
Apache ActiveMQ Artemis Server can effectively take part in multiple clusters simultaneously.

Be careful not to have multiple cluster connections with overlapping values of address, e.g.
"europe" and "europe.news" since this could result in the same messages being distributed
between more than one cluster connection, possibly resulting in duplicate deliveries.

Examples:

• 'eu' matches all addresses starting with 'eu'

• '!eu' matches all address except for those starting with 'eu'

• 'eu.uk,eu.de' matches all addresses starting with either 'eu.uk' or 'eu.de'

• 'eu,!eu.uk' matches all addresses starting with 'eu' but not those starting with 'eu.uk'


• Address exclusion will always takes precedence over address inclusion.

• Address matching on cluster connections does not support wild-card
matching.

connector-ref

This is the connector which will be sent to other nodes in the cluster so they have the correct
cluster topology.

This parameter is mandatory.

check-period

The period (in milliseconds) used to check if the cluster connection has failed to receive pings
from another server. Default is 30000.

connection-ttl

This is how long a cluster connection should stay alive if it stops receiving messages from a
specific node in the cluster. Default is 60000.

min-large-message-size

If the message size (in bytes) is larger than this value then it will be split into multiple segments

when sent over the network to other cluster members. Default is 102400.

call-timeout

When a packet is sent via a cluster connection and is a blocking call, i.e. for acknowledgements,
this is how long it will wait (in milliseconds) for the reply before throwing an exception. Default
is 30000.

retry-interval

We mentioned before that, internally, cluster connections cause bridges to be created between
the nodes of the cluster. If the cluster connection is created and the target node has not been
started, or say, is being rebooted, then the cluster connections from other nodes will retry
connecting to the target until it comes back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same
meaning as the retry-interval on a bridge (as described in Core Bridges).

This parameter is optional and its default value is 500 milliseconds.

retry-interval-multiplier

This is a multiplier used to increase the retry-interval after each reconnect attempt, default is 1.

max-retry-interval

The maximum delay (in milliseconds) for retries. Default is 2000.

initial-connect-attempts

The number of times the system will try to connect a node in the cluster initially. If the max-retry
is achieved this node will be considered permanently down and the system will not route
messages to this node. Default is -1 (infinite retries).

reconnect-attempts

The number of times the system will try to reconnect to a node in the cluster. If the max-retry is
achieved this node will be considered permanently down and the system will stop routing
messages to this node. Default is -1 (infinite retries).

use-duplicate-detection

Internally cluster connections use bridges to link the nodes, and bridges can be configured to
add a duplicate id property in each message that is forwarded. If the target node of the bridge
crashes and then recovers, messages might be resent from the source node. By enabling
duplicate detection any duplicate messages will be filtered out and ignored on receipt at the
target node.

This parameter has the same meaning as use-duplicate-detection on a bridge. For more
information on duplicate detection, please see Duplicate Detection. Default is true.

message-load-balancing

This parameter determines if/how messages will be distributed between other nodes of the
cluster. It can be one of four values - OFF, STRICT, OFF_WITH_REDISTRIBUTION or ON_DEMAND (default).
This parameter replaces the deprecated forward-when-no-consumers parameter.

If this is set to OFF then messages will never be forwarded to another node in the cluster

If this is set to STRICT then each incoming message will be round robin’d even though the same
queues on the other nodes of the cluster may have no consumers at all, or they may have
consumers that have non matching message filters (selectors). Note that Apache ActiveMQ
Artemis will not forward messages to other nodes if there are no queues of the same name on
the other nodes, even if this parameter is set to STRICT. Using STRICT is like setting the legacy
forward-when-no-consumers parameter to true.

If this is set to ON_DEMAND then Apache ActiveMQ Artemis will only forward messages to other
nodes of the cluster if the address to which they are being forwarded has queues which have
consumers, and if those consumers have message filters (selectors) at least one of those selectors
must match the message. Using ON_DEMAND is like setting the legacy forward-when-no-consumers
parameter to false.

If this is set to OFF_WITH_REDISTRIBUTION then like with 'OFF' messages won’t be initially routed to
other nodes in the cluster. However, if redistribution is configured, it can forward messages in
the normal way. In this way local consumers will always have priority.

Keep in mind that this message forwarding/balancing is what we call "initial distribution." It is
different than redistribution which is discussed below.

Default is ON_DEMAND.

max-hops

When a cluster connection decides the set of nodes to which it might load balance a message,
those nodes do not have to be directly connected to it via a cluster connection. Apache ActiveMQ
Artemis can be configured to also load balance messages to nodes which might be connected to
it only indirectly with other Apache ActiveMQ Artemis servers as intermediates in a chain.

This allows Apache ActiveMQ Artemis to be configured in more complex topologies and still
provide message load balancing. We’ll discuss this more later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to other
Apache ActiveMQ Artemis serves which are directly connected to this server. This parameter is
optional.

confirmation-window-size

The size (in bytes) of the window used for sending confirmations from the server connected to.
So once the server has received confirmation-window-size bytes it notifies its client, default is
1048576. A value of -1 means no window.

producer-window-size

The size for producer flow control over cluster connection. it’s by default is 1MB.

call-failover-timeout

Similar to call-timeout but used when a call is made during a failover attempt. Default is -1 (no
timeout).

notification-interval

How often (in milliseconds) the cluster connection should broadcast itself when attaching to the
cluster. Default is 1000.

notification-attempts

How many times the cluster connection should broadcast itself when connecting to the cluster.
Default is 2.

discovery-group-ref

This parameter determines which discovery group is used to obtain the list of other servers in
the cluster that this cluster connection will make connections to.

Alternatively if you would like your cluster connections to use a static list of servers for discovery
then you can do it like this.

<cluster-connection name="my-cluster">
 ...
 <static-connectors>
 <connector-ref>server0-connector</connector-ref>
 <connector-ref>server1-connector</connector-ref>
 </static-connectors>
</cluster-connection>

Here we have defined 2 servers that we know for sure will that at least one will be available. There
may be many more servers in the cluster but these will; be discovered via one of these connectors
once an initial connection has been made.

client-id

An optional identifier to use for the cluster connection. This can help with identifying the
connection on the remote broker (e.g. via the web console). Default is empty (i.e. unset).

topology-scanner-attempts

The number of times the system tries to scan the cluster connection topology for missing cluster
nodes. Those are nodes discovered by a discovery group or defined by a static connector that are
not present in the cluster connection topology. A value of 0 means the system doesn’t scan the
cluster connection topology for missing cluster nodes. A value of -1 means the system scans the
cluster connection topology until there are no more missing cluster nodes. Default is 30.

33.4.2. Cluster User Credentials

When creating connections between nodes of a cluster to form a cluster connection, Apache
ActiveMQ Artemis uses a cluster user and cluster password which is defined in broker.xml:

<cluster-user>ACTIVEMQ.CLUSTER.ADMIN.USER</cluster-user>
<cluster-password>CHANGE ME!!</cluster-password>



It is imperative that these values are changed from their default, or remote clients
will be able to make connections to the server using the default values. If they are
not changed from the default, Apache ActiveMQ Artemis will detect this and pester
you with a warning on every start-up.

33.5. Client-Side Load balancing
With Apache ActiveMQ Artemis client-side load balancing, subsequent sessions created using a
single session factory can be connected to different nodes of the cluster. This allows sessions to
spread smoothly across the nodes of a cluster and not be "clumped" on any particular node.

The load balancing policy to be used by the client factory is configurable. Apache ActiveMQ Artemis
provides four out-of-the-box load balancing policies, and you can also implement your own and use
that.

The out-of-the-box policies are

• Round Robin. With this policy the first node is chosen randomly then each subsequent node is
chosen sequentially in the same order.

For example nodes might be chosen in the order B, C, D, A, B, C, D, A, B or D, A, B, C, D, A, B, C, D
or C, D, A, B, C, D, A, B, C.

Use
org.apache.activemq.artemis.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPo
licy as the <connection-load-balancing-policy-class-name>.

• Random. With this policy each node is chosen randomly.

Use
org.apache.activemq.artemis.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy
as the <connection-load-balancing-policy-class-name>.

• Random Sticky. With this policy the first node is chosen randomly and then re-used for
subsequent connections.

Use
org.apache.activemq.artemis.api.core.client.loadbalance.RandomStickyConnectionLoadBalancing
Policy as the <connection-load-balancing-policy-class-name>.

• First Element. With this policy the "first" (i.e. 0th) node is always returned.

Use
org.apache.activemq.artemis.api.core.client.loadbalance.FirstElementConnectionLoadBalancing
Policy as the <connection-load-balancing-policy-class-name>.

You can also implement your own policy by implementing the interface
org.apache.activemq.artemis.api.core.client.loadbalance.ConnectionLoadBalancingPolicy

Specifying which load balancing policy to use differs whether you are using JMS or the core API. If
you don’t specify a policy then the default will be used which is

org.apache.activemq.artemis.api.core.client.loadbalance.RoundRobinConnectionLoadBalancingPolicy
.

The parameter connectionLoadBalancingPolicyClassName can be set on the URI to configure what
load balancing policy to use:

tcp://localhost:61616?connectionLoadBalancingPolicyClassName=org.apache.activemq.artem
is.api.core.client.loadbalance.RandomConnectionLoadBalancingPolicy

The set of servers over which the factory load balances can be determined in one of two ways:

• Specifying servers explicitly in the URL. This also requires setting the
useTopologyForLoadBalancing parameter to false on the URL.

• Using discovery. This is the default behavior.

33.6. Specifying Members of a Cluster Explicitly
Sometimes you want to explicitly define a cluster more explicitly, that is control which server
connect to each other in the cluster. This is typically used to form non symmetrical clusters such as
chain cluster or ring clusters. This can only be done using a static list of connectors and is
configured as follows:

<cluster-connection name="my-cluster">
 <address/>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors allow-direct-connections-only="true">
 <connector-ref>server1-connector</connector-ref>
 </static-connectors>
</cluster-connection>

In this example we have set the attribute allow-direct-connections-only which means that the only
server that this server can create a cluster connection to is server1-connector. This means you can
explicitly create any cluster topology you want.

33.7. Message Redistribution
Another important part of clustering is message redistribution. Earlier we learned how server side
message load balancing round robins messages across the cluster. If message-load-balancing is OFF
or ON_DEMAND then messages won’t be forwarded to nodes which don’t have matching consumers.
This is great and ensures that messages aren’t moved to a queue which has no consumers to
consume them. However, there is a situation it doesn’t solve: What happens if the consumers on a
queue close after the messages have been sent to the node? If there are no consumers on the queue

the message won’t get consumed and we have a starvation situation.

This is where message redistribution comes in. With message redistribution Apache ActiveMQ
Artemis can be configured to automatically redistribute messages from queues which have no
consumers or consumers with filters that don’t match messages. The messages are re-routed to
other nodes in the cluster which do have matching consumers. To enable this functionality message-
load-balancing must be ON_DEMAND or OFF_WITH_REDISTRIBUTION

Message redistribution can be configured to kick in immediately after the need to redistribute is
detected, or to wait a configurable delay before redistributing. By default, message redistribution is
disabled.

Message redistribution can be configured on a per address basis, by specifying the redistribution
delay in the address settings. For more information on configuring address settings, please see
Configuring Addresses and Queues via Address Settings.

Here’s an address settings snippet from broker.xml showing how message redistribution is enabled
for a set of queues:

<address-settings>
 <address-setting match="#">
 <redistribution-delay>0</redistribution-delay>
 </address-setting>
</address-settings>

The above address-settings block would set a redistribution-delay of 0 for any queue which is
bound to any address. So the above would enable instant (no delay) redistribution for all addresses.

The attribute match can be an exact match or it can be a string that conforms to the Apache
ActiveMQ Artemis wildcard syntax (described in Wildcard Syntax).

The element redistribution-delay defines the delay in milliseconds between detecting the need for
redistribution and actually attempting redistribution. A delay of zero means the messages will be
immediately redistributed. A value of -1 signifies that messages will never be redistributed. The
default value is -1.

It often makes sense to introduce a delay before redistributing as it’s a common case that a
consumer closes but another one quickly is created on the same queue, in such a case you probably
don’t want to redistribute immediately since the new consumer will arrive shortly.



The broker uses internal store-and-forward queues to handle message which need
to be sent to other nodes in the cluster. Clients should not directly send messages
to these store-and-forward queues. If a client sends a message to a store-and-
forward queue it will be sent to the corresponding dead-letter address. It’s possible
to prevent clients from sending any messages to these internal queues by revoking
all security permissions using the following security-setting:

<security-setting match="$.artemis.internal.sf.#"/>

This configuration will not impact the internal processes which manage the store-
and-foward queues.

33.8. Cluster topologies
Apache ActiveMQ Artemis clusters can be connected together in many different topologies, let’s
consider the two most common ones here

33.8.1. Symmetric cluster

A symmetric cluster is probably the most common cluster topology.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster.
In other words every node in the cluster is no more than one hop away from every other node.

To form a symmetric cluster every node in the cluster defines a cluster connection with the
attribute max-hops set to 1. Typically the cluster connection will use server discovery in order to
know what other servers in the cluster it should connect to, although it is possible to explicitly
define each target server too in the cluster connection if, for example, UDP is not available on your
network.

With a symmetric cluster each node knows about all the queues that exist on all the other nodes
and what consumers they have. With this knowledge it can determine how to load balance and
redistribute messages around the nodes.

Don’t forget this warning when creating a symmetric cluster.

33.8.2. Chain cluster

With a chain cluster, each node in the cluster is not connected to every node in the cluster directly,
instead the nodes form a chain with a node on each end of the chain and all other nodes just
connecting to the previous and next nodes in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted in
one network and has many producer clients connected to it sending order messages. Due to
corporate policy, the order consumer clients need to be hosted in a different network, and that
network is only accessible via a third network. In this setup node B acts as a mediator with no
producers or consumers on it. Any messages arriving on node A will be forwarded to node B, which
will in turn forward them to node C where they can get consumed. Node A does not need to directly
connect to C, but all the nodes can still act as a part of the cluster.

To set up a cluster in this way, node A would define a cluster connection that connects to node B,
and node B would define a cluster connection that connects to node C. In this case we only want
cluster connections in one direction since we’re only moving messages from node A->B->C and
never from C->B->A.

For this topology we would set max-hops to 2. With a value of 2 the knowledge of what queues and
consumers that exist on node C would be propagated from node C to node B to node A. Node A
would then know to distribute messages to node B when they arrive, even though node B has no

consumers itself, it would know that a further hop away is node C which does have consumers.

33.8.3. Scaling Down

Apache ActiveMQ Artemis supports scaling down a cluster with no message loss (even for non-
durable messages). This is especially useful in certain environments (e.g. the cloud) where the size
of a cluster may change relatively frequently. When scaling up a cluster (i.e. adding nodes) there is
no risk of message loss, but when scaling down a cluster (i.e. removing nodes) the messages on
those nodes would be lost unless the broker sent them to another node in the cluster. Apache
ActiveMQ Artemis can be configured to do just that.

To enable this behavior configure scale-down in the live-only ha-policy, e.g.:

<ha-policy>
 <live-only>
 <scale-down>
 <enabled>true</enabled>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </scale-down>
 </live-only>
</ha-policy>

If scale-down/enabled is true then when the server is shutdown gracefully (i.e. stopped without
crashing) it will find another node in the cluster and send all of its messages (both durable and non-
durable) to that node. The messages are processed in order and go to the back of the respective
queues on the other node (just as if the messages were sent from an external client for the first
time).

The target of the scale down operation can be configured a few differnt ways. The above example
uses discovery-group-ref to reference a discovery-group which will be used to find the target
broker. This should be the same discovery-group referenced by your cluster-connection. You can
also specify a static list of connector elements, e.g.:

<connectors>
 ...
 <connector name="server0-connector">tcp://server0:61616</connector>
</connectors>
...
<ha-policy>
 <live-only>
 <scale-down>
 <enabled>true</enabled>
 <connectors>
 <connector-ref>server0-connector</connector-ref>
 </connectors>
 </scale-down>
 </live-only>
</ha-policy>

It’s also possible to specify group-name. If this is specified then messages will only be sent to another
node in the cluster that uses the same group-name as the server being shutdown, e.g.:

<ha-policy>
 <live-only>
 <scale-down>
 <enabled>true</enabled>
 <group-name>my-group</group-name>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </scale-down>
 </live-only>
</ha-policy>


If cluster nodes are grouped together with different group-name values beware. If
all the nodes in a single group are shut down then the messages from that
node/group will be lost.

Chapter 34. High Availability and Failover
We define high availability (HA) as the ability for the system to continue functioning after failure of
one or more of the servers.

A part of high availability is failover which we define as the ability for client connections to migrate
from one server to another in event of server failure so client applications can continue to operate.

34.1. Terminology
In order to discuss both configuration and runtime behavior consistently we need to define a
couple nouns and adjectives. These terms will be used throughout the documentation,
configuration, source code, and runtime logs.

34.1.1. Configuration

These nouns identify how the broker is configured, e.g. in broker.xml. The configuration allows
brokers to be paired together as primary/backup (i.e. an HA pair of brokers).

primary

This identifies the main broker in the high availability configuration. Oftentimes the hardware
on this broker will be higher performance than the hardware on the backup broker. Typically,
this broker is started before the backup and is active most of the time.

Each primary server can be paired with one backup server. Other backups can be configured,
but the primary will only pair with one. When the primary fails the backup will take over. At
this point if there are other backups configured then the backup that took over will pair with
one of those.

backup

This identifies the broker that should take over when the primary broker fails in a high
availability configuration. Oftentimes the hardware on this broker will be lower performance
than the hardware on the primary broker. Typically, this broker is started after the primary and
is passive most of the time.

34.1.2. Runtime

These adjectives describe the behavior of the broker at runtime. For example, you could have a
passive primary or an active backup.

active

This identifies a broker in a high-availability configuration which is accepting remote
connections. For example, consider the scenario where the primary broker has failed and its
backup has taken over. The backup would be described as active at that point since it is
accepting remote connections.

passive

This identifies a broker in a high-availability configuration which is not accepting remote

connections. For example, consider the scenario where the primary broker was started and then
the backup broker was started. The backup broker would be passive since it is not accepting
remote connections. It is waiting for the primary to fail before it activates and begins accepting
remote connections.

34.2. HA Policies
Apache ActiveMQ Artemis supports two main policies for backing up a server:

• shared store

• replication

These are configured via the ha-policy configuration element.


What is Backed Up?

Only message data written to storage will survive failover. Any message data not
written to storage will not be available after failover.



Clustering is Required

A proper cluster configuration is required as a pre-requisite for an HA
configuration. The cluster configuration allows the server to announce its
presence to its primary/backup (or any other nodes in the cluster).

There is technically a third policy called primary-only which omits the backup entirely. This is used
to configure scale-down. This is the default policy if none is provided.

34.2.1. Shared Store

When using a shared store both primary and backup servers share the same entire data directory
using a shared file system. This includes the paging directory, journal directory, large messages, and
bindings journal.

When the primary server fails it will release its lock on the shared journal and allow the backup
server to activate. The backup will then load the data from the shared file system and accept
remote connections from clients.

Typically, this will be some kind of high performance Storage Area Network (SAN). Network
Attached Storage (NAS), like an NFS mount, is viable but won’t provide optimal performance.

One main advantage of a shared store configuration is that no replication occurs between the
primary and backup nodes which means it does not suffer any performance penalties due to the
overhead of replication during normal operation. The main disadvantage is that shared stores are
typically less performant than local file stores. In particular, because the journal is always read in
full on startup, the difference in read latency between local and shared storage can be a significant
startup overhead. The shared store may need to be optimised for reads of size journal-file-size. If
you require the highest performance then acquire access to a fast SAN.

 What About Split Brain?

Shared store configurations are naturally immune to split-brain.

Shared Store Configuration

Both primary & backup servers must configure the location of journal directories to the same
shared location (as explained in persistence documentation).

Primary

The primary broker needs this basic configuration in broker.xml:

<ha-policy>
 <shared-store>
 <primary/>
 </shared-store>
</ha-policy>

Additional parameters

failover-on-shutdown

Whether the graceful shutdown of this broker will cause the backup to activate.

If false then the backup server will remain passive if this broker is shutdown gracefully (e.g.
using Ctrl  +  C). Note that if false and you want failover to occur then you can use the
management API as explained here.

If true then when this server is stopped the backup will activate.

The default is false.

wait-for-activation

This setting is only for embedded use cases where the primary broker has failed, the backup has
activated, and the primary has been restarted. By default, when
org.apache.activemq.artemis.core.server.ActiveMQServer.start() is invoked the broker will
block until the primary broker actually takes over from the backup (i.e. either via failback or by
the backup actually stopping). Setting wait-for-activation to false prevents start() from
blocking so that control is returned to the caller. The caller can use waitForActivation() to wait
until broker activates or just check the current status using getState(). Default is true.

Backup

The backup needs this basic configuration in broker.xml:

<ha-policy>
 <shared-store>
 <backup/>
 </shared-store>
</ha-policy>

Additional parameters

allow-failback

Whether this backup will automatically stop when its primary is restarted and requests to take
over its place. The use case is when a primary server stops and its backup takes over its duties,
later the primary server restarts and requests the now-active backup to stop so the primary can
take over again. Default is true.

failover-on-shutdown

Whether the graceful shutdown of this broker will cause the backup to activate.

If false then the backup server will remain passive if this broker is shutdown gracefully (e.g.
using Ctrl  +  C). Note that if false and you want failover to occur then you can use the
management API as explained here.

If true then when this server is stopped the backup will activate.

The default is false.

 This only applies when this backup has activated due to its primary failing.

scale-down

If provided then this backup will scale down rather than becoming active after fail over. This
really only applies to colocated configurations where the backup will scale-down its messages to
the primary broker in the same JVM.

restart-backup

Will this backup restart after being stopped due to failback or scaling down. Default is false.

NFS Mount Recommendations

If you choose to implement your shared store configuration with NFS here are some recommended
configuration options. These settings are designed for reliability and to help the broker detect
problems with NFS quickly and shut itself down so that clients can failover to a working broker.

sync

Specifies that all changes are immediately flushed to disk.

intr

Allows NFS requests to be interrupted if the server is shut down or cannot be reached.

noac

Disables attribute caching. This behavior is needed to achieve attribute cache coherence among
multiple clients.

soft

Specifies that if the NFS server is unavailable the error should be reported rather than waiting
for the server to come back online.


The NFS documentation notes the potential for "silent data corruption" when
using soft. This can be safely ignored in the case of ActiveMQ Artemis.

lookupcache=none

Disables lookup caching.

timeo=n

The time, in deciseconds (i.e. tenths of a second), that the NFS client (i.e. the broker) waits for a
response from the NFS server before it retries a request. For NFS over TCP the default timeo
value is 600 (60 seconds). For NFS over UDP the client uses an adaptive algorithm to estimate an
appropriate timeout value for frequently used request types, such as read and write requests.

retrans=n

The number of times that the NFS client retries a request before it attempts further recovery
action.



Use reasonable values when you configure timeo and retrans. A default timeo wait
time of 600 deciseconds (60 seconds) combined with a retrans value of 5 retries
can result in a five-minute wait for the broker to detect an NFS disconnection. You
likely don’t want all store-related operations on the broker to be blocked for that
long while clients wait for responses. Tune these values to balance latency and
reliability in your environment.

34.2.2. Replication

When using replication, the primary and the backup servers do not share the same data directories.
All data synchronization is done over the network. Therefore, all (durable) data received by the
primary server will be duplicated to the backup.

Note that upon start-up the backup server will first need to synchronize all existing data from the
primary server before becoming capable of replacing the primary server should it fail. Therefore,
unlike when using shared storage, a backup will not be fully operational until after it finishes
synchronizing the data with its primary server. The time it takes for this to happen depends on the
amount of data to be synchronized and the connection speed.



In general, synchronization occurs in parallel with current network traffic so this
won’t cause any blocking for current clients. However, there is a critical moment
at the end of this process where the replicating server must complete the
synchronization and ensure the backup acknowledges this completion. This
exchange between the replicating server and backup will block any journal related
operations. The maximum length of time that this exchange will block is controlled
by the initial-replication-sync-timeout configuration element.

Since replication will create a copy of the data at the backup then in case of a successful fail-over,
the backup’s data will be newer than the primary’s data. If you configure your backup to allow
failback to the primary then when the primary is restarted it will be passive and the active backup
will synchronize its data with the passive primary before stopping to allow the passive primary to

https://linux.die.net/man/5/nfs

become active again. If both servers are shutdown then the administrator will have to determine
which one has the latest data.



An Important Difference From Shared Store

If a shared-store backup does not find a primary then it will just activate and
service client requests like it is a primary.

However, in the replication case, the backup just keeps waiting for a primary to
pair with because the backup does not know whether its data is up-to-date. It
cannot unilaterally decide to activate. To activate a replicating backup using its
current data the administrator must change its configuration to make it a primary
server by changing backup to primary.

Split Brain

"Split Brain" is a potential issue that is important to understand. A whole chapter has been devoted
to explaining what it is and how it can be mitigated at a high level. Once you read it you will
understand the main differences between quorum voting and pluggable lock manager
configurations which will be referenced in later sections.

Replication Configuration

In a shared-store configuration brokers pair with each other based on their shared storage device.
However, since replication configurations have no such shared storage device they must find each
other another way. Servers can be grouped together explicitly using the same group-name in both the
primary or the backup elements. A backup will only connect to a primary that shares the same node
group name.



A group-name Example

Suppose you have 5 primary servers and 6 backup servers:

• primary1, primary2, primary3: with group-name=fish

• primary4, primary5: with group-name=bird

• backup1, backup2, backup3, backup4: with group-name=fish

• backup5, backup6: with group-name=bird

After joining the cluster the backups with group-name=fish will search for primary
servers with group-name=fish to pair with. Since there is one backup too many, the
fish will remain with one spare backup.

The 2 backups with group-name=bird (backup5 and backup6) will pair with primary
servers primary4 and primary5.

If group-name is not configured then the backup will search for any primary that it can find the
cluster. It tries to replicate with each primary until it finds a primary that has no current backup
configured. If no primary server is available it will wait until the cluster topology changes and
repeat the process.

Primary

The primary broker needs this basic configuration in broker.xml:

<ha-policy>
 <replication>
 <primary/>
 </replication>
</ha-policy>

Additional parameters

group-name

If set, backup servers will only pair with primary servers with matching group-name. See above
for more details. Valid for both quorum voting and pluggable lock manager.

cluster-name

Name of the cluster-connection to use for replication. This setting is only necessary if you
configure multiple cluster connections. If configured then the connector configuration of the
cluster configuration with this name will be used when connecting to the cluster to discover if
an active server is already running, see check-for-active-server. If unset then the default cluster
connections configuration is used (i.e. the first one configured). Valid for both quorum voting
and pluggable lock manager.

max-saved-replicated-journals-size

This option specifies how many replication backup directories will be kept when server starts as
a passive backup. Every time when server starts as such all former data moves to
oldreplica.{id} directory, where {id} is a growing backup index. This parameter sets the
maximum number of such directories kept on disk. Valid for both quorum voting and pluggable
lock manager.

check-for-active-server

Whether to check the cluster for an active server using our own server ID when starting up. This
is an important option to avoid split-brain when failover happens and the primary is restarted.
Default is false. Only valid for quorum voting.

initial-replication-sync-timeout

The amount of time the replicating server will wait at the completion of the initial replication
process for the backup to acknowledge it has received all the necessary data. The default is
30000; measured in milliseconds. Valid for both quorum voting and pluggable lock manager.

 During this interval any journal related operations will be blocked.

vote-on-replication-failure

Whether this primary broker should vote to remain active if replication is lost. Default is false.
Only valid for quorum voting.

quorum-size

The quorum size used for voting after replication loss, -1 means use the current cluster size
Default is -1. Only valid for quorum voting.

vote-retries

If we start as a backup and lose connection to the primary, how many times should we attempt
to vote for quorum before restarting Default is 12. Only valid for quorum voting.

vote-retry-wait

How long to wait (in milliseconds) between each vote attempt. Default is 5000. Only valid for
quorum voting.

quorum-vote-wait

How long to wait (in seconds) for vote results. Default is 30. Only valid for quorum voting.

retry-replication-wait

If we start as a backup how long to wait (in milliseconds) before trying to replicate again after
failing to find a primary. Default is 2000. Valid for both quorum voting and pluggable lock
manager.

manager

This element controls and is required for pluggable lock manager configuration. It has two sub-
elements:

• class-name - the name of the class implementing
org.apache.activemq.artemis.lockmanager.DistributedLockManager. Default is
org.apache.activemq.artemis.lockmanager.zookeeper.CuratorDistributedLockManager which
integrates with ZooKeeper.

• properties - a list of property elements each with key and value attributes for configuring the
plugin.

Here’s a simple example:

<ha-policy>
 <replication>
 <primary>
 <manager>
 <class-name>org.foo.MyQuorumVotingPlugin</class-name>
 <properties>
 <property key="property1" value="value1"/>
 <property key="property2" value="value2"/>
 </properties>
 </manager>
 </primary>
 </replication>
</ha-policy>

coordination-id

This is for Competing Primary Brokers. Only valid when using pluggable lock manager.

Backup

The backup needs this basic configuration in broker.xml:

<ha-policy>
 <replication>
 <backup/>
 </replication>
</ha-policy>

Additional parameters

group-name

If set, backup servers will only pair with primary servers with matching group-name. See above
for more details. Valid for both quorum voting and pluggable lock manager.

cluster-name

Name of the cluster-connection to use for replication. This setting is only necessary if you
configure multiple cluster connections. If configured then the connector configuration of the
cluster configuration with this name will be used when connecting to the cluster to discover if
an active server is already running, see check-for-active-server. If unset then the default cluster
connections configuration is used (i.e. the first one configured). Valid for both quorum voting
and pluggable lock manager.

max-saved-replicated-journals-size

This option specifies how many replication backup directories will be kept when server starts as
a passive backup. Every time when server starts as such all former data moves to
oldreplica.{id} directory, where {id} is a growing backup index. This parameter sets the
maximum number of such directories kept on disk. Valid for both quorum voting and pluggable
lock manager.

scale-down

If provided then this backup will scale down rather than becoming active after fail over. This
really only applies to colocated configurations where the backup will scale-down its messages to
the primary broker in the same JVM.

restart-backup

Will this server, if a backup, restart once it has been stopped because of failback or scaling
down. Default is false.

allow-failback

Whether this backup will automatically stop when its primary is restarted and requests to take
over its place. The use case is when a primary server stops and its backup takes over its duties,
later the primary server restarts and requests the now-active backup to stop so the primary can

take over again. Default is true. Valid for both quorum voting and pluggable lock manager.

initial-replication-sync-timeout

After failover when the backup has activated this is enforced when the primary is restarted and
connects as a backup (e.g. for failback). The amount of time the replicating server will wait at the
completion of the initial replication process for the backup to acknowledge it has received all the
necessary data. The default is 30000; measured in milliseconds. Valid for both quorum voting and
pluggable lock manager.

 during this interval any journal related operations will be blocked.

vote-on-replication-failure

Whether this primary broker should vote to remain active if replication is lost. Default is false.
Only valid for quorum voting.

quorum-size

The quorum size used for voting after replication loss, -1 means use the current cluster size
Default is -1. Only valid for quorum voting.

vote-retries

If we start as a backup and lose connection to the primary, how many times should we attempt
to vote for quorum before restarting. Default is 12. Only valid for quorum voting.

vote-retry-wait

How long to wait (in milliseconds) between each vote attempt. Default is 5000. Only valid for
quorum voting.

quorum-vote-wait

How long to wait (in seconds) for vote results. Default is 30. Only valid for quorum voting.

retry-replication-wait

If we start as a backup how long to wait (in milliseconds) before trying to replicate again after
failing to find a primary. Default is 2000. Valid for both quorum voting and pluggable lock
manager.

manager

This element controls and is required for pluggable lock manager configuration. It has two sub-
elements:

• class-name - the name of the class implementing
org.apache.activemq.artemis.lockmanager.DistributedLockManager. Default is
org.apache.activemq.artemis.lockmanager.zookeeper.CuratorDistributedLockManager which
integrates with ZooKeeper.

• properties - a list of property elements each with key and value attributes for configuring the
plugin.

Here’s a simple example:

<ha-policy>
 <replication>
 <backup>
 <manager>
 <class-name>org.foo.MyQuorumVotingPlugin</class-name>
 <properties>
 <property key="property1" value="value1"/>
 <property key="property2" value="value2"/>
 </properties>
 </manager>
 <allow-failback>true</allow-failback>
 </backup>
 </replication>
</ha-policy>

Apache ZooKeeper Integration

The default pluggable lock manager implementation uses Apache Curator to integrate with Apache
ZooKeeper.

ZooKeeper Plugin Configuration

Here’s a basic configuration example:

<ha-policy>
 <replication>
 <primary>
 <manager>
 <class-
name>org.apache.activemq.artemis.lockmanager.zookeeper.CuratorDistributedLockManager</
class-name>
 <properties>
 <property key="connect-string"
value="127.0.0.1:6666,127.0.0.1:6667,127.0.0.1:6668"/>
 </properties>
 </manager>
 </primary>
 </replication>
</ha-policy>

+ NOTE: The class-name isn’t technically required here since the default value is being used, but it is
included for clarity.

Available Properties

connect-string

(no default)

https://curator.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://curator.apache.org/apidocs/org/apache/curator/framework/CuratorFrameworkFactory.Builder.html#connectString(java.lang.String)

session-ms

(default is 18000 ms)

session-percent

(default is 33); should be ≤ default (see TN14 for more info)

connection-ms

(default is 8000 ms)

retries

(default is 1)

retries-ms

(default is 1000 ms)

namespace

(no default)

Improving Reliability

Configuration of the ZooKeeper ensemble is the responsibility of the user, but here are few
suggestions to improve the reliability of the quorum service:

• Broker <code>session_ms</code> must be <code>≥ 2 * server tick time</code> and
<code>≤ 20 * server tick time</code> as by ZooKeeper 3.6.3 admin
guide. This directly impacts how fast a backup can failover to an
isolated/killed/unresponsive primary. The higher, the slower.

• GC on broker machine should allow keeping GC pauses within 1/3 of session_ms in order to let
the ZooKeeper heartbeat protocol work reliably. If that is not possible, it is better to increase
session_ms, accepting a slower failover.

• ZooKeeper must have enough resources to keep GC (and OS) pauses much smaller than server
tick time. Please consider carefully if a broker and ZooKeeper node should share the same
physical machine depending on the expected load of the broker.

• Network isolation protection requires configuring ≥3 ZooKeeper nodes

As noted previously, session-ms affects the failover duration. The passive broker can activate after
session-ms expires or if the active broker voluntary gives up its role (e.g. during a failback/manual
broker stop, it happens immediately).

For the former case (session expiration with active broker no longer present), the passive broker
can detect an unresponsive active broker by using:

1. cluster connection PINGs (affected by connection-ttl tuning)

2. closed TCP connection notification (depends on TCP configuration and networking
stack/topology)

https://curator.apache.org/apidocs/org/apache/curator/framework/CuratorFrameworkFactory.Builder.html#sessionTimeoutMs(int)
https://curator.apache.org/apidocs/org/apache/curator/framework/CuratorFrameworkFactory.Builder.html#simulatedSessionExpirationPercent(int)
https://curator.apache.org/apidocs/org/apache/curator/framework/CuratorFrameworkFactory.Builder.html#connectionTimeoutMs(int)
https://curator.apache.org/apidocs/org/apache/curator/retry/RetryNTimes.html#%3Cinit%3E(int,int)
https://curator.apache.org/apidocs/org/apache/curator/retry/RetryNTimes.html#%3Cinit%3E(int,int)
https://curator.apache.org/apidocs/org/apache/curator/framework/CuratorFrameworkFactory.Builder.html#namespace(java.lang.String)

The suggestion is to tune connection-ttl low enough to attempt failover as soon as possible, while
taking in consideration that the whole fail-over duration cannot last less than the configured
session-ms.


A backup still needs to carefully configure connection-ttl in order to promptly send
a request to the quorum manager to become active before failing-over.

Competing Primary Brokers

When delegating quorum to pluggable implementation roles of primary & backup are less
important. It is possible to have two brokers compete for activation with the winner activating as
primary and the loser taking the backup role. On restart, any peer server with the most up-to-date
journal can activate. The key is that the brokers need to know in advance what identity they will
coordinate on. In the replication primary ha-policy we can explicitly set the coordination-id to a
common value for all peers in a cluster.

<ha-policy>
 <replication>
 <primary>
 <manager>
 <class-
name>org.apache.activemq.artemis.lockmanager.zookeeper.CuratorDistributedLockManager</
class-name>
 <properties>
 <property key="connect-string"
value="127.0.0.1:6666,127.0.0.1:6667,127.0.0.1:6668"/>
 </properties>
 </manager>
 <coordination-id>peer-journal-001</coordination-id>
 </primary>
 </replication>
</ha-policy>


The string value provided as the coordination-id will be converted internally into
a 16-byte UUID so it may not be immediately recognisable or human-readable.
However, it will ensure that all "peers" coordinate.

34.3. Failing Back to Primary Server
After a primary server has failed and a backup taken has taken over its duties, you may want to
restart the primary server and have clients fail back.

34.3.1. Failback with Shared Store

In case of shared storage you have a couple of options:

1. Simply restart the primary and kill the backup. You can do this by killing the process itself.

2. Alternatively you can set allow-failback to true on the backup which will force the backup that
has become active to automatically stop. This configuration would look like:

<ha-policy>
 <shared-store>
 <backup>
 <allow-failback>true</allow-failback>
 </backup>
 </shared-store>
</ha-policy>

It is also possible, in the case of shared store, to cause failover to occur on normal server shutdown,
to enable this set the following property to true in the ha-policy configuration on either the primary
or backup like so:

<ha-policy>
 <shared-store>
 <primary>
 <failover-on-shutdown>true</failover-on-shutdown>
 </primary>
 </shared-store>
</ha-policy>

By default this is set to false, if by some chance you have set this to false but still want to stop the
server normally and cause failover then you can do this by using the management API as explained
at Management

You can also force the active backup to shutdown when the primary comes back up allowing the
primary to take over automatically by setting the following property in the broker.xml configuration
file as follows:

<ha-policy>
 <shared-store>
 <backup>
 <allow-failback>true</allow-failback>
 </backup>
 </shared-store>
</ha-policy>

34.3.2. Failback with Replication

As with shared storage the allow-failback option can be set for both quorum voting and pluggable
lock manager replication configurations.

Quorum Voting

<ha-policy>
 <replication>
 <backup>
 <allow-failback>true</allow-failback>
 </backup>
 </replication>
</ha-policy>

With quorum voting replication you need to set an extra property check-for-active-server to true
in the primary configuration. If set to true then during start-up the primary server will first search
the cluster for another active server using its nodeID. If it finds one it will contact this server and
try to "failback". Since this is a remote replication scenario the primary will have to synchronize its
data with the backup server running with its ID. Once they are in sync it will request the other
server (which it assumes it is a backup that has assumed its duties) to shutdown in order for it to
take over. This is necessary because otherwise the primary server has no means to know whether
there was a fail-over or not, and if there was, if the server that took its duties is still running or not.
To configure this option at your broker.xml configuration file as follows:

<ha-policy>
 <replication>
 <primary>
 <check-for-active-server>true</check-for-active-server>
 </primary>
 </replication>
</ha-policy>



Be aware that if you restart a primary server after failover has occurred then
check-for-active-server must be true. If not then the primary server will restart
and serve the same messages that the backup has already handled causing
duplicates.

Pluggable Lock Manager

One key difference between replication with quorum voting and replication with a lock manager is
that with quorum voting if the primary cannot reach any active server with its nodeID then it
activates unilaterally. With a pluggable lock manager the responsibilities of coordination are
delegated to 3rd party. There are no unilateral decisions. The primary will only activate when it
knows that it has the most up-to-date version of the journal identified by its nodeID.

In short: a primary cannot activate without permission when using a pluggable lock manager.

Here’s an example configuration:

<ha-policy>
 <replication>

 <manager>
 <!-- some meaningful configuration -->
 </manager>
 <primary>
 <!-- no need to check-for-active-server anymore -->
 </primary>
 </replication>
</ha-policy>

34.3.3. All Shared Store Configuration

Primary

The following lists all the ha-policy configuration elements for HA strategy shared store for primary:

failover-on-shutdown

Whether the graceful shutdown of this broker will cause the backup to activate.

If false then the backup server will remain passive if this broker is shutdown gracefully (e.g.
using Ctrl  +  C). Note that if false and you want failover to occur then you can use the
management API as explained here.

If true then when this server is stopped the backup will activate.

The default is false.

wait-for-activation

If set to true then server startup will wait until it is activated. If set to false then server startup
will be done in the background. Default is true.

Backup

The following lists all the ha-policy configuration elements for HA strategy Shared Store for backup:

failover-on-shutdown

Whether the graceful shutdown of this broker will cause the backup to activate.

If false then the backup server will remain passive if this broker is shutdown gracefully (e.g.
using Ctrl  +  C). Note that if false and you want failover to occur then you can use the
management API as explained here.

If true then when this server is stopped the backup will activate.

The default is false.

allow-failback

Whether a server will automatically stop when another places a request to take over its place.
The use case is when the backup has failed over.

Colocated Backup Servers

It is also possible when running standalone to colocate backup servers in the same JVM as another
primary server. Primary Servers can be configured to request another primary server in the cluster
to start a backup server in the same JVM either using shared store or replication. The new backup
server will inherit its configuration from the primary server creating it apart from its name, which
will be set to colocated_backup_n where n is the number of backups the server has created, and any
directories and its Connectors and Acceptors which are discussed later on in this chapter. A
primary server can also be configured to allow requests from backups and also how many backups
a primary server can start. This way you can evenly distribute backups around the cluster. This is
configured via the ha-policy element in the broker.xml file like so:

<ha-policy>
 <replication>
 <colocated>
 <request-backup>true</request-backup>
 <max-backups>1</max-backups>
 <backup-request-retries>-1</backup-request-retries>
 <backup-request-retry-interval>5000</backup-request-retry-interval>
 <primary/>
 <backup/>
 </colocated>
 </replication>
</ha-policy>

the above example is configured to use replication, in this case the primary and backup
configurations must match those for normal replication as in the previous chapter. shared-store is
also supported

34.3.4. Configuring Connectors and Acceptors

If the HA Policy is colocated then connectors and acceptors will be inherited from the primary
server creating it and offset depending on the setting of backup-port-offset configuration element.
If this is set to say 100 (which is the default) and a connector is using port 61616 then this will be set
to 61716 for the first server created, 61816 for the second, and so on.


for INVM connectors and Acceptors the id will have colocated_backup_n appended,
where n is the backup server number.

34.3.5. Remote Connectors

It may be that some of the Connectors configured are for external servers and hence should be
excluded from the offset. for instance a connector used by the cluster connection to do quorum
voting for a replicated backup server, these can be omitted from being offset by adding them to the
ha-policy configuration like so:

<ha-policy>
 <replication>
 <colocated>
 ...
 <excludes>
 <connector-ref>remote-connector</connector-ref>
 </excludes>
 ...
 </colocated>
 </replication
</ha-policy>

34.3.6. Configuring Directories

Directories for the Journal, Large messages and Paging will be set according to what the HA
strategy is. If shared store the requesting server will notify the target server of which directories to
use. If replication is configured then directories will be inherited from the creating server but have
the new backups name appended.

The following table lists all the ha-policy configuration elements for colocated policy:

request-backup

If true then the server will request a backup on another node

backup-request-retries

How many times the primary server will try to request a backup, -1 means for ever.

backup-request-retry-interval

How long to wait for retries between attempts to request a backup server.

max-backups

How many backups a primary server can create

backup-port-offset

The offset to use for the Connectors and Acceptors when creating a new backup server.

34.4. Scaling Down
An alternative to using primary/backup groups is to configure scaledown. When configured for
scale down a server can copy all its messages and transaction state to another active server. The
advantage of this is that you don’t need full backups to provide some form of HA, however there
are disadvantages with this approach the first being that it only deals with a server being stopped
and not a server crash. The caveat here is if you configure a backup to scale down.

Another disadvantage is that it is possible to lose message ordering. This happens in the following
scenario, say you have 2 active servers and messages are distributed evenly between the servers
from a single producer, if one of the servers scales down then the messages sent back to the other
server will be in the queue after the ones already there, so server 1 could have messages 1,3,5,7,9
and server 2 would have 2,4,6,8,10, if server 2 scales down the order in server 1 would be
1,3,5,7,9,2,4,6,8,10.

The configuration for an active server to scale down would be something like:

<ha-policy>
 <primary-only>
 <scale-down>
 <connectors>
 <connector-ref>server1-connector</connector-ref>
 </connectors>
 </scale-down>
 </primary-only>
</ha-policy>

In this instance the server is configured to use a specific connector to scale down, if a connector is
not specified then the first INVM connector is chosen, this is to make scale down from a backup
server easy to configure. It is also possible to use discovery to scale down, this would look like:

<ha-policy>
 <primary-only>
 <scale-down>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>

 </scale-down>
 </primary-only>
</ha-policy>



Moving messages from one broker to another during scale-down involves an
internal transaction. By default this transaction is only committed once per queue.
However, as the number of messages in the queue grows so does the memory
requirements for the transaction. At some point the memory requirements for the
transaction will exceed the limits of the available heap.

In order to deal with this you can configure the commit-interval in the scale-down
element. This will allow the transaction to be committed every so often which will
free the memory from the transaction. It must be greater than 0 or -1. It is -1 by
default (i.e. don’t commit until all the messages in the queue are scaled-down).

34.4.1. Scale Down with groups

It is also possible to configure servers to only scale down to servers that belong in the same group.
This is done by configuring the group like so:

<ha-policy>
 <primary-only>
 <scale-down>
 ...
 <group-name>my-group</group-name>
 </scale-down>
 </primary-only>
</ha-policy>

In this scenario only servers that belong to the group my-group will be scaled down to

34.4.2. Scale Down and Backups

It is also possible to mix scale down with HA via backup servers. If a backup is configured to scale
down then after failover has occurred, instead of starting fully the backup server will immediately
scale down to another active server. The most appropriate configuration for this is using the
colocated approach. It means that as you bring up primary servers they will automatically be
backed up, and as they are shutdown their messages are made available on another active server. A
typical configuration would look like:

<ha-policy>
 <replication>
 <colocated>
 <backup-request-retries>44</backup-request-retries>
 <backup-request-retry-interval>33</backup-request-retry-interval>
 <max-backups>3</max-backups>
 <request-backup>false</request-backup>

 <backup-port-offset>33</backup-port-offset>
 <primary>
 <group-name>purple</group-name>
 <check-for-active-server>true</check-for-active-server>
 <cluster-name>abcdefg</cluster-name>
 </primary>
 <backup>
 <group-name>tiddles</group-name>
 <max-saved-replicated-journals-size>22</max-saved-replicated-journals-
size>
 <cluster-name>33rrrrr</cluster-name>
 <restart-backup>false</restart-backup>
 <scale-down>
 <!--a grouping of servers that can be scaled down to-->
 <group-name>boo!</group-name>
 <!--either a discovery group-->
 <discovery-group-ref discovery-group-name="wahey"/>
 </scale-down>
 </backup>
 </colocated>
 </replication>
</ha-policy>

34.4.3. Scale Down and Clients

When a server is stopping and preparing to scale down it will send a message to all its clients
informing them which server it is scaling down to before disconnecting them. At this point the
client will reconnect however this will only succeed once the server has completed the scaledown
process. This is to ensure that any state such as queues or transactions are there for the client when
it reconnects. The normal reconnect settings apply when the client is reconnecting so these should
be high enough to deal with the time needed to scale down.

34.5. Client Failover
Apache ActiveMQ Artemis clients can be configured to receive knowledge of all primary and
backup servers, so that in event of connection failure the client will detect this and reconnect to the
backup server. The backup server will then automatically recreate any sessions and consumers that
existed on each connection before failover, thus saving the user from having to hand-code manual
reconnection logic. For further details see Client Failover

A Note on Seamless Failover

Apache ActiveMQ Artemis does not reproduce full server state between active and passive
servers. When a core client automatically creates a new session on the backup that session
won’t contain any information about messages already sent or acknowledged in the previous
session. Any in-flight sends or acknowledgements at the time of failover will also be lost if
they weren’t written to storage.

Theoretically we could provide a 100% transparent, seamless failover which would avoid any
lost messages or acknowledgements. However, this comes at a great cost: reproducing the full
server state (including the queues, session, etc.). This would require every operation on the
primary server to be reproduced on the backup server in the exact same global order to
ensure a consistent state. This is extremely hard to do in a performant and scalable way,
especially when one considers that multiple threads are changing the active server’s state
concurrently.

It is possible to provide reproduce the full state machine using techniques such as virtual
synchrony, but this does not scale well and effectively serializes all operations to a single
thread, dramatically reducing concurrency.

Other techniques for multi-threaded use-cases exist such as reproducing lock states or thread
scheduling, but this is very hard to achieve at a Java level.

Consequently, it has been decided that it worth not worth massively reducing performance
and concurrency for the sake of 100% transparent failover. Even without 100% transparent
failover, it is simple to guarantee once and only once delivery, even in the case of failure, by
using a combination of duplicate detection and retrying of transactions. However, this is not
100% transparent to the client code.

34.5.1. Handling Blocking Calls During Failover

If the client code is in a blocking call to the server, waiting for a response to continue its execution,
when failover occurs, the new session will not have any knowledge of the call that was in progress.
This call might otherwise hang for ever, waiting for a response that will never come.

To prevent this, Apache ActiveMQ Artemis will unblock any blocking calls that were in progress at
the time of failover by making them throw a javax.jms.JMSException (if using JMS), or a
ActiveMQException with error code ActiveMQException.UNBLOCKED. It is up to the client code to catch
this exception and retry any operations if desired.

If the method being unblocked is a call to commit(), or prepare(), then the transaction will be
automatically rolled back and Apache ActiveMQ Artemis will throw a
javax.jms.TransactionRolledBackException (if using JMS), or a ActiveMQException with error code
ActiveMQException.TRANSACTION_ROLLED_BACK if using the core API.

34.5.2. Handling Failover With Transactions

If the session is transactional and messages have already been sent or acknowledged in the current
transaction, then the server cannot be sure that messages sent or acknowledgements have not been
lost during the failover.

Consequently the transaction will be marked as rollback-only, and any subsequent attempt to
commit it will throw a javax.jms.TransactionRolledBackException (if using JMS), or a
ActiveMQException with error code ActiveMQException.TRANSACTION_ROLLED_BACK if using the core API.


The caveat to this rule is when XA is used either via JMS or through the core API. If

2 phase commit is used and prepare has already been called then rolling back
could cause a HeuristicMixedException. Because of this the commit will throw a
XAException.XA_RETRY exception. This informs the Transaction Manager that it
should retry the commit at some later point in time, a side effect of this is that any
non persistent messages will be lost. To avoid this use persistent messages when
using XA. With acknowledgements this is not an issue since they are flushed to the
server before prepare gets called.

It is up to the user to catch the exception, and perform any client side local rollback code as
necessary. There is no need to manually rollback the session - it is already rolled back. The user can
then just retry the transactional operations again on the same session.

Apache ActiveMQ Artemis ships with a fully functioning example demonstrating how to do this,
please see the examples chapter.

If failover occurs when a commit call is being executed, the server, as previously described, will
unblock the call to prevent a hang, since no response will come back. In this case it is not easy for
the client to determine whether the transaction commit was actually processed before failure
occurred.



If XA is being used either via JMS or through the core API then an
XAException.XA_RETRY is thrown. This is to inform Transaction Managers that a
retry should occur at some point. At some later point in time the Transaction
Manager will retry the commit. If the original commit has not occurred then it will
still exist and be committed, if it does not exist then it is assumed to have been
committed although the transaction manager may log a warning.

To remedy this, the client can simply enable duplicate detection (Duplicate Message Detection) in
the transaction, and retry the transaction operations again after the call is unblocked. If the
transaction had indeed been committed successfully before failover, then when the transaction is
retried, duplicate detection will ensure that any durable messages resent in the transaction will be
ignored on the server to prevent them getting sent more than once.



By catching the rollback exceptions and retrying, catching unblocked calls and
enabling duplicate detection, once and only once delivery guarantees can be
provided for messages in the case of failure, guaranteeing 100% no loss or
duplication of messages.

Handling Failover With Non Transactional Sessions

If the session is non transactional, messages or acknowledgements can be lost in the event of a
failover.

If you wish to provide once and only once delivery guarantees for non transacted sessions too,
enable duplicate detection, and catch unblock exceptions as described in Handling Blocking Calls
During Failover

Use client connectors to fail over

Apache ActiveMQ Artemis clients retrieve the backup connector from the topology updates that the
cluster brokers send. If the connection options of the clients don’t match the options of the cluster
brokers the clients can define a client connector that will be used in place of the connector in the
topology. To define a client connector it must have a name that matches the name of the connector
defined in the cluster-connection of the broker, i.e. supposing to have a primary broker with the
cluster connector name node-0 and a backup broker with the cluster-connector name node-1 the
client connection url must define 2 connectors with the names node-0 and node-1:

Primary broker config:

<connectors>
 <!-- Connector used to be announced through cluster connections and notifications
-->
 <connector name="node-0">tcp://localhost:61616</connector>
</connectors>
...
<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>node-0</connector-ref>
 ...
 </cluster-connection>
</cluster-connections>

Backup broker config

<connectors>
 <!-- Connector used to be announced through cluster connections and notifications
-->
 <connector name="node-1">tcp://localhost:61617</connector>
</connectors>
<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>node-1</connector-ref>
 ...
 </cluster-connection>
</cluster-connections>

Client connection url

(tcp://localhost:61616?name=node-0,tcp://localhost:61617?name=node-
1)?ha=true&reconnectAttempts=-1

34.5.3. Getting Notified of Connection Failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:

java.jms.ExceptionListener. Please consult the JMS javadoc or any good JMS tutorial for more
information on how to use this.

The Apache ActiveMQ Artemis core API also provides a similar feature in the form of the class
org.apache.activemq.artemis.core.client.SessionFailureListener

Any ExceptionListener or SessionFailureListener instance will always be called by ActiveMQ
Artemis on event of connection failure, irrespective of whether the connection was successfully
failed over, reconnected or reattached, however you can find out if reconnect or reattach has
happened by either the failedOver flag passed in on the connectionFailed on SessionfailureListener
or by inspecting the error code on the javax.jms.JMSException which will be one of the following:

JMSException error codes:

FAILOVER

Failover has occurred and we have successfully reattached or reconnected.

DISCONNECT

No failover has occurred and we are disconnected.

34.5.4. Application-Level Failover

In some cases you may not want automatic client failover, and prefer to handle any connection
failure yourself, and code your own manually reconnection logic in your own failure handler. We
define this as application-level failover, since the failover is handled at the user application level.

To implement application-level failover, if you’re using JMS then you need to set an
ExceptionListener class on the JMS connection. The ExceptionListener will be called by Apache
ActiveMQ Artemis in the event that connection failure is detected. In your ExceptionListener, you
would close your old JMS connections, potentially look up new connection factory instances from
JNDI and creating new connections.

For a working example of application-level failover, please see the Application-Layer Failover
Example.

If you are using the core API, then the procedure is very similar: you would set a FailureListener on
the core ClientSession instances.

Chapter 35. Network Isolation (Split Brain)
A split brain is a condition that occurs when two different brokers are serving the same messages at
the same time. When this happens instead of client applications all sharing the same broker as they
ought, they may become divided between the two split brain brokers. This is problematic because it
can lead to:

• Duplicate messages e.g. when multiple consumers on the same JMS queue split between both
brokers and receive the same message(s)

• Missed messages e.g. when multiple consumers on the same JMS topic split between both
brokers and producers are only sending messages to one broker

Split brain most commonly happens when a pair of brokers in an HA replication configuration lose
the replication connection linking them together. When this connection is lost the backup assumes
that the primary has died and therefore activates. At this point there are two brokers on the
network which are isolated from each other and since the backup has a copy of all the messages
from the primary they are each serving the same messages.



What about shared store configurations?

While it is technically possible for split brain to happen with a pair of brokers in
an HA shared store configuration it would require a failure in the file-locking
mechanism of the storage device which the brokers are sharing.

One of the benefits of using a shared store is that the storage device itself acts as an
arbiter to ensure consistency and mitigate split brain.

Recovering from a split brain may be as simple as stopping the broker which activated by mistake.
However, this solution is only viable if no client application connected to it and performed
messaging operations. The longer client applications are allowed to interact with split brain brokers
the more difficult it will be to understand and remediate the resulting problems.

There are several different configurations you can choose from that will help mitigate split brain.

35.1. Pluggable Lock Manager
A pluggable lock manager configuration requires a 3rd party to establish a shared lock between
primary and backup brokers. The shared lock ensures that either the primary or backup is active at
any given point in time, similar to how the file lock functions in the shared storage use-case.

The plugin decides what 3rd party implementation is used. It could be something as simple as a
shared file on a network file system that supports locking (e.g. NFS) or it could be something more
complex like etcd.

The broker ships with a reference plugin implementation based on Apache ZooKeeper - a common
implementation used for this kind of task.

The main benefit of a pluggable lock manager is that is releases the broker from the responsibility
of establishing a reliable vote. This means that a single HA pair of brokers can be reliably protected

https://etcd.io/
https://zookeeper.apache.org/

against split-brain.

35.2. Quorum Voting
Quorum voting is a process by which one node in a cluster can determine whether another node in
the cluster is active without directly communicating with that node. Then the broker initiating the
vote can take action based on the result (e.g. shutting itself down to avoid split-brain).

Quorum voting requires the participation of the other active brokers in the cluster. Of course this
requires that there are, in fact, other active brokers in the cluster which means quorum voting
won’t work with a single HA pair of brokers. Furthermore, it also won’t work with just two HA
pairs of brokers either because that’s still not enough for a legitimate quorum. There must be at
least three HA pairs to establish a proper quorum with quorum voting.

35.2.1. Voting Mechanics

When the replication connection between an active broker and a passive broker is lost the passive
and/or the active broker may initiate a vote.


For a vote to pass a majority of affirmative responses is required. For example, in a
3 node cluster a vote will pass with 2 affirmatives. For a 4 node cluster this would
be 3 affirmatives and so on.

Passive Voting

If a passive broker loses its replication connection to the active broker it will initiate a quorum vote
in order to decide whether to activate or not. It will keep voting until it either receives a vote
allowing it to start or it detects that the previously connected broker is still active. In the latter case
it will then restart as passive.

See the section on Replication Configuration for more details on configuration.

Active Voting

By default, if the active broker loses its replication connection to the passive broker then it will just
carry on and wait for a passive to reconnect and start replicating again. However, this may mean
that it remains active even though the passive broker has activated so this behavior is configurable
via the vote-on-replication-failure property.

See the section on Replication Configuration for more details on configuration.

35.3. Pinging the network
You may configure one more addresses in broker.xml that that will be pinged throughout the life of
the server. The server will stop itself if it can’t ping one or more of the addresses in the list.

If you execute the create command using the --ping argument you will create a default XML that is
ready to be used with network checks:

$./artemis create /myDir/myServer --ping 10.0.0.1

This XML will be added to your broker.xml:

<!--
 You can verify the network health of a particular NIC by specifying the <network-
check-NIC> element.
 <network-check-NIC>theNicName</network-check-NIC>
 -->

<!--
 Use this to use an HTTP server to validate the network
 <network-check-URL-list>http://www.apache.org</network-check-URL-list> -->

<network-check-period>10000</network-check-period>
<network-check-timeout>1000</network-check-timeout>

<!-- this is a comma separated list, no spaces, just DNS or IPs
 it should accept IPV6

 Warning: Make sure you understand your network topology as this is meant to check
if your network is up.
 Using IPs that could eventually disappear or be partially visible may
defeat the purpose.
 You can use a list of multiple IPs, any successful ping will make the
server OK to continue running -->
<network-check-list>10.0.0.1</network-check-list>

<!-- use this to customize the ping used for ipv4 addresses -->
<network-check-ping-command>ping -c 1 -t %d %s</network-check-ping-command>

<!-- use this to customize the ping used for ipv6 addresses -->
<network-check-ping6-command>ping6 -c 1 %2$s</network-check-ping6-command>

Once you lose connectivity towards 10.0.0.1 on the given example the broker will log something
like this:

09:49:24,562 WARN [org.apache.activemq.artemis.core.server.NetworkHealthCheck] Ping
Address /10.0.0.1 wasn't reacheable
09:49:36,577 INFO [org.apache.activemq.artemis.core.server.NetworkHealthCheck]
Network is unhealthy, stopping service ActiveMQServerImpl::serverUUID=04fd5dd8-b18c-
11e6-9efe-6a0001921ad0
09:49:36,625 INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache
ActiveMQ Artemis Message Broker version 1.6.0 [04fd5dd8-b18c-11e6-9efe-6a0001921ad0]
stopped, uptime 14.787 seconds
09:50:00,653 WARN [org.apache.activemq.artemis.core.server.NetworkHealthCheck] ping:
sendto: No route to host
09:50:10,656 WARN [org.apache.activemq.artemis.core.server.NetworkHealthCheck] Host

is down: java.net.ConnectException: Host is down
 at java.net.Inet6AddressImpl.isReachable0(Native Method) [rt.jar:1.8.0_73]
 at java.net.Inet6AddressImpl.isReachable(Inet6AddressImpl.java:77)
[rt.jar:1.8.0_73]
 at java.net.InetAddress.isReachable(InetAddress.java:502) [rt.jar:1.8.0_73]
 at
org.apache.activemq.artemis.core.server.NetworkHealthCheck.check(NetworkHealthCheck.ja
va:295) [artemis-commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]
 at
org.apache.activemq.artemis.core.server.NetworkHealthCheck.check(NetworkHealthCheck.ja
va:276) [artemis-commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]
 at
org.apache.activemq.artemis.core.server.NetworkHealthCheck.run(NetworkHealthCheck.java
:244) [artemis-commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]
 at
org.apache.activemq.artemis.core.server.ActiveMQScheduledComponent$2.run(ActiveMQSched
uledComponent.java:189) [artemis-commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]
 at
org.apache.activemq.artemis.core.server.ActiveMQScheduledComponent$3.run(ActiveMQSched
uledComponent.java:199) [artemis-commons-1.6.0-SNAPSHOT.jar:1.6.0-SNAPSHOT]
 at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
[rt.jar:1.8.0_73]
 at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
[rt.jar:1.8.0_73]
 at
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(Schedu
ledThreadPoolExecutor.java:180) [rt.jar:1.8.0_73]
 at
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThre
adPoolExecutor.java:294) [rt.jar:1.8.0_73]
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
[rt.jar:1.8.0_73]
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
[rt.jar:1.8.0_73]
 at java.lang.Thread.run(Thread.java:745) [rt.jar:1.8.0_73]

Once you reestablish your network connections towards the configured check-list:

09:53:23,461 INFO [org.apache.activemq.artemis.core.server.NetworkHealthCheck]
Network is healthy, starting service ActiveMQServerImpl::
09:53:23,462 INFO [org.apache.activemq.artemis.core.server] AMQ221000: primary
Message Broker is starting with configuration Broker Configuration
(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,lar
geMessagesDirectory=./data/large-messages,pagingDirectory=./data/paging)
09:53:23,462 INFO [org.apache.activemq.artemis.core.server] AMQ221013: Using NIO
Journal
09:53:23,462 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-server]. Adding protocol support for: CORE
09:53:23,463 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-amqp-protocol]. Adding protocol support for: AMQP

09:53:23,463 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-hornetq-protocol]. Adding protocol support for: HORNETQ
09:53:23,463 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-mqtt-protocol]. Adding protocol support for: MQTT
09:53:23,464 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-openwire-protocol]. Adding protocol support for: OPENWIRE
09:53:23,464 INFO [org.apache.activemq.artemis.core.server] AMQ221043: Protocol
module found: [artemis-stomp-protocol]. Adding protocol support for: STOMP
09:53:23,541 INFO [org.apache.activemq.artemis.core.server] AMQ221003: Deploying
queue jms.queue.DLQ
09:53:23,541 INFO [org.apache.activemq.artemis.core.server] AMQ221003: Deploying
queue jms.queue.ExpiryQueue
09:53:23,549 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:61616 for protocols [CORE,MQTT,AMQP,STOMP,HORNETQ,OPENWIRE]
09:53:23,550 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:5445 for protocols [HORNETQ,STOMP]
09:53:23,554 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:5672 for protocols [AMQP]
09:53:23,555 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:1883 for protocols [MQTT]
09:53:23,556 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:61613 for protocols [STOMP]
09:53:23,556 INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now
active
09:53:23,556 INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 1.6.0 [0.0.0.0, nodeID=04fd5dd8-b18c-11e6-
9efe-6a0001921ad0]



Make sure you understand your network topology as this is meant to validate your
network. Using IPs that could eventually disappear or be partially visible may
defeat the purpose. You can use a list of multiple IPs. Any successful ping will make
the server OK to continue running

Chapter 36. Restart Sequence
Apache ActiveMQ Artemis ships with 2 architectures for providing HA features. The primary and
backup brokers can be configured either using network replication or using shared storage. This
document will share restart sequences for the brokers under various circumstances when the client
applications are connected to it.

36.1. Restarting 1 broker at a time
When restarting the brokers one at a time at regular intervals, it is not important to follow any
sequence. We just need to make sure that at least 1 broker in the primary/backup pair is active to
take up the connections from the client applications.


While restarting the brokers while the client applications are connected kindly
make sure that at least one broker is always active to serve the connected clients.

36.2. Completely shutting down the brokers and
starting
If there is situation that we need to completely shutdown the brokers and start them again, please
follow the following procedure:

1. Shut down all the backup brokers.

2. Shut down all the primary brokers.

3. Start all the primary brokers.

4. Start all the backup brokers.

This sequence is particularly important in case of network replication for the following reasons. If
the primary broker is shutdown first the backup broker will activate and accept all the client
connections. Then when the backup broker is stopped the clients will attempt to reconnect to the
broker that was active most recently i.e. backup. Now, when we start the backup and primary
brokers the clients will keep trying to connect to the last connection i.e. with backup and will never
be able to connect until we restart the client applications. To avoid the hassle of restarting of client
applications, we must follow the sequence as suggested above.

36.3. Split-brain situation
The following procedure helps the cluster to recover from the split-brain situation and getting the
client connections auto-reconnected to the cluster. With this sequence, client applications do not
need to be restarted in order to make connection with the brokers.

During the split brain situation both the primary and backup brokers are active and there is no
replication that is happening from the primary broker to the backup.

In such situation, there can be some client applications that are connected to the primary broker

and other connected to the backup broker. Now after we restart the brokers and the cluster is
properly formed.

Here, the clients that were connected to the primary broker during the split brain situation are
auto-connected to the cluster and start processing the messages. But the clients that got connected
to the backup broker are still trying to make connection with the broker. This happens because the
backup broker has restarted in 'back up' mode.

Thus, not all the clients get connected to the brokers and function properly.

To avoid such mishap, kindly follow the below sequence:

1. Stop the backup broker

2. Start the backup broker. Observe the logs for the message "Waiting for the primary"

3. Stop the primary broker.

4. Start the primary broker. Observe the primary broker logs for "Server is active" Observe the
backup broker logs for "backup announced"

5. Stop the primary broker again. Wait until the backup broker becomes live. Observe that all the
clients are connected to the backup broker.

6. Start the primary broker. This time, all the connections will be switched to primary broker
again,



During the split brain situation, messages are produced on the backup broker
since it is live. While resolving the split brain situation, if there are some delta
messages that are not produced on the backup broker. Those messages cannot be
auto-recovered. There will be manual intervention required to retrieve the
messages, sometime it is almost impossible to recover the messages. The above
mentioned sequence helps in forming the cluster that was broken due to split
brain and getting all the client applications to auto connected to the cluster
without any need for client applications to be restarted.

Chapter 37. Activation Sequence Tools
You can use the Artemis CLI to execute activation sequence maintenance/recovery tools for
Replication with Pluggable Lock Manager.

The 2 main commands are activation list and activation set, that can be used together to recover
some disaster happened to local/coordinated activation sequences.

Here is a disaster scenario built around the RI (using Apache ZooKeeper and Apache curator) to
demonstrate the usage of such commands.

37.1. ZooKeeper cluster disaster
A proper ZooKeeper cluster should use at least 3 nodes, but what happens if all these nodes crash
loosing any activation state information required to manage replication?

During the disaster (i.e. ZooKeeper nodes are no longer reachable) the follow occurs:

• Active brokers shutdown (and if restarted, should hang waiting to reconnect to the ZooKeeper
cluster again)

• Passive brokers unpair and wait to reconnect to the ZooKeeper cluster again

Necessary administrative action:

1. Stop all brokers

2. Restart ZooKeeper cluster

3. Search for brokers with the highest local activation sequence for their NodeID by running this
command from the bin folder of the broker:

$./artemis activation list --local
Local activation sequence for NodeID=7debb3d1-0d4b-11ec-9704-ae9213b68ac4: 1

4. From the bin folder of the brokers with the highest local activation sequence

assuming 1 to be the highest local activation sequence obtained at the previous
step
for NodeID 7debb3d1-0d4b-11ec-9704-ae9213b68ac4
$./artemis activation set --remote --to 1
Forced coordinated activation sequence for NodeID=7debb3d1-0d4b-11ec-9704-
ae9213b68ac4 from 0 to 1

5. Restart all brokers: previously active ones should be able to be active again

The more ZooKeeper nodes there are the less chance that a disaster like this requires
administrative intervention because it allows the ZooKeeper cluster to tolerate more failures.

https://zookeeper.apache.org/
https://curator.apache.org/

Chapter 38. Broker Connections
Instead of waiting for clients to connect, a broker can also initiate a connection to another server.

Broker connections are configured by the <broker-connections> XML element in the broker.xml
configuration file.

<broker-connections>
 ...
</broker-connections>

38.1. AMQP Server Connections
An ActiveMQ Artemis broker can initiate connections using the AMQP protocol. This means that the
broker can connect to another AMQP server (not necessarily ActiveMQ Artemis) and create
elements on that connection.

To define an AMQP broker connection, add an <amqp-connection> element within the <broker-
connections> element in the broker.xml configuration file. For example:

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="other-server" retry-interval="100"
reconnect-attempts="-1" user="john" password="doe">
 ...
 </amqp-connection>
</broker-connections>

uri

tcp://host:myport[?options] (this is a required argument)

name

Name of the connection used for management purposes

user

Username with which to connect to the endpoint (this is an optional argument)

password

Password with which to connect to the endpoint (this is an optional argument)

retry-interval

Time, in milliseconds to wait before retrying a connection after an error. The default value is
5000.

reconnect-attempts

default is -1 meaning infinite

auto-start

Should the broker connection start automatically with the broker. Default is true. If false it is
necessary to call a management operation to start it.



The connection URI options for transport settings, such as enabling and
configuring TLS, are common with other Artemis connector URIs. See the
transport doc for more. An example configuration for a TLS AMQP broker-
connection can be found in the broker examples at ./examples/features/broker-
connection/amqp-sending-overssl.


If auto-start is disabled on the broker connection, the start of the broker
connection will only happen after the management method
startBrokerConnection(connectionName) is called on the ServerController.


The target endpoint needs permission for all operations that are configured.
Therefore, if a security manager is being used, ensure that you perform the
configured operations with a user with sufficient permissions.

38.2. AMQP Server Connection Operations
The following types of operations are supported on an AMQP server connection:

• Mirrors

◦ The broker uses an AMQP connection to another broker and duplicates messages and sends
acknowledgements over the wire.

• Federation

◦ Broker federation allows the local broker to create remote receivers for addresses or queues
that have local demand. Conversely it can also send federation configuration to the remote
broker causing it to create receivers on the local broker based on remote demand on an
address or queue over this same connection.

• Bridges

◦ The broker uses a set of configured policies to either send messages to or receive messages
from a remote AMQP peer for addresses and queues on the local broker.

• Senders

◦ Messages received on specific queues are transferred to another endpoint.

• Receivers

◦ The broker pulls messages from another endpoint.

• Peers

◦ The broker creates both senders and receivers on another endpoint that knows how to
handle them. This is currently implemented by Apache Qpid Dispatch.

38.3. Reconnecting and Failover
It is possible to determine how reconnection will happen on a broker connection.

These are the attributes that are available on the amqp-connection XML element:

reconnect-attempts

default is -1 (infinite). How many attempts will be done after a failed connection

retry-interval

default is 5000, in milliseconds, the wait between each retry of a connection

It is also possible to specify alternate hosts on a broker connection by appending a comma
separated list after a # at the end of the URI. The broker connection would keep trying on the
alternate list until one of the targets is available to connect.

For example, a backup broker can be specified like this:

<broker-connections>
 <amqp-connection uri="tcp://ServerA:5672#tcp://BackupA:5672"
name="MyBrokerConnection" reconnect-attempts="-1" retry-interval="5000">
 ...
 </amqp-connection>
</broker-connections>

To specify more than 2 elements use a comma separated list after the first pair, e.g.:

<broker-connections>
 <amqp-connection uri="tcp://ServerA:5672#tcp://BackupA:5672,tcp://BackupB:5672"
name="MyBrokerConnection" reconnect-attempts="-1" retry-interval="5000">
 ...
 </amqp-connection>
</broker-connections>

Figure 1. Broker Connection - Reconnecting and Failover

The previous example portrays a case of connection failure towards ServerA. The system would try
to connect to ServerA, BackupA, and BackupB until it successfully connects to one of these nodes.


For failover on mirrored brokers, all nodes in the list must be high-available (HA)
failover nodes. Specifying independents nodes in the mirror list can cause

consistency issues between the message sent to the mirror and the
acknowledgements received on the mirror.

38.4. Mirroring
Mirroring will reproduce any operation that happened on the source brokers towards a target
broker.

The following events are sent through mirroring:

• Message sending

◦ Messages sent to one broker will be "replicated" to the target broker.

• Message acknowledgement

◦ Acknowledgements removing messages at one broker will be sent to the target broker.

◦ Note that if the message is pending for a consumer on the target mirror, the ack will not
succeed and the message might be delivered by both brokers.

• Queue and address creation.

• Queue and address deletion.

By default, every operation is sent asynchronously without blocking any clients. However, if you set
sync=true on the mirror configuration the clients will always wait for the mirror on every blocking
operation.

38.4.1. Mirror configuration

Add a <mirror> element within the <amqp-connection> element to configure mirroring to the target
broker.

The following optional arguments can be utilized:

message-acknowledgements

Specifies whether message acknowledgements are sent. The default value is true.

queue-creation

Specifies whether a queue- or address-creation event is sent. The default value is true.

queue-removal

Specifies whether a queue- or address-removal event is sent. The default value is true.

address-filter

An optional comma-separated list of inclusion and/or exclusion filter entries used to govern
which addresses (and related queues) mirroring events will be created for on this broker-
connection. That is, events will only be mirrored to the target broker for addresses that match
the filter. An address is matched when it begins with an inclusion entry specified in this field,
unless the address is also explicitly excluded by another entry.

An exclusion entry is prefixed with ! to denote any address beginning with that value does not
match. If no inclusion entry is specified in the list, all addresses not explicitly excluded will
match. If the address-filter attribute is not specified, then all addresses (and related queues) will
match and be mirrored.

Examples:

• eu matches all addresses starting with eu

• !eu matches all address except for those starting with eu

• eu.uk,eu.de matches all addresses starting with either eu.uk or eu.de

• eu,!eu.uk matches all addresses starting with eu but not those starting with eu.uk


• Address exclusion will always take precedence over address inclusion.

• Address matching on mirror elements is prefix-based and does not support
wild-card matching.

sync

If set to true any client blocking operation will be held until the mirror has confirmed receiving
the operation. Default is false.

• Notice that a disconnected node would hold all operations from the client. If you set
sync=true you must reconnect a mirror before performing any operations.

An example of a mirror configuration is shown below:

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="mirror">
 <mirror/>
 </amqp-connection>
</broker-connections>

38.4.2. Store and Forward Queue

Mirror events are always stored on a local queue prefixed as $ACTIVEMQ_ARTEMIS_MIRROR_ and then
concatenated with the broker connection’s configured name.

So, in the following configuration, mirror events will be stored on a queue named
$ACTIVEMQ_ARTEMIS_MIRROR_brokerB.

<broker-connection>
 <amqp-connection uri="tcp://brokerB:5672" name="brokerB">
 <mirror/>
 </amqp-connection>
</broker-connection>

These messages are then transferred to brokerB:5672. A producer to the address

$ACTIVEMQ_ARTEMIS_MIRROR_brokerB will be created towards brokerB. If there is a security manager
configured, security roles must be provided to the user on the broker connection.

Notice the queue $ACTIVEMQ_ARTEMIS_MIRROR_brokerB will not actually exist on brokerB and so it will
not be visible on the administration console. The target broker will treat these messages
accordingly as mirror events and perform the appropriate operations at the target broker.

38.4.3. Pre Existing Messages

The broker will only mirror messages arriving from the point in time the mirror was configured.
Previously existing messages will not be forwarded to other brokers.

38.5. Dual Mirror (Disaster Recovery)
ActiveMQ Artemis supports automatic fallback mirroring. Every sent message and every
acknowledgement is asynchronously replicated to the mirrored broker.

On the following diagram there will be two servers called DataCenter1, and DataCenter2. In order
to have a dual mirror configuration it is necessary to add the mirror broker connection on each
broker.xml:

Figure 2. Broker Connection - Disaster Recovery.

On DataCenter1 the following code should be added on broker.xml:

<broker-connections>
 <amqp-connection uri="tcp://DataCenter2:5672" name="DC2">
 <mirror/>
 </amqp-connection>
</broker-connections>

The following xml snippet should be added on DataCenter2's broker.xml:

<broker-connections>
 <amqp-connection uri="tcp://DataCenter1:5672" name="DC1">
 <mirror/>
 </amqp-connection>
</broker-connections>

The broker connections will replicate sends and acknowledgements to the other broker, no matter
where they originated. If messages are sent on DC1 (DataCenter1) these will be automatically

transferred to DC2 (DataCenter2). Message acknowledgements received on DC2 will be
automatically related back to DC1.

The only exception to that rule would be if there were already consumers with pending messages
on any server, where a mirrored acknowledgement will not prevent the message being consumed
by both consumers.

 It is recommended to not have active consumers on both servers.

38.5.1. Example

There is an example as part of the broker examples showing dual broker configuration (or disaster
recovery) in ./examples/features/broker-connection/disaster-recovery.

On the provided example above, two brokers are configured to mirror each other and whatever
happens in one broker is immediately copied over to the other broker.

38.6. Senders and Receivers
It is possible to connect an ActiveMQ Artemis broker to another AMQP endpoint simply by creating
a sender or receiver broker connection element.

For a sender, the broker creates a message consumer on a queue that sends messages to another
AMQP endpoint.

For a receiver, the broker creates a message producer on an address that receives messages from
another AMQP endpoint.

Both elements function as a message bridge. However, there is no additional overhead required to
process messages. Senders and receivers behave just like any other consumer or producer in
ActiveMQ Artemis.

Specific queues can be configured by senders or receivers. Wildcard expressions can be used to
match senders and receivers to specific addresses or sets of addresses. When configuring a sender
or receiver, the following properties can be set:

address-match

Match the sender or receiver to a specific address or set of addresses, using a wildcard
expression.

queue-name

Configure the sender or receiver for a specific queue.

38.6.1. Examples

Using address expressions:

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="other-server">

 <sender address-match="queues.#"/>
 <!-- notice the local queues for remotequeues.# need to be created on this broker
-->
 <receiver address-match="remotequeues.#"/>
 </amqp-connection>
</broker-connections>

<addresses>
 <address name="remotequeues.A">
 <anycast>
 <queue name="remoteQueueA"/>
 </anycast>
 </address>
 <address name="queues.B">
 <anycast>
 <queue name="localQueueB"/>
 </anycast>
 </address>
</addresses>

Using queue names:

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="other-server">
 <receiver queue-name="remoteQueueA"/>
 <sender queue-name="localQueueB"/>
 </amqp-connection>
</broker-connections>

<addresses>
 <address name="remotequeues.A">
 <anycast>
 <queue name="remoteQueueA"/>
 </anycast>
 </address>
 <address name="queues.B">
 <anycast>
 <queue name="localQueueB"/>
 </anycast>
 </address>
</addresses>


Receivers can only be matched to a local queue that already exists. Therefore, if
receivers are being used, ensure that queues are pre-created locally. Otherwise,
the broker cannot match the remote queues and addresses.


Do not create a sender and a receiver to the same destination. This creates an
infinite loop of sends and receives.

38.7. Peers
The broker can be configured as a peer which connects to the Apache Qpid Dispatch Router and
instructs it that the broker will act as a store-and-forward queue for a given AMQP waypoint
address configured on the router. In this scenario, clients connect to a router to send and receive
messages using a waypointed address, and the router routes these messages to or from the queue
on the broker.

The peer configuration causes ActiveMQ Artemis to create a sender and receiver pair for each
destination matched in the broker-connection configuration, with these carrying special
configuration to let Qpid Dispatch know to collaborate with the broker. This replaces the traditional
need of a router-initiated connection and auto-links.

Qpid Dispatch Router offers a lot of advanced networking options that be used together with
ActiveMQ Artemis.

With a peer configuration, the same properties are present as when there are senders and
receivers. For example, a configuration where queues with names beginning queue. act as storage
for the matching router waypoint address would be:

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="router">
 <peer address-match="queues.#"/>
 </amqp-connection>
</broker-connections>

<addresses>
 <address name="queues.A">
 <anycast>
 <queue name="queues.A"/>
 </anycast>
 </address>
 <address name="queues.B">
 <anycast>
 <queue name="queues.B"/>
 </anycast>
 </address>
</addresses>

There must be a matching address waypoint configuration on the router instructing it that the
particular router addresses the broker attaches to should be treated as waypoints. For example, a
similar prefix- based router address configuration would be:

address {
 prefix: queue
 waypoint: yes
}

https://qpid.apache.org/components/dispatch-router/

For more information refer to the "brokered messaging" documentation for Apache Qpid Dispatch
Router.


Do not use this feature to connect to another broker, otherwise any message sent
will be immediately ready to consume creating an infinite echo of sends and
receives.


It is not necessary to configure the router with a connector or auto-links to
communicate with the broker. The brokers peer configuration replaces these
aspects of the router waypoint usage.

38.8. Address Consideration
It is highly recommended that address name and queue name are the same. When a queue with its
distinct name (as in the following example) is used senders and receivers will always use the
address name when creating the remote endpoint.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="other-server">
 <sender address-match="queues.#"/>
 </amqp-connection>
</broker-connections>
<addresses>
 <address name="queues.A">
 <anycast>
 <queue name="distinctNameQueue.A"/>
 </anycast>
 </address>
</addresses>

The above example would create an AMQP sender towards queues.A.


To avoid confusion it is recommended that address name and queue name are kept the
same.

38.9. Federation
Broker federation allows the local broker to create remote receivers for addresses or queues that
have local demand. Conversely, the broker connection can send federation configuration to the
remote broker causing it to create receivers on the local broker based on remote demand on an
address or queue over this same connection.

Add a <federation> element within the <amqp-connection> element to configure federation to the
broker instance. The <amqp-connection> contains all the configuration for authentication and
reconnection handling. See above sections to configure those values.

The broker connection federation configuration consists of one or more policies that define either

https://qpid.apache.org/components/dispatch-router/
https://qpid.apache.org/components/dispatch-router/

local or remote federation configurations for addresses or queues.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="federation-example">
 <federation>
 <local-address-policy name="example-local-address-policy">
 <include address-match="local-address.#" />
 <exclude address-match="local-address.excluded" />
 </local-address-policy>
 <local-queue-policy name="example-local-queue-policy">
 <include address-match="address" queue-match="local-queue" />
 </local-queue-policy>
 <remote-address-policy name="example-remote-address-policy">
 <include address-match="remote-address" />
 </remote-address-policy>
 <remote-queue-policy name="example-remote-queue-policy">
 <include address-match="#" queue-match="remote-queue" />
 <exclude address-match="excluded.#" queue-match="remote-queue-excluded" />
 </remote-queue-policy>
 </federation>
 </amqp-connection>
</broker-connections>

38.9.1. Local and remote address federation

Local or Remote address federation configures the local or remote broker to watch for demand on
addresses. When demand exists it will create a consumer on the matching address on the opposing
broker. Because the consumers are created on addresses on the opposing broker, the
authentication credentials supplied to the broker connection must have sufficient access to read
from (local address federation) or write to the matching address (remote address federation) on the
opposing broker.

An example of address federation configuration is shown below. Local and remote address policies
have identical configuration parameters, only the policy element names are different.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="federation-example">
 <federation>
 <local-address-policy name="example-local-address-policy"
 auto-delete="false"
 auto-delete-delay="1"
 auto-delete-message-count="12"
 max-hops="1"
 enable-divert-bindings="true">
 <include address-match="local-address.#" />
 <exclude address-match="local-address.excluded" />
 </local-address-policy>
 </federation>
 </amqp-connection>

</broker-connections>

name

The name of the policy, these names should be unique within a broker connection’s federation
policy elements.

include

The address-match pattern to use to match included addresses, multiple of these can be set. If
none are set all addresses are matched.

exclude

The address-match pattern to use to match excluded addresses, multiple of these can be set, or it
can be omitted if no excludes are needed.

max-hops

The maximum number of hops that a message can perform to be federated. Default value is 0
and will work for most simple federation deployments. However, in certain topologies a higher
value may be required to prevent looping.

auto-delete

For address federation, a durable queue is created on the broker from which messages are being
federated. Set this property to true to mark the queue for automatic deletion once the initiating
broker disconnects and the delay and message count parameters are met. This is a useful option
if you want to automate the cleanup of dynamically-created queues. The default value is false,
which means that the queue is not automatically deleted.

auto-delete-delay

The amount of time in milliseconds after the initiating broker has disconnected before the
created queue can be eligible for auto-delete. The default value is 0 when option is omitted.

auto-delete-message-count

After the initiating broker has disconnected, the maximum number of messages allowed in the
remote queue for the queue to be eligible for automatic deletion. The default value is 0.

enable-divert-bindings

Setting to true enables divert bindings to be listened-to for demand. If a divert binding with an
address matches the included addresses for the address policy, any queue bindings that match
the forwarding address of the divert creates demand. The default value is false.

38.9.2. Local and remote queue federation

Local or Remote queue federation configures the local or remote broker to watch for demand on
queues and when demand exists it will create a consumer on the matching queue on the opposing
broker. Because the consumers are created on queues on the opposing broker, the authentication
credentials supplied to the broker connection must have sufficient access to read from (local queue
federation) or write to the matching queue (remote queue federation) on the opposing broker.

An example of queue federation configuration is shown below. Local and remote queue policies

have identical configuration parameters, only the policy element names are different.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="federation-example">
 <federation>
 <local-queue-policy name="example-local-queue-policy">
 <include address-match="#" queue-match="remote-queue" />
 <exclude address-match="excluded.#" queue-match="remote-queue-excluded" />
 </local-queue-policy>
 </federation>
 </amqp-connection>
</broker-connections>

name

The name of the policy. These names should be unique within a broker connection’s federation
policy elements.

include

The queue-match pattern to use to match included queues. Multiple of these can be set. If none
are set all queues are matched.

exclude

The queue-match pattern to use to match excluded queues. Multiple of these can be set, or it can
be omitted if no excludes are needed.

priority-adjustment

When federation consumers are created this value can be used to ensure that those federation
consumers have a lower priority value than other local consumers on the same queue. The
default is -1.

include-federated

Controls if consumers on a queue which come from federation instances should be counted
when observing a queue for demand, by default this value is false and federation consumers
are not counted.

38.10. Bridges
AMQP Bridges allows the local broker to create remote receivers for addresses or queues that have
local demand and match configured policy constraints. Conversely the broker can create remote
senders for addresses or queues that exist on the local broker and match configured policy
constraints.

Add a <bridge> element within the <amqp-connection> element to configure AMQP bridge to the
broker instance. The <amqp-connection> contains all the configuration for authentication and
reconnection handling. See above sections to configure those values.

The broker connection bridge configuration consists of one or more policies that define either send-

to or receive-from bridge configurations for addresses or queues.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="bridge-example">
 <bridge name="example-bridge">
 <bridge-from-address name="example-bridge-from-address-policy">
 <include address-match="local-address.#" />
 <exclude address-match="local-address.excluded" />
 </bridge-from-address>
 <bridge-from-queue name="example-bridge-from-queue-policy">
 <include address-match="address" queue-match="local-queue" />
 </bridge-from-queue>
 <bridge-to-address name="example-bridge-to-address-policy">
 <include address-match="outgoing-address" />
 </bridge-to-address>
 <bridge-to-queue name="example-bridge-to-queue-policy">
 <include address-match="#" queue-match="outbound-queue" />
 <exclude address-match="#" queue-match="local-queue-excluded" />
 </bridge-to-queue>
 </bridge>
 </amqp-connection>
</broker-connections>

38.10.1. Bridging from remote addresses and queues

Bridging from a remote address or queue involves monitoring a local address or queue for demand
and reacting when demand is added or removed. When demand exists the bridge will create a
receiver on the matching address or queue on the opposing AMQP peer. Because the receivers are
created on addresses and queues on the opposing peer, the authentication credentials supplied to
the broker connection must have sufficient access to the bridged address or queue on the remote
peer in order to consume messages from them.

An example of AMQP address and queue bridge from configurations are shown below.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="bridge-example">
 <bridge name="example-bridge">
 <bridge-from-address name="example-bridge-from-address-policy" priority="-2">
 <include address-match="local-address.#" />
 <exclude address-match="local-address.excluded" />
 </bridge-from-address>
 <bridge-from-queue name="example-bridge-from-queue-policy">
 <include address-match="address" queue-match="local-queue" />
 </bridge-from-queue>
 </bridge>
 </amqp-connection>
</broker-connections>

The set of common policy attributes for bridge from address and queue policies:

name

The name of the policy. These names should be unique within a broker connection’s bridge
policy elements.

priority

A configured priority value which if set is applied remote receiver created by this bridge policy,
this value is added to the receiver link properties and if supported will influence the priority
assigned on the remote.

priority-adjustment

When bridge receivers are created this value can be used to ensure that those bridge receivers
have a lower priority value than other receivers on the same address or queue. The default is -1.

includeDivertBindings

Should the bridge from address policy include divert bindings in the checks that control if a
remote receiver is created to bridge from an address.

filter

Optional filter string that is validated as a JMS selector string and is applied to the receiver that
is bridging messages from and address or queue on the remote peer.

remoteAddress

An optional override of address that is set as the address in the Source configuration of the
AMQP receiver that is bridging messages from the remote peer. The default action is to assign
either the address or queue name depending on whether the policy is bridging an address or
queue.

remoteAddressPrefix

An optional address prefix that is set on the address in the Source configuration of the AMQP
receiver that is bridging messages from the remote peer. The default value is null and no prefix
is applied to the source address.

remoteAddressSuffix

An optional address suffix that is set on the address in the Source configuration of the AMQP
receiver that is bridging messages from the remote peer. The default value is null and no suffix
is applied to the source address.

remoteTerminusCapabilities

Optional set of remote source capabilities that are set on the receiver when bridging an address
or queue from the remote peer. The capabilities are configured as a comma delimited list whose
default value is null.

Policy attributes that apply to AMQP bridge from address policies only:

enable-divert-bindings

Instructs the receive from address policy to look at diverts that matching address would forward

to and check for demand on those diverts when processing demand on the matched address. By
default this option is false and diverts are not checked.

use-durable-subscriptions

Instructs the receive from address policy that it should use an JMS over AMQP mapped durable
subscription to create the remote receiver which is meant to result in a durable address
subscription being created for receivers on addresses that have local demand. By adding a
durable subscription the remote will accumulate messages when the broker connection if down
and will recover stored messages if the remote server is shutdown and restarted. By default this
option is set to false to avoid unwanted accumulation of remote messages and if enabled
intervention may be needed from remote management to remove old subscriptions or clear
space as needed.

Configuration policy elements of which more than one entry per policy is allowed:

include

The address-match or queue-match pattern to use to match included addresses and queues.
Multiple of these can be set but if none is set then no matches would be made.

exclude

The address-match or queue-match pattern to use to match excluded addresses and queues.
Multiple of these can be set, or it can be omitted if no excludes are needed.

38.10.2. Bridging to remote addresses and queues

Bridging to a remote address or queue involves monitoring for the existence of a local address or
queue amd reacting when one is added or removed. When the target address or queue exists the
bridge will create a sender on the matching address or queue on the opposing AMQP peer. Because
the senders are created on addresses and queues on the opposing peer, the authentication
credentials supplied to the broker connection must have sufficient access to the bridged address or
queue on the remote peer in order to produce messages to them.

An example of AMQP address and queue bridge to configurations are shown below.

<broker-connections>
 <amqp-connection uri="tcp://HOST:PORT" name="bridge-example">
 <bridge name="example-bridge">
 <bridge-to-address name="example-bridge-to-address-policy">
 <include address-match="outgoing-address" />
 </bridge-to-address>
 <bridge-to-queue name="example-bridge-to-queue-policy" priority="1">
 <include address-match="#" queue-match="outbound-queue" />
 <exclude address-match="#" queue-match="local-queue-excluded" />
 </bridge-to-queue>
 </bridge>
 </amqp-connection>
</broker-connections>

The set of common policy attributes for bridge to address and queue policies:

name

The name of the policy. These names should be unique within a broker connection’s bridge
policy elements.

priority

A configured priority value which if set is applied local receiver created by this bridge policy,
this value is added to the receiver link properties and if supported will influence the priority
assigned on the local server.

priority-adjustment

When bridge senders are created this value can be used to ensure that those bridge senders
have a lower priority value than other senders on the same address or queue. The default is -1.

filter

Optional filter string that is validated as a JMS selector string and is applied to the sender that is
bridging messages to an address or queue on the remote peer.

remoteAddress

An optional override of address that is set as the address in the Target configuration of the
AMQP sender that is bridging messages to the remote peer. The default action is to assign either
the address or queue name depending on whether the policy is bridging an address or queue.

remoteAddressPrefix

An optional address prefix that is set on the address in the Target configuration of the AMQP
sender that is bridging messages to the remote peer. The default value is null and no prefix is
applied to the target address.

remoteAddressSuffix

An optional address suffix that is set on the address in the Target configuration of the AMQP
sender that is bridging messages to the remote peer. The default value is null and no suffix is
applied to the target address.

remoteTerminusCapabilities

Optional set of remote target capabilities that are set on the sender when bridging an address or
queue to the remote peer. The capabilities are configured as a comma delimited list whose
default value is null.

Policy attributes that apply to AMQP bridge to address policies only:

use-durable-subscriptions

Instructs the send to address policy that bindings created on local addresses that match the
configured policy includes should create a durable address binding which will be reloaded on
server restart and will store messages that were sent to the address while the broker connection
is down. The option is false by default and a volatile binding is created on the local address that
is deleted whenever the broker connection is down so that messages are not retained.

Configuration policy elements of which more than one entry per policy is allowed:

include

The address-match or queue-match pattern to use to match included addresses and queues.
Multiple of these can be set but if none is set then no matches would be made.

exclude

The address-match or queue-match pattern to use to match excluded addresses and queues.
Multiple of these can be set, or it can be omitted if no excludes are needed.

38.10.3. Examples

A number of examples for using the federation functionality in a variety of situations can be found
in the broker examples under directory ./examples/features/broker-connection.

Chapter 39. Federation
Federation allows transmission of messages between brokers without requiring clustering.

A federated address can replicate messages published from an upstream address to a local address.
n.b. This is only supported with multicast addresses.

A federated queue lets a local consumer receive messages from an upstream queue.

A broker can contain federated and local-only components - you don’t need to federate everything
if you don’t want to.

39.1. Benefits

39.1.1. WAN

The source and target servers do not have to be in the same cluster which makes federation
suitable for reliably sending messages from one cluster to another, for instance across a WAN,
between cloud regions or where connection may be unreliable.

Federation has built-in resilience to failure so if the target server connection is lost, e.g. due to
network failure, federation will retry connecting to the target until it comes back online. When it
comes back online it will resume operation as normal.

39.1.2. Loose Coupling of Brokers

Federation can transmit messages between brokers (or clusters) in different administrative
domains:

• they may have different configuration, users and setup;

• they may run on different versions of ActiveMQ Artemis

39.1.3. Dynamic and Selective

Federation is applied by policies, that match address and queue names, and then apply.

This means that federation can dynamically be applied as queues or addresses are added and
removed, without need to individually configure them.

Likewise, policies are selective. They apply with multiple include and exclude matches.

Multiple policies can be applied directly to multiple upstreams. Policies can be grouped into policy
sets and then applied to upstreams to make managing easier.

39.2. Address Federation
Address federation is similar to full multicast over the connected brokers. Every message sent to
address on Broker-A will be delivered to every queue on that broker, but also will be delivered to

Broker-B and all their attached queues.

Address Federation

For further details please see Address Federation.

39.3. Queue Federation
Federated queues act as a single logical queue with multiple receivers on multiple machines. They
can be used for load balancing. If brokers are in the same Availability Zone you would look to
cluster them. The advantage of queue federation is that it does not require clustering, so it is
suitable for over WAN, cross-region or on/off-premises usage.

Queue Federation

For further details please see Queue Federation.

39.4. WAN Full Mesh
It is also possible to provide a WAN mesh of brokers, which can

• replicate by Address Federation

• route and load balance using Queue Federation

• link distant producers and consumers

Example of possible full federation mesh

39.5. Configuring Federation
Example configuration in broker.xml:

<federations>
 <federation name="eu-north-1-federation">
 <upstream name="eu-west-1" user="westuser" password="32a10275cf4ab4e9">
 <static-connectors>
 <connector-ref>connector1</connector-ref>
 </static-connectors>
 <policy ref="policySetA"/>
 </upstream>
 <upstream name="eu-east-1" user="eastuser" password="32a10275cf4ab4e9">
 <discovery-group-ref discovery-group-name="ue-west-dg"/>
 <policy ref="policySetA"/>
 </upstream>

 <policy-set name="policySetA">
 <policy ref="address-federation" />
 <policy ref="queue-federation" />
 </policy-set>

 <queue-policy name="queue-federation" >
 <exclude queue-match="federated_queue" address-match="#" />
 </queue-policy>

 <address-policy name="address-federation" >
 <include address-match="federated_address" />
 </address-policy>
 </federation>
</federations>

In the above example we have shown the basic key parameters needed to configure federation for
a queue and address to multiple upstream.

The example shows a broker eu-north-1 connecting to two upstream brokers eu-east-1 and eu-
west-1. Applying queue federation to queue federated_queue and address federation to address
federated_address.

It is important that federation name is globally unique.

There are many configuration options that you can apply. These are detailed in the individual docs:

• Address Federation

• Queue Federation


Extra parameters from the URI of a connector-ref can be used to override or
provide additional configuration to the ServiceLocator.

39.5.1. Large Messages

If federation has to process large messages, the default ackBatchSize and consumerWindowSize for the
consumer will need to be changed to limit the number of in-flight messages and to enable large
message flow. These options can be supplied as parameters on the referenced connector URI, for
example:

tcp://<host>:<port>?ackBatchSize=100&consumerWindowSize=-1

Chapter 40. Address Federation
Address federation is similar to full multicast over the connected brokers. Every message sent to
address on Broker-A will be delivered to every queue on that broker, but also will be delivered to
Broker-B and all their attached queues.

Address federation dynamically links to other addresses in upstream or downstream brokers. It
automatically creates a queue on the remote address for itself, which it then consumes and copies
to the local address, as if they were published directly to it.

Upstream brokers or addresses do not need to be reconfigured. Just add the needed permissions to
the address for the downstream broker. The same applies for downstream configurations.

Figure 2. Address Federation

40.1. Topology Patterns

40.1.1. Symmetric

Figure 3. Address Federation - Symmetric

As seen above, a publisher and consumer are connected to each broker. Queues (consumers of those
queues) can receive messages published by either publisher.

In this setup, it is important to set max-hops=1, so messages are copied only once and cyclic
replication is avoided. If max-hops is not configured correctly, consumers will get multiple copies of
the same message.

40.1.2. Full Mesh

Figure 4. Address Federation - Full Mesh

This setup is identical to symmetric above. All brokers are symmetrically federating each other,
creating a full mesh.

As illustrated, a publisher and consumer are connected to each broker. Queues and thus consumers
on those queues, can receive messages published by either publisher.

Again, it is important to set max-hops=1, so messages are copied only once and cyclic replication is
avoided. If max-hops is not configured correctly, consumers will get multiple copies of the same
message.

40.1.3. Ring

Figure 5. Address Federation - Ring

In a ring of brokers each federated address is upstream to just one other in the ring. To avoid the
cyclic issue, it is important to set max-hops to n - 1 where n is the number of nodes in the ring. In the
example above, property is set to 5, so that every address in the ring receives the message exactly
once.

Whilst this setup is cheap in regard to connections it is brittle. If a single broker fails then the ring
fails.

40.1.4. Fan out

Figure 6. Address Federation - Fan Out

One main address (requires no configuration) is linked to a tree of downstream federated
addresses. The tree can extend to any depth and can be extended further without needing to re-
configure existing brokers.

In this case, messages published to the main address can be received by any consumer connected to
any broker in the tree.

40.1.5. Divert Binding Support

Divert binding support can be added as part of the address policy configuration. This will allow the
federation to respond to divert bindings to create demand. For example, let’s say there is one
address called test.federation.source that is included as a match for the federated address and
another address called test.federation.target that is not included. Normally, when a queue is
created on test.federation.target, this would not cause a federated consumer to be created
because the address is not part of the included matches. However, if we create a divert binding
such that test.federation.source is the source address and test.federation.target is the forwarded
address then demand will now be created. The source address still must be multicast but the target
address can be multicast or anycast.

An example use case for this might be a divert, that redirects JMS topics (multicast addresses) to a
JMS queue (anycast addresses). This allows message load balancing on a topic for legacy consumers
not supporting JMS 2.0 and shared subscriptions.

40.2. Configuring Address Federation
Federation is configured in broker.xml file.

Sample Address Federation setup:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 <upstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 <connector-ref>eu-east-connector2</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 </upstream>
 <upstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 <connector-ref>eu-west-connector2</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 </upstream>

 <address-policy name="news-address-federation" max-hops="1" auto-delete="true"
auto-delete-delay="300000" auto-delete-message-count="-1" transformer-ref="news-
transformer">
 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>
 </federation>
</federations>

In the above setup, downstream broker eu-north-1 is configured to connect to two upstream
brokers eu-east-1 and eu-west-1. Credentials used for both connections to brokers in this sample
are shared. Should they be different per upstream, you can alter credentials at the upstream level.

Both upstreams are configured with the same address-policy news-address-federation, that is
selecting addresses which match any of the include criteria and exclude anything that starts
queue.news.sport.

It is important that federation name is globally unique.

address-policy parameters

name

All address-policies must have a unique name in the server.

include

The address-match pattern to include addresses. Multiple of these can be set. If none are set all
addresses are matched.

exclude

The address-match pattern to exclude addresses. Multiple of these can be set.

max-hops

The maximum number of hops that message can perform across federated addresses. See
Topology Patterns above for details.

auto-delete

For address federation, the downstream dynamically creates a durable queue on the upstream
address. This is used to mark if the upstream queue should be deleted once downstream
disconnects and the delay and message count parameters have been met. It is useful in
automating cleanup. You may wish to disable this, if you want messages to be queued for the
downstream when disconnect no matter what.

auto-delete-delay

The amount of time in milliseconds after the downstream broker has disconnected, before the
upstream queue can be eligible for auto-delete.

auto-delete-message-count

Maximum number of messages allowed in the upstream queue to be eligible for auto-delete,
after the downstream broker has disconnected.

transformer-ref

Reference name of a transformer (see transformer config) that you may wish to configure to
transform the message on federation transfer.

enable-divert-bindings

Setting to true will enable divert bindings to be listened for demand. If there is a divert binding
with an address that matches the included addresses for the stream, any queue bindings that
match the forward address of the divert will create demand. Default is false.


address-policy and queue-policy elements can be defined in the same federation
and be linked to the same upstream.

transformer parameters

name

Unique name in the server used to reference the transformer in address-policy and queue-
policy.

transformer-class-name

This is the name of a user-defined class which implements the
org.apache.activemq.artemis.core.server.transformer.Transformer interface.

If specified, then the transformer’s transform() method will be invoked with the message before
it is transferred. This gives you the opportunity to transform the message’s header or body
before it is federated.

property

holds key-value pairs that can be used to configure the transformer.

Upstream parameters

Tag upstream defines the upstream broker connection and the policies to use.

name

Unique name for upstream federated server.

user

This optional attribute determines the username to use when creating the upstream connection
to the remote server. If not specified, the shared federation user and password will be used if
they were set.

password

This optional attribute determines the password to use when creating the upstream connection
to the remote server. If not specified, the shared federation user and password will be used if
they were set.

static-connectors

Either this or discovery-group-ref is used to connect the bridge to the target server.

The static-connectors is a list of connector-ref elements pointing to connector elements defined
elsewhere. A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc.) as
well as the server connection parameters (host, port etc).

For more information about what connectors are and how to configure them, see Configuring
the Transport.

discovery-group-ref

Either this or static-connectors is used to connect the bridge to the target server.

The discovery-group-ref element has one attribute - discovery-group-name. This attribute points
to a discovery-group defined elsewhere. For more information about what discovery-groups are

and how to configure them, see Discovery Groups.

ha

Optional parameter determines whether this bridge should support high availability. Using true
will connect to any available server in a cluster and support failover. The default value is false.

circuit-breaker-timeout

When a connection issue occurs, as the single connection is shared by many federated queue
and address consumers, to avoid each one trying to reconnect and possibly causing a thundering
herd issue, the first one will be tried. If unsuccessful the circuit breaker will open, returning the
same exception to all connections. This is the timeout until the circuit can be closed and
connection retried. Measured in milliseconds.

share-connection

If there is a downstream and upstream connection configured for the same broker then the
same connection will be shared as long as both stream configs set this flag to true. Default is
false.

check-period

The period (in milliseconds) used to check if the federation connection has failed to receive
pings from another server. Default is 30000.

connection-ttl

This is how long a federation connection should stay alive if it stops receiving messages from the
remote broker. Default is 60000.

call-timeout

When a packet is sent via a federation connection and is a blocking call, i.e. for
acknowledgements, this is how long it will wait (in milliseconds) for the reply before throwing
an exception. Default is 30000.

call-failover-timeout

Similar to call-timeout but used when a call is made during a failover attempt. Default is -1 (no
timeout).

retry-interval

This optional parameter determines the period in milliseconds between subsequent
reconnection attempts, if the connection to the target server has failed. The default value is 500
milliseconds.

retry-interval-multiplier

Used to increase the retry-interval after each reconnect attempt, default is 1.

max-retry-interval

The maximum delay (in milliseconds) for retries. Default is 2000.

initial-connect-attempts

The number of times the system will try to connect to the remote broker in the federation. If the

max is reached this broker will be considered permanently down and the system will not route
messages to this broker. Default is -1 (infinite retries).

reconnect-attempts

The number of times the system will try to reconnect to the remote broker in the federation. If
the max is reached this broker will be considered permanently down and the system will stop
routing messages to this broker. Default is -1 (infinite retries).

40.3. Configuring Downstream Federation
Similarly to upstream configuration, a downstream configuration can be configured. This works by
sending a command to the downstream broker to have it create an upstream connection back to the
downstream broker. The benefit of this is being able to configure everything for federation on one
broker in some cases to make it easier, such as a hub and spoke topology

All the same configuration options apply to downstream as does upstream with the exception of one
extra configuration flag that needs to be set:

upstream-connector-ref

Is an element pointing to a connector elements defined elsewhere. This reference is used to tell
the downstream broker what connector to use to create a new upstream connection back to the
downstream broker.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc.) as well as the
server connection parameters (host, port etc). For more information about what connectors are
and how to configure them, see Configuring the Transport.

Sample Downstream Address Federation setup:

 <!--Other config Here -->

<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

<acceptors>
 <acceptor name="netty-acceptor">tcp://localhost:61616</acceptor>
</acceptors>

 <!--Other config Here -->

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 <downstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-1-connector</connector-ref>

 </static-connectors>
 <policy ref="news-address-federation"/>
 <upstream-connector-ref>netty-connector</upstream-connector-ref>
 </downstream>
 <downstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-1-connector</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 <upstream-connector-ref>netty-connector</upstream-connector-ref>
 </downstream>

 <address-policy name="news-address-federation" max-hops="1" auto-delete="true"
auto-delete-delay="300000" auto-delete-message-count="-1" transformer-ref="news-
transformer">
 <include address-match="queue.bbc.new" />
 <include address-match="queue.usatoday" />
 <include address-match="queue.news.#" />

 <exclude address-match="queue.news.sport.#" />
 </address-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>
 </federation>
</federations>

Chapter 41. Queue Federation
This feature provides a way of balancing the load of a single queue across remote brokers.

A federated queue links to other queues (called upstream queues). It will retrieve messages from
upstream queues in order to satisfy demand for messages from local consumers. The upstream
queues do not need to be reconfigured and they do not have to be on the same broker or in the
same cluster.

All of the configuration needed to establish the upstream links and the federated queue is in the
downstream broker.

41.1. Use Cases
This is not an exhaustive list of what you can do with and the benefits of federated queues, but
simply some ideas.

• Higher capacity

By having a "logical" queue distributed over many brokers. Each broker would declare a
federated queue with all the other federated queues upstream. (The links would form a
complete bi-directional graph on n queues.)

By having this a logical distributed queue is capable of having a much higher capacity than a single
queue on a single broker. When will perform best when there is some degree of locality.

e.g. as many messages as possible are consumed from the same broker as they were published to,
where federation only needs to move messages around in order to perform load balancing.

[federated queue symmetric] | images/federated-queue-symmetric.gif

Figure 7. Federated Queue Symmetric

• Supporting multi region or venue

In a multi region setup you may have producers in one region or venue and the consumer in
another. typically you want producers and consumer to keep their connections local to the
region, in such as case you can deploy brokers in each region where producers and consumer
are, and use federation to move messages over the WAN between regions.

[federated queue] | images/federated-queue.gif

Figure 8. Federated Queue

• Communication between the secure enterprise lan and the DMZ.

Where a number of producer apps maybe in the DMZ and a number of consumer apps in the
secure enterprise lan, it may not suitable to allow the producers to connect through to the
broker in the secure enterprise lan.

In this scenario you could deploy a broker in the DMZ where the producers publish to, and then

have the broker in the enterprise lan connect out to the DMZ broker and federate the queues so
that messages can traverse.

This is similar to supporting multi region or venue.

• Migrating between two clusters. Consumers and publishers can be moved in any order and the
messages won’t be duplicated (which is the case if you do exchange federation). Instead,
messages are transferred to the new cluster when your consumers are there. Here for such a
migration with blue/green or canary moving a number of consumers on the same queue, you
may want to set the priority-adjustment to 0, or even a positive value, so message would
actively flow to the federated queue.

• Dual Federation - potential for messages to flip-flop between clusters. If the backlog on your
queues exceeds the available local credit across consumers, any lower priority federation
consumer becomes a candidate for dispatch and messages will be federated. Eventually all
messages may migrate and the scenario can repeat on the other cluster. Applying a rate limit to
the connector url can help mitigate but this could have an adverse effect on migration when
there are no local consumers. To better support this use case, it is possible to configure the
consumerWindowSize to zero on the referenced connector URI:
tcp://<host>:<port>?consumerWindowSize=0. This will cause the federation consumer to pull
messages in batches only when the local queue has excess capacity. This means that federation
won’t ever drain more messages than it can handle, such that messages would flip-flop. The
batch size is derived from the relevant address settings defaultConsumerWindowSize.

41.2. Configuring Queue Federation
Federation is configured in broker.xml file.

Sample Queue Federation setup:

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 <upstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-connector1</connector-ref>
 <connector-ref>eu-east-connector2</connector-ref>
 </static-connectors>
 <policy ref="news-queue-federation"/>
 </upstream>
 <upstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-connector1</connector-ref>
 <connector-ref>eu-west-connector2</connector-ref>
 </static-connectors>
 <policy ref="news-queue-federation"/>
 </upstream>

 <queue-policy name="news-queue-federation" priority-adjustment="-5" include-

federated="true" transformer-ref="news-transformer">
 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />
 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>
 </federation>
</federations>

In the above setup downstream broker eu-north-1 is configured to connect to two upstream brokers
eu-east-1 and eu-west-1, the credentials used for both connections to both brokers in this sample
are shared, you can set user and password at the upstream level should they be different per
upstream.

Both upstreams are configured with the same queue-policy news-queue-federation, that is selecting
addresses which match any of the include criteria, but will exclude any queues that end with
.local, keeping these as local queues only.

It is important that federation name is globally unique.

Priority ordered queue-policy parameters

name

All address-policies must have a unique name in the server.

include

The address-match pattern to include addresses. Multiple of these can be set. If none are set all
addresses are matched.

exclude

The address-match pattern to exclude addresses. Multiple of these can be set.

priority-adjustment

when a consumer attaches its priority is used to make the upstream consumer, but with an
adjustment by default -1, so that local consumers get load balanced first over remote, this
enables this to be configurable should it be wanted/needed.

include-federated

by default this is false, we do not federate a federated consumer, this is to avoid issue, where in
symmetric or any closed loop setup you could end up when no "real" consumers attached with
messages flowing round and round endlessly.

There is though a valid case that if you do not have a close loop setup e.g. three brokers in a
chain (A->B->C) with producer at broker A and consumer at C, you would want broker B to re-
federate the consumer onto A.

transformer-ref

The ref name for a transformer (see transformer config) that you may wish to configure to
transform the message on federation transfer.


address-policy and queue-policy elements are able to be defined in the same
federation, and they can be linked to the same upstream.

Priority ordered transformer parameters

name

Unique name in the server used to reference the transformer in address-policy and queue-policy

transformer-class-name

An optional transformer-class-name can be specified. This is the name of a user-defined class
which implements the org.apache.activemq.artemis.core.server.transformer.Transformer
interface.

If specified, then the transformer’s transform() method will be invoked with the message before
it is transferred. This gives you the opportunity to transform the message’s header or body
before it is federated.

property

holds key-value pairs that can be used to configure the transformer.

Upstream parameters

Tag upstream defines the upstream broker connection and the policies to use.

name

Unique name for upstream federated server.

user

This optional attribute determines the username to use when creating the upstream connection
to the remote server. If not specified, the shared federation user and password will be used if
they were set.

password

This optional attribute determines the password to use when creating the upstream connection
to the remote server. If not specified, the shared federation user and password will be used if
they were set.

static-connectors

Either this or discovery-group-ref is used to connect the bridge to the target server.

The static-connectors is a list of connector-ref elements pointing to connector elements defined

elsewhere. A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc.) as
well as the server connection parameters (host, port etc).

For more information about what connectors are and how to configure them, see Configuring
the Transport.

discovery-group-ref

Either this or static-connectors is used to connect the bridge to the target server.

The discovery-group-ref element has one attribute - discovery-group-name. This attribute points
to a discovery-group defined elsewhere. For more information about what discovery-groups are
and how to configure them, see Discovery Groups.

ha

This optional parameter determines whether this bridge should support high availability. True
means it will connect to any available server in a cluster and support failover. Default is false.

circuit-breaker-timeout

When a connection issue occurs, as the single connection is shared by many federated queue
and address consumers, to avoid each one trying to reconnect and possibly causing a thundering
herd issue, the first one will be tried. If unsuccessful the circuit breaker will open, returning the
same exception to all connections. This is the timeout until the circuit can be closed and
connection retried. Measured in milliseconds.

share-connection

If there is a downstream and upstream connection configured for the same broker then the
same connection will be shared as long as both stream configs set this flag to true. Default is
false.

check-period

The period (in milliseconds) used to check if the federation connection has failed to receive
pings from another server. Default is 30000.

connection-ttl

This is how long a federation connection should stay alive if it stops receiving messages from the
remote broker. Default is 60000.

call-timeout

When a packet is sent via a federation connection and is a blocking call, i.e. for
acknowledgements, this is how long it will wait (in milliseconds) for the reply before throwing
an exception. Default is 30000.

call-failover-timeout

Similar to call-timeout but used when a call is made during a failover attempt. Default is -1 (no
timeout).

retry-interval

This optional parameter determines the period in milliseconds between subsequent

reconnection attempts, if the connection to the target server has failed. The default value is 500
milliseconds.

retry-interval-multiplier

Used to increase the retry-interval after each reconnect attempt, default is 1.

max-retry-interval

The maximum delay (in milliseconds) for retries. Default is 2000.

initial-connect-attempts

The number of times the system will try to connect to the remote broker in the federation. If the
max-retry is achieved this broker will be considered permanently down and the system will not
route messages to this broker. Default is -1 (infinite retries).

reconnect-attempts

The number of times the system will try to reconnect to the remote broker in the federation. If
the max-retry is achieved this broker will be considered permanently down and the system will
stop routing messages to this broker. Default is -1 (infinite retries).

41.3. Configuring Downstream Federation
Similarly to upstream configuration, a downstream configuration can be configured. This works by
sending a command to the downstream broker to have it create an upstream connection back to the
downstream broker. The benefit of this is being able to configure everything for federation on one
broker in some cases to make it easier, such as a hub and spoke topology.

All the same configuration options apply to downstream as does upstream with the exception of one
extra configuration flag that needs to be set:

upstream-connector-ref

Is an element pointing to a connector elements defined elsewhere. This reference is used to tell
the downstream broker what connector to use to create a new upstream connection back to the
downstream broker.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc.) as well as the
server connection parameters (host, port etc). For more information about what connectors are
and how to configure them, see Configuring the Transport.

Sample Downstream Address Federation setup:

 <!--Other config Here -->

<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <connector name="eu-west-1-connector">tcp://localhost:61616</connector>
 <connector name="eu-east-1-connector">tcp://localhost:61617</connector>
</connectors>

<acceptors>
 <acceptor name="netty-acceptor">tcp://localhost:61616</acceptor>
</acceptors>

 <!--Other config Here -->

<federations>
 <federation name="eu-north-1" user="federation_username"
password="32a10275cf4ab4e9">
 <downstream name="eu-east-1">
 <static-connectors>
 <connector-ref>eu-east-1-connector</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 <upstream-connector-ref>netty-connector</upstream-connector-ref>
 </downstream>
 <downstream name="eu-west-1" >
 <static-connectors>
 <connector-ref>eu-west-1-connector</connector-ref>
 </static-connectors>
 <policy ref="news-address-federation"/>
 <upstream-connector-ref>netty-connector</upstream-connector-ref>
 </downstream>

 <queue-policy name="news-queue-federation" priority-adjustment="-5" include-
federated="true" transformer-ref="news-transformer">
 <include queue-match="#" address-match="queue.bbc.new" />
 <include queue-match="#" address-match="queue.usatoday" />
 <include queue-match="#" address-match="queue.news.#" />

 <exclude queue-match="#.local" address-match="#" />
 </queue-policy>

 <transformer name="news-transformer">
 <class-name>org.foo.NewsTransformer</class-name>
 <property key="key1" value="value1"/>
 <property key="key2" value="value2"/>
 </transformer>
 </federation>
</federations>

Chapter 42. Connection Routers
Apache ActiveMQ Artemis connection routers allow incoming client connections to be distributed
across multiple target brokers. The target brokers are grouped in pools and the connection routers
use a key to select a target broker from a pool of brokers according to a policy.

42.1. Target Broker
Target broker is a broker that can accept incoming client connections and is local or remote. The
local target is a special target that represents the same broker hosting the connection router. The
remote target is another reachable broker.

42.2. Keys
The connection router uses a key to select a target broker. It is a string retrieved from an incoming
client connection, the supported key types are:

CLIENT_ID

is the JMS client ID.

SNI_HOST

is the hostname indicated by the client in the SNI extension of the TLS protocol.

SOURCE_IP

is the source IP address of the client.

USER_NAME

is the username indicated by the client.

ROLE_NAME

is a role associated with the authenticated user of the connection.

42.3. Pools
The pool is a group of target brokers with periodic checks on their state. It provides a list of ready
target brokers to distribute incoming client connections only when it is active. A pool becomes
active when the minimum number of target brokers, as defined by the quorum-size parameter,
become ready. When it is not active, it doesn’t provide any target avoiding weird distribution at
startup or after a restart. Including the local broker in the target pool allows broker hosting the
router to accept incoming client connections as well. By default, a pool doesn’t include the local
broker, to include it as a target the local-target-enabled parameter must be true. There are three
pool types: cluster pool, discovery pool and static pool.

42.3.1. Cluster Pool

The cluster pool uses a cluster connection to get the target brokers to add. Let’s take a look at a

cluster pool example from broker.xml that uses a cluster connection:

<pool>
 <cluster-connection>cluster1</cluster-connection>
</pool>

42.3.2. Discovery Pool

The discovery pool uses a discovery group to discover the target brokers to add. Let’s take a look at
a discovery pool example from broker.xml that uses a discovery group:

<pool>
 <discovery-group-ref discovery-group-name="dg1"/>
</pool>

42.3.3. Static Pool

The static pool uses a list of static connectors to define the target brokers to add. Let’s take a look at
a static pool example from broker.xml that uses a list of static connectors:

<pool>
 <static-connectors>
 <connector-ref>connector1</connector-ref>
 <connector-ref>connector2</connector-ref>
 <connector-ref>connector3</connector-ref>
 </static-connectors>
</pool>

42.3.4. Defining pools

A pool is defined by the pool element that includes the following items:

• the username element defines the username to connect to the target broker;

• the password element defines the password to connect to the target broker;

• the check-period element defines how often to check the target broker, measured in
milliseconds, default is 5000;

• the quorum-size element defines the minimum number of ready targets to activate the pool,
default is 1;

• the quorum-timeout element defines the timeout to get the minimum number of ready targets,
measured in milliseconds, default is 3000;

• the local-target-enabled element defines whether the pool has to include a local target, default
is false;

• the cluster-connection element defines the cluster connection used by the cluster pool.

• the static-connectors element defines a list of static connectors used by the static pool;

• the discovery-group element defines the discovery group used by the discovery pool.

Let’s take a look at a pool example from broker.xml:

<pool>
 <quorum-size>2</quorum-size>
 <check-period>1000</check-period>
 <local-target-enabled>true</local-target-enabled>
 <static-connectors>
 <connector-ref>connector1</connector-ref>
 <connector-ref>connector2</connector-ref>
 <connector-ref>connector3</connector-ref>
 </static-connectors>
</pool>

42.4. Policies
The policy defines how to select a broker from a pool and allows key values transformation. The
included policies are:

FIRST_ELEMENT

to select the first target broker from the pool which is ready. It is useful to select the ready target
brokers according to the priority defined with their sequence order, ie supposing there are 2
target brokers this policy selects the second target broker only when the first target broker isn’t
ready.

ROUND_ROBIN

to select a target sequentially from a pool, this policy is useful to evenly distribute;

CONSISTENT_HASH

to select a target by a key. This policy always selects the same target broker for the same key
until it is removed from the pool.

LEAST_CONNECTIONS

to select the targets with the fewest active connections. This policy helps you maintain an equal
distribution of active connections with the target brokers.

CONSISTENT_HASH_MODULO` to transform a key value to a number from 0 to N-1, it takes a
single `modulo

property to configure the bound N. One use case is CLIENT_ID sharding across a cluster of N
brokers. With a consistent hash % N transformation, each client id can map exclusively to just
one of the brokers.

A policy is defined by the policy element. Let’s take a look at a policy example from broker.xml:

<policy name="FIRST_ELEMENT"/>

42.5. Cache
The connection router provides a cache with a timeout to improve the stickiness of the target
broker selected, returning the same target broker for a key value as long as it is present in the cache
and is ready. So a connection router with the cache enabled doesn’t strictly follow the configured
policy. By default, the cache is not enabled.

A cache is defined by the cache element that includes the following items:

• the persisted element defines whether the cache has to persist entries, default is false;

• the timeout element defines the timeout before removing entries, measured in milliseconds,
setting 0 will disable the timeout, default is 0.

Let’s take a look at a cache example from broker.xml:

<cache>
 <persisted>true</persisted>
 <timeout>60000</timeout>
</cache>

42.6. Defining connection routers
A connection router is defined by the connection-router element, it includes the following items:

• the name attribute defines the name of the connection router and is used to reference the router
from an acceptor;

• the key-type element defines what type of key to select a target broker, the supported values
are: CLIENT_ID, SNI_HOST, SOURCE_IP, USER_NAME, ROLE_NAME, default is SOURCE_IP, see Keys for further
details;

• the key-filter element defines a regular expression to filter the resolved key values;

• the local-target-filter element defines a regular expression to match the key values that have
to return a local target, the key value could be equal to the special string NULL if the value of the
key is undefined or it doesn’t match the key-filter;

• the pool element defines the pool to group the target brokers, see pools;

• the policy element defines the policy used to select the target brokers from the pool, see
policies.

Let’s take a look at some connection router examples from broker.xml:

<connection-routers>
 <connection-router name="local-partition">

 <key-type>CLIENT_ID</key-type>
 <key-filter>^.{3}</key-filter>
 <local-target-filter>^FOO.*</local-target-filter>
 </connection-router>
 <connection-router name="simple-router">
 <policy name="FIRST_ELEMENT"/>
 <pool>
 <static-connectors>
 <connector-ref>connector1</connector-ref>
 <connector-ref>connector2</connector-ref>
 <connector-ref>connector3</connector-ref>
 </static-connectors>
 </pool>
 </connection-router>
 <connection-router name="consistent-hash-router">
 <key-type>USER_NAME</key-type>
 <local-target-filter>admin</local-target-filter>
 <policy name="CONSISTENT_HASH"/>
 <pool>
 <local-target-enabled>true</local-target-enabled>
 <discovery-group-ref discovery-group-name="dg1"/>
 </pool>
 <policy name="CONSISTENT_HASH"/>
 </connection-router>
 <connection-router name="evenly-balance">
 <key-type>CLIENT_ID</key-type>
 <key-filter>^.{3}</key-filter>
 <policy name="LEAST_CONNECTIONS"/>
 <pool>
 <username>guest</username>
 <password>guest</password>
 <discovery-group-ref discovery-group-name="dg2"/>
 </pool>
 </connection-router>
</connection-routers>

42.7. Key values
The key value is retrieved from the incoming client connection. If the incoming client connection
has no value for the key type used, the key value is set to the special string NULL. If the incoming
client connection has a value for the key type used, the key value retrieved can be sequentially
manipulated using a key-filter and a policy. If a key-filter is defined and the filter fails to match,
the value is set to the special string NULL. If a policy with a key transformation is defined, the key
value is set to the transformed value.

42.8. Connection Router Workflow
The connection router workflow include the following steps:

• Retrieve the key value from the incoming connection;

• Return the local target broker if the key value matches the local filter;

• Delegate to the pool:

• Return the cached target broker if it is ready;

• Get ready/active target brokers from the pool;

• Select one target broker using the policy;

• Add the selected broker in the cache;

• Return the selected broker.

Let’s take a look at flowchart of the connection router workflow:

42.9. Data gravity
The first router configuration: local-partition, demonstrates the simplest use case, that of
preserving data gravity by confining a subset of application data to a given broker. Each broker is
given a subset of keys that it will exclusively service or reject. If brokers are behind a round-robin
load-balancer or have full knowledge of the broker urls, their broker will eventually respond. The
local-target-filter regular expression determines the granularity of partition that is best for
preserving data gravity for your applications.

The challenge is in providing a consistent key in all related application connections.



the concept of data gravity tries to capture the reality that while addresses are
shared by multiple applications, it is best to keep related addresses and their data
co-located on a single broker. Typically, applications should connect to the data
rather than the data moving to whatever broker the application connects too. This
is particularly true when the amount of data (backlog) is large, the cost of
movement to follow consumers outweighs the cost of delivery to the application.
With the 'data gravity' mindset, operators are less concerned with numbers of
connections and more concerned with applications and the addresses they need to
interact with.

42.10. Redirection
Apache ActiveMQ Artemis provides a protocol-native redirection as well as a management API for
other clients using a messaging protocol which doesn’t support redirection.

42.10.1. Native Redirection

Native redirection is supported for applications using one of the following protocols:

• AMQP 1.0

• MQTT 5

• Core

• OpenWire

Native redirection is configurable on a per-acceptor basis. The acceptor with the router url
parameter will redirect the incoming connections. The router url parameter specifies the name of
the connection router to use. For example, the following acceptor will redirect incoming Core client
connections using the connection router with the name simple-router:

<acceptor name="artemis">tcp://0.0.0.0:61616?router=simple-
router;protocols=CORE</acceptor>

Here’s how it works. Applications using a protocol supporting native redirection connect to the
acceptor with the router enabled. The acceptor redirects the connection to the target broker and
closes the connection. The client then establishes a connection to the target broker.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Server_redirection

42.10.2. Management API Redirection

Applications using a protocol not supporting native redirection can query the management API of
connection router to get the target broker to redirect. If the API returns a target broker the client
connects to it otherwise the client can query the API again.

The relevant ConnectionRouterControl MBean is named like:

org.apache.activemq.artemis:broker="<brokerName>",component=connection-
routers,name="<routerName>"

Therefore, if your broker was named myBroker and your connection-router was named myRouter
then the MBean name would be:

org.apache.activemq.artemis:broker="myBroker",component=connection-
routers,name="myRouter"

The API has two operations both of which take a single input parameter - key:

• getTarget: returns a javax.management.openmbean.CompositeData object

• getTargetAsJSON: returns a JSON string

Both return values contain the following data:

• connector: where to connect

• nodeID: the UUID of the broker

• local: whether the target is the local broker hosting the router

This API can be accessed over HTTP via Jolokia.

Chapter 43. The JMS Bridge
Apache ActiveMQ Artemis includes a fully functional JMS message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them to a
target queue or topic, typically on a different server.



The JMS Bridge is not intended as a replacement for transformation and more
expert systems such as Camel. The JMS Bridge may be useful for fast transfers as
this chapter covers, but keep in mind that more complex scenarios requiring
transformations will require you to use a more advanced transformation system
that will play on use cases that will go beyond Apache ActiveMQ Artemis.

The source and target servers do not have to be in the same cluster which makes bridging suitable
for reliably sending messages from one cluster to another, for instance across a WAN, and where
the connection may be unreliable.

A bridge can be deployed as a standalone application or as a web application managed by the
embedded Jetty instance bootstrapped with Apache ActiveMQ Artemis. The source and the target
can be located in the same virtual machine or another one.

The bridge can also be used to bridge messages from other non Apache ActiveMQ Artemis JMS
servers, as long as they are JMS 1.1 compliant.



Do not confuse a JMS bridge with a core bridge. A JMS bridge can be used to bridge
any two JMS 1.1 compliant JMS providers and uses the JMS API. A core bridge) is
used to bridge any two Apache ActiveMQ Artemis instances and uses the core API.
Always use a core bridge if you can in preference to a JMS bridge. The core bridge
will typically provide better performance than a JMS bridge. Also the core bridge
can provide once and only once delivery guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.g.
due to network failure, the bridge will retry connecting to the source and/or target until they come
back online. When it comes back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages
matching that JMS selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be
configured to consume using a non durable or durable subscription

The JMS Bridge is a simple POJO so can be deployed with most frameworks, simply instantiate the
org.apache.activemq.artemis.api.jms.bridge.impl.JMSBridgeImpl class and set the appropriate
parameters.

43.1. JMS Bridge Parameters
The main POJO is the JMSBridge. It is configurable by the parameters passed to its constructor.

• Source Connection Factory Factory

This injects the SourceCFF bean (also defined in the beans file). This bean is used to create the
source ConnectionFactory

• Target Connection Factory Factory

This injects the TargetCFF bean (also defined in the beans file). This bean is used to create the
target ConnectionFactory

• Source Destination Factory Factory

This injects the SourceDestinationFactory bean (also defined in the beans file). This bean is used
to create the source Destination

• Target Destination Factory Factory

This injects the TargetDestinationFactory bean (also defined in the beans file). This bean is used
to create the target Destination

• Source User Name

this parameter is the username for creating the source connection

• Source Password

this parameter is the parameter for creating the source connection

• Target User Name

this parameter is the username for creating the target connection

• Target Password

this parameter is the password for creating the target connection

• Selector

This represents a JMS selector expression used for consuming messages from the source
destination. Only messages that match the selector expression will be bridged from the source
to the target destination

The selector expression must follow the JMS selector syntax

• Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the
source or target servers when the bridge has detected they have failed

• Max Retries

This represents the number of times to attempt to recreate connections to the source or target
servers when the bridge has detected they have failed. The bridge will give up after trying this

https://docs.oracle.com/javaee/7/api/javax/jms/Message.html

number of times. -1 represents 'try forever'

• Quality Of Service

This parameter represents the desired quality of service mode

Possible values are:

◦ AT_MOST_ONCE

◦ DUPLICATES_OK

◦ ONCE_AND_ONLY_ONCE

See Quality Of Service section for an explanation of these modes.

• Max Batch Size

This represents the maximum number of messages to consume from the source destination
before sending them in a batch to the target destination. Its value must >= 1

• Max Batch Time

This represents the maximum number of milliseconds to wait before sending a batch to target,
even if the number of messages consumed has not reached MaxBatchSize. Its value must be -1 to
represent 'wait forever', or >= 1 to specify an actual time

• Subscription Name

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this parameter represents the durable subscription name

• Client ID

If the source destination represents a topic, and you want to consume from the topic using a
durable subscription then this attribute represents the JMS client ID to use when
creating/looking up the durable subscription

• Add MessageID In Header

If true, then the original message’s message ID will be appended in the message sent to the
destination in the header ACTIVEMQ_BRIDGE_MSG_ID_LIST. If the message is bridged more than
once, each message ID will be appended. This enables a distributed request-response pattern to
be used


when you receive the message you can send back a response using the
correlation id of the first message id, so when the original sender gets it back it
will be able to correlate it.

• MBean Server

To manage the JMS Bridge using JMX, set the MBeanServer where the JMS Bridge MBean must
be registered (e.g. the JVM Platform MBeanServer)

• ObjectName

If you set the MBeanServer, you also need to set the ObjectName used to register the JMS Bridge
MBean (must be unique)

The "transactionManager" property points to a JTA transaction manager implementation and
should be set if you need to use the 'ONCE_AND_ONCE_ONLY' Quality of Service. Apache ActiveMQ
Artemis doesn’t ship with such an implementation, but if you are running within an Application
Server you can inject the Transaction Manager that is shipped.

43.2. Source and Target Connection Factories
The source and target connection factory factories are used to create the connection factory used to
create the connection for the source or target server.

The configuration example above uses the default implementation provided by Apache ActiveMQ
Artemis that looks up the connection factory using JNDI. For other Application Servers or JMS
providers a new implementation may have to be provided. This can easily be done by
implementing the interface org.apache.activemq.artemis.jms.bridge.ConnectionFactoryFactory.

43.3. Source and Target Destination Factories
Again, similarly, these are used to create or lookup up the destinations.

In the configuration example above, we have used the default provided by Apache ActiveMQ
Artemis that looks up the destination using JNDI.

A new implementation can be provided by implementing
org.apache.activemq.artemis.jms.bridge.DestinationFactory interface.

43.4. Quality Of Service
The quality of service modes used by the bridge are described here in more detail.

43.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The
messages are consumed from the source and acknowledged before sending to the destination.
Therefore there is a possibility that if failure occurs between removing them from the source and
them arriving at the destination they could be lost. Hence delivery will occur at most once.

This mode is available for both durable and non-durable messages.

43.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after they
have been successfully sent to the destination. Therefore there is a possibility that if failure occurs
after sending to the destination but before acknowledging them, they could be sent again when the

system recovers. i.e. the destination might receive duplicates after a failure.

This mode is available for both durable and non-durable messages.

43.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once.
(Sometimes this mode is known as "exactly once"). If both the source and the destination are on the
same Apache ActiveMQ Artemis server instance then this can be achieved by sending and
acknowledging the messages in the same local transaction. If the source and destination are on
different servers this is achieved by enlisting the sending and consuming sessions in a JTA
transaction. The JTA transaction is controlled by a JTA Transaction Manager which will need to be
set via the settransactionManager method on the Bridge.

This mode is only available for durable messages.



For a specific application it may possible to provide once and only once semantics
without using the ONCE_AND_ONLY_ONCE QoS level. This can be done by using
the DUPLICATES_OK mode and then checking for duplicates at the destination and
discarding them. Some JMS servers provide automatic duplicate message detection
functionality, or this may be possible to implement on the application level by
maintaining a cache of received message ids on disk and comparing received
messages to them. The cache would only be valid for a certain period of time so
this approach is not as watertight as using ONCE_AND_ONLY_ONCE but may be a
good choice depending on your specific application.

43.4.4. Time outs and the JMS bridge

There is a possibility that the target or source server will not be available at some point in time. If
this occurs then the bridge will try Max Retries to reconnect every Failure Retry Interval
milliseconds as specified in the JMS Bridge definition.

If you implement your own factories for looking up JMS resources then you will have to bear in
mind timeout issues.

43.4.5. Examples

Please see JMS Bridge Example which shows how to programmatically instantiate and configure a
JMS Bridge to send messages to the source destination and consume them from the target
destination between two standalone Apache ActiveMQ Artemis brokers.

Chapter 44. Authentication & Authorization
This chapter describes how security works with Apache ActiveMQ Artemis and how you can
configure it.

44.1. Basic Configuration
Security is enabled by default. To disable security completely set the security-enabled property to
false in the broker.xml file, e.g.:

<configuration...>
 <core...>
 ...
 <security-enabled>false</security-enabled>
 ...
 </core>
</configuration>

44.2. Caching Security Operations
For performance reasons both authentication and authorization is cached independently. Entries
are removed from the caches (i.e. invalidated) either when the cache reaches its maximum size in
which case the least-recently used entry is removed or when an entry has been in the cache "too
long".

The size of the caches are controlled by the authentication-cache-size and authorization-cache-
size configuration parameters. Both default to 1000. Using 0 will disable the corresponding cache.

How long cache entries are valid is controlled by security-invalidation-interval, which is in
milliseconds. The default is 10000 ms.

44.3. Tracking the Validated User
To assist in security auditing the populate-validated-user option exists. If this is true then the server
will add the name of the validated user to the message using the key _AMQ_VALIDATED_USER. For JMS
and Stomp clients this is mapped to the key JMSXUserID. For users authenticated based on their SSL
certificate this name is the name to which their certificate’s DN maps. If security-enabled is false
and populate-validated-user is true then the server will simply use whatever user name (if any) the
client provides. This option is false by default.

It’s also possible to set reject-empty-validated-user. If true the server will reject any message that
doesn’t have a validated user. This option is false by default.

44.4. Role based security for addresses
Apache ActiveMQ Artemis contains a flexible role-based security model for applying security to

queues, based on their addresses.

As explained in Using Core, Apache ActiveMQ Artemis core consists mainly of sets of queues bound
to addresses. A message is sent to an address and the server looks up the set of queues that are
bound to that address, the server then routes the message to those set of queues.

Apache ActiveMQ Artemis allows sets of permissions to be defined against the queues based on
their address. An exact match on the address can be used or a wildcard match can be used.

There are different permissions that can be given to the set of queues which match the address.
Those permissions are:

createAddress

This permission allows the user to create an address fitting the match.

deleteAddress

This permission allows the user to delete an address fitting the match.

createDurableQueue

This permission allows the user to create a durable queue under matching addresses.

deleteDurableQueue

This permission allows the user to delete a durable queue under matching addresses.

createNonDurableQueue

This permission allows the user to create a non-durable queue under matching addresses.

deleteNonDurableQueue

This permission allows the user to delete a non-durable queue under matching addresses.

send

This permission allows the user to send a message to matching addresses.

consume

This permission allows the user to consume a message from a queue bound to matching
addresses.

browse

This permission allows the user to browse a queue bound to the matching address.

manage

This permission allows the user to invoke management operations by sending management
messages to the management address.

The following two permissions pertain to operations on the management apis of the broker. They
split management operations into two sets, read only for view, and edit for mutating operations.
The split is controlled by a regular expression. Methods that match will require the view permission,
all others require edit. The regular expression can be modified through the configuration attribute
view-permission-method-match-pattern. These permissions are applicable to the management

address and to MBean access. They are granted to match addresses prefixed with the management
prefix.

view

This permission allows access to a read-only subset of management operations.

edit

This permission allows access to the mutating management operations, any operation not in the
view set.

For each permission, a list of roles who are granted that permission is specified. If the user has any
of those roles, he/she will be granted that permission for that set of addresses.

Let’s take a simple example, here’s a security block from broker.xml file:

<security-setting match="globalqueues.europe.#">
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createNonDurableQueue" roles="admin, guest, europe-users"/>
 <permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/>
 <permission type="send" roles="admin, europe-users"/>
 <permission type="consume" roles="admin, europe-users"/>
</security-setting>

Using the default wildcard syntax the # character signifies "any sequence of words". Words are
delimited by the . character. Therefore, the above security block applies to any address that starts
with the string "globalqueues.europe.".

Only users who have the admin role can create or delete durable queues bound to an address that
starts with the string "globalqueues.europe."

Any users with the roles admin, guest, or europe-users can create or delete temporary queues bound
to an address that starts with the string "globalqueues.europe."

Any users with the roles admin or europe-users can send messages to these addresses or consume
messages from queues bound to an address that starts with the string "globalqueues.europe."

The mapping between a user and what roles they have is handled by the security manager. Apache
ActiveMQ Artemis ships with a user manager that reads user credentials from a file on disk, and
can also plug into JAAS or JBoss Application Server security.

For more information on configuring the security manager, please see 'Changing the Security
Manager'.

There can be zero or more security-setting elements in each xml file. Where more than one match
applies to a set of addresses the more specific match takes precedence.

Let’s look at an example of that, here’s another security-setting block:

<security-setting match="globalqueues.europe.orders.#">
 <permission type="send" roles="europe-users"/>
 <permission type="consume" roles="europe-users"/>
</security-setting>

In this security-setting block the match globalqueues.europe.orders.# is more specific than the
previous match globalqueues.europe.#. So any addresses which match globalqueues.europe.orders.#
will take their security settings only from the latter security-setting block.

Note that settings are not inherited from the former block. All the settings will be taken from the
more specific matching block, so for the address globalqueues.europe.orders.plastics the only
permissions that exist are send and consume for the role europe-users. The permissions
createDurableQueue, deleteDurableQueue, createNonDurableQueue, deleteNonDurableQueue are not
inherited from the other security-setting block.

By not inheriting permissions, it allows you to effectively deny permissions in more specific
security-setting blocks by simply not specifying them. Otherwise it would not be possible to deny
permissions in sub-groups of addresses.

44.4.1. Fine-grained security using fully qualified queue name

In certain situations it may be necessary to configure security that is more fine-grained that simply
across an entire address. For example, consider an address with multiple queues:

<addresses>
 <address name="foo">
 <multicast>
 <queue name="q1" />
 <queue name="q2" />
 </multicast>
 </address>
</addresses>

You may want to limit consumption from q1 to one role and consumption from q2 to another role.
You can do this using the fully qualified queue name (i.e. FQQN) in the match of the security-
setting, e.g.:

<security-setting match="foo::q1">
 <permission type="consume" roles="q1Role"/>
</security-setting>
<security-setting match="foo::q2">
 <permission type="consume" roles="q2Role"/>
</security-setting>


You cannot limit the send permission using a security-setting on the FQQN in
conjuction with another on the address as a whole, e.g.:

<security-setting match="foo">
 <permission type="send" roles="fooRole"/>
</security-setting>
<security-setting match="foo::q1">
 <permission type="send" roles="q1Role"/>
</security-setting>
<security-setting match="foo::q2">
 <permission type="send" roles="q2Role"/>
</security-setting>

Messages sent to foo by users in fooRole will be routed to both q1 and q2 regardless
of if fooRole is also in q1Role or q2Role. The q1Role and q2Role requirement will only
be enforced when a user attempts to send a message to the corresponding specific
FQQN.


Wildcard matching doesn’t work in conjunction with FQQN. The explicit goal of
using FQQN here is to be exact.

44.4.2. Applying view and edit permissions to the management api

The view and edit permissions are optionally applied to the management apis of the broker.

For RBAC on JMX MBean access they can replace the authorization section in management.xml as
described at JMX authorization in broker.xml

For RBAC on management resources accessed via messages sent to the management address, the
additional permissions are enabled by configuring management-message-rbac as described at Fine
grained RBAC on management messages

The split between operations that require the view and edit permissions can be controlled via view-
permission-method-match-pattern

44.5. Security Setting Plugin
Aside from configuring sets of permissions via XML these permissions can alternatively be
configured via a plugin which implements
org.apache.activemq.artemis.core.server.SecuritySettingPlugin e.g.:

<security-settings>
 <security-setting-plugin class-
name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">
 <setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <setting name="connectionURL" value="ldap://localhost:1024"/>
 <setting name="connectionUsername" value="uid=admin,ou=system"/>
 <setting name="connectionPassword" value="secret"/>
 <setting name="connectionProtocol" value="s"/>
 <setting name="authentication" value="simple"/>

 </security-setting-plugin>
</security-settings>

Most of this configuration is specific to the plugin implementation. However, there are two
configuration details that will be specified for every implementation:

class-name

This attribute of security-setting-plugin indicates the name of the class which implements
org.apache.activemq.artemis.core.server.SecuritySettingPlugin.

setting

Each of these elements represents a name/value pair that will be passed to the implementation
for configuration purposes.

See the JavaDoc on org.apache.activemq.artemis.core.server.SecuritySettingPlugin for further
details about the interface and what each method is expected to do.

44.5.1. Available plugins

LegacyLDAPSecuritySettingPlugin

This plugin will read the security information that was previously handled by LDAPAuthorizationMap
and the cachedLDAPAuthorizationMap in Apache ActiveMQ Classic and turn it into Artemis security
settings where possible. The security implementations of ActiveMQ Classic and Artemis don’t match
perfectly so some translation must occur to achieve near equivalent functionality.

Here is an example of the plugin’s configuration:

<security-setting-plugin class-
name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">
 <setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <setting name="connectionURL" value="ldap://localhost:1024"/>
 <setting name="connectionUsername" value="uid=admin,ou=system"/>
 <setting name="connectionPassword" value="secret"/>
 <setting name="connectionProtocol" value="s"/>
 <setting name="authentication" value="simple"/>
</security-setting-plugin>

class-name

The implementation is
org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin.

initialContextFactory

The initial context factory used to connect to LDAP. It must always be set to
com.sun.jndi.ldap.LdapCtxFactory (i.e. the default value).

connectionURL

Specifies the location of the directory server using an ldap URL, ldap://Host:Port. You can

http://activemq.apache.org/security.html
http://activemq.apache.org/cached-ldap-authorization-module.html

optionally qualify this URL, by adding a forward slash, /, followed by the DN of a particular node
in the directory tree. For example, ldap://ldapserver:10389/ou=system. The default is
ldap://localhost:1024.

connectionUsername

The DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system. Directory servers generally require clients to present username/password
credentials in order to open a connection.

connectionPassword

The password that matches the DN from connectionUsername. In the directory server, in the DIT,
the password is normally stored as a userPassword attribute in the corresponding directory entry.

connectionProtocol

Currently the only supported value is a blank string. In future, this option will allow you to select
the Secure Socket Layer (SSL) for the connection to the directory server.


This option must be set explicitly to an empty string, because it has no default
value.

authentication

Specifies the authentication method used when binding to the LDAP server. Can take either of
the values, simple (username and password, the default value) or none (anonymous).


Simple Authentication and Security Layer (SASL) authentication is currently not
supported.

destinationBase

Specifies the DN of the node whose children provide the permissions for all destinations. In this
case the DN is a literal value (that is, no string substitution is performed on the property value).
For example, a typical value of this property is ou=destinations,o=ActiveMQ,ou=system (i.e. the
default value).

filter

Specifies an LDAP search filter, which is used when looking up the permissions for any kind of
destination. The search filter attempts to match one of the children or descendants of the queue
or topic node. The default value is (cn=*).

roleAttribute

Specifies an attribute of the node matched by filter, whose value is the DN of a role. Default
value is uniqueMember.

adminPermissionValue

Specifies a value that matches the admin permission. The default value is admin.

readPermissionValue

Specifies a value that matches the read permission. The default value is read.

writePermissionValue

Specifies a value that matches the write permission. The default value is write.

enableListener

Whether or not to enable a listener that will automatically receive updates made in the LDAP
server and update the broker’s authorization configuration in real-time. The default value is
true.

Some LDAP servers (e.g. OpenLDAP) don’t support the "persistent search" feature which allows
the "listener" functionality to work. For these servers set the refreshInterval to a value greater
than 0.

refreshInterval

How long to wait (in seconds) before refreshing the security settings from the LDAP server. This
can be used for LDAP servers which don’t support the "persistent search" feature needed for use
with enableListener (e.g. OpenLDAP). Default is 0 (i.e. no refresh).

Keep in mind that this can be a potentially expensive operation based on how often the refresh
is configured and how large the data set is so take care in how refreshInterval is configured.

mapAdminToManage

Whether or not to map the legacy admin permission to the manage permission. See details of the
mapping semantics below. The default value is false.

allowQueueAdminOnRead

Whether or not to map the legacy read permission to the createDurableQueue,
createNonDurableQueue, and deleteDurableQueue permissions so that JMS clients can create
durable and non-durable subscriptions without needing the admin permission. This was allowed
in ActiveMQ Classic. The default value is false.

anyWordsWildcardConversion

This is a 1-character value that should match the any-words wildcard syntax setting defined for
the broker. The plugin will translate any < or $ character to this value in an LDAP entry defining
a destination name. The default value is #.

singleWordWildcardConversion

This is a 1-character value that should match the single-word wildcard syntax setting defined for
the broker. The plugin will translate any * character to this value in an LDAP entry defining a
destination name. The default value is *.

delimiterWildcardConversion

This is a 1-character value that should match the delimiter wildcard syntax setting defined for
the broker. The plugin will translate any . character to this value in an LDAP entry defining a
destination name. The default value is ..

The name of the queue or topic defined in LDAP will serve as the "match" for the security-setting,
the permission value will be mapped from the ActiveMQ Classic type to the Artemis type, and the
role will be mapped as-is.

ActiveMQ Classic only has 3 permission types - read, write, and admin. These permission types are
described on their website. However, as described previously, ActiveMQ Artemis has 9 permission
types - createAddress, deleteAddress, createDurableQueue, deleteDurableQueue, createNonDurableQueue,
deleteNonDurableQueue, send, consume, browse, and manage. Here’s how the old types are mapped to the
new types:

read

consume, browse

write

send

admin

createAddress, deleteAddress, createDurableQueue, deleteDurableQueue, createNonDurableQueue,
deleteNonDurableQueue, manage (if mapAdminToManage is true)

As mentioned, there are a few places where a translation was performed to achieve some
equivalence.:

• This mapping doesn’t include the Artemis manage permission type by default since there is no
type analogous for that in ActiveMQ Classic. However, if mapAdminToManage is true then the legacy
admin permission will be mapped to the manage permission.

• The admin permission in ActiveMQ Classic relates to whether or not the broker will auto-create a
destination if it doesn’t exist and the user sends a message to it. Artemis automatically allows
the automatic creation of a destination if the user has permission to send message to it.
Therefore, the plugin will map the admin permission to the 6 aforementioned permissions in
Artemis by default. If mapAdminToManage is true then the legacy admin permission will be mapped
to the manage permission as well.

44.6. Secure Sockets Layer (SSL) Transport
When messaging clients are connected to servers, or servers are connected to other servers (e.g. via
bridges) over an untrusted network then Apache ActiveMQ Artemis allows that traffic to be
encrypted using the Secure Sockets Layer (SSL) transport.

For more information on configuring the SSL transport, please see Configuring the Transport.

44.7. User credentials
Apache ActiveMQ Artemis ships with three security manager implementations:

• The flexible, pluggable ActiveMQJAASSecurityManager which supports any standard JAAS login
module. Artemis ships with several login modules which will be discussed further down. This is
the default security manager.

• The ActiveMQBasicSecurityManager which doesn’t use JAAS and only supports auth via username
& password credentials. It also supports adding, removing, and updating users via the
management API. All user & role data is stored in the broker’s bindings journal which means

http://activemq.apache.org/security.html

any changes made to a primary broker will be available on its backup.

• The legacy, deprecated ActiveMQSecurityManagerImpl that reads user credentials, i.e. user names,
passwords and role information from properties files on the classpath called artemis-
users.properties and artemis-roles.properties.

44.7.1. JAAS Security Manager

When using the Java Authentication and Authorization Service (JAAS) much of the configuration
depends on which login module is used. However, there are a few commonalities for every case.
The first place to look is in bootstrap.xml. Here is an example using the PropertiesLogin JAAS login
module which reads user, password, and role information from properties files:

<jaas-security domain="PropertiesLogin"/>

No matter what login module you’re using, you’ll need to specify it here in bootstrap.xml. The
domain attribute here refers to the relevant login module entry in login.config. For example:

PropertiesLogin {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

The login.config file is a standard JAAS configuration file. You can read more about this file on
Oracle’s website. In short, the file defines:

• an alias for an entry (e.g. PropertiesLogin)

• the implementation class for the login module (e.g.
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule)

• a flag which indicates whether the success of the login module is required, requisite, sufficient,
or optional (see more details on these flags in the JavaDoc)

• a list of configuration options specific to the login module implementation

By default, the location and name of login.config is specified on the Artemis command-line which
is set by etc/artemis.profile on linux and etc\artemis.profile.cmd on Windows.

Dual Authentication

The JAAS Security Manager also supports another configuration parameter - certificate-domain.
This is useful when you want to authenticate clients connecting with SSL connections based on
their SSL certificates (e.g. using the CertificateLoginModule discussed below) but you still want to
authenticate clients connecting with non-SSL connections with, e.g., username and password.
Here’s an example of what would go in bootstrap.xml:

https://docs.oracle.com/en/java/javase/17/security/appendix-b-jaas-login-configuration-file.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/javax/security/auth/login/Configuration.html

<jaas-security domain="PropertiesLogin" certificate-domain="CertLogin"/>

And here’s the corresponding login.config:

PropertiesLogin {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required
 debug=false
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

CertLogin {
 org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
required
 debug=true
 org.apache.activemq.jaas.textfiledn.user="cert-users.properties"
 org.apache.activemq.jaas.textfiledn.role="cert-roles.properties";
};

When the broker is configured this way then any client connecting with SSL and a client certificate
will be authenticated using CertLogin and any client connecting without SSL will be authenticated
using PropertiesLogin.

44.7.2. JAAS Login Modules

GuestLoginModule

Allows users without credentials (and, depending on how it is configured, possibly also users with
invalid credentials) to access the broker. Normally, the guest login module is chained with another
login module, such as a properties login module. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule.

org.apache.activemq.jaas.guest.user

the user name to assign; default is "guest"

org.apache.activemq.jaas.guest.role

the role name to assign; default is "guests"

credentialsInvalidate

boolean flag; if true, reject login requests that include a password (i.e. guest login succeeds only
when the user does not provide a password); default is false

debug

boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it
should be set to false, or omitted; default is false

There are two basic use cases for the guest login module, as follows:

• Guests with no credentials or invalid credentials.

• Guests with no credentials only.

The following snippet shows how to configure a JAAS login entry for the use case where users with
no credentials or invalid credentials are logged in as guests. In this example, the guest login module
is used in combination with the properties login module.

activemq-domain {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";

 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
 debug=true
 org.apache.activemq.jaas.guest.user="anyone"
 org.apache.activemq.jaas.guest.role="restricted";
};

Depending on the user login data, authentication proceeds as follows:

• User logs in with a valid password — the properties login module successfully authenticates the
user and returns immediately. The guest login module is not invoked.

• User logs in with an invalid password — the properties login module fails to authenticate the
user, and authentication proceeds to the guest login module. The guest login module
successfully authenticates the user and returns the guest principal.

• User logs in with a blank password — the properties login module fails to authenticate the user,
and authentication proceeds to the guest login module. The guest login module successfully
authenticates the user and returns the guest principal.

The following snipped shows how to configure a JAAS login entry for the use case where only those
users with no credentials are logged in as guests. To support this use case, you must set the
credentialsInvalidate option to true in the configuration of the guest login module. You should also
note that, compared with the preceding example, the order of the login modules is reversed and the
flag attached to the properties login module is changed to requisite.

activemq-guest-when-no-creds-only-domain {
 org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
 debug=true
 credentialsInvalidate=true
 org.apache.activemq.jaas.guest.user="guest"
 org.apache.activemq.jaas.guest.role="guests";

 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule requisite
 debug=true
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";

};

Depending on the user login data, authentication proceeds as follows:

• User logs in with a valid password — the guest login module fails to authenticate the user
(because the user has presented a password while the credentialsInvalidate option is enabled)
and authentication proceeds to the properties login module. The properties login module
successfully authenticates the user and returns.

• User logs in with an invalid password — the guest login module fails to authenticate the user
and authentication proceeds to the properties login module. The properties login module also
fails to authenticate the user. The net result is authentication failure.

• User logs in with a blank password — the guest login module successfully authenticates the user
and returns immediately. The properties login module is not invoked.

PropertiesLoginModule

The JAAS properties login module provides a simple store of authentication data, where the
relevant user data is stored in a pair of flat files. This is convenient for demonstrations and testing,
but for an enterprise system, the integration with LDAP is preferable. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule.

org.apache.activemq.jaas.properties.user

the path to the file which contains user and password properties

org.apache.activemq.jaas.properties.role

the path to the file which contains user and role properties

org.apache.activemq.jaas.properties.password.codec

the fully qualified class name of the password codec to use. See the password masking
documentation for more details on how this works.

reload

boolean flag; whether or not to reload the properties files when a modification occurs; default is
false

debug

boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it
should be set to false, or omitted; default is false

In the context of the properties login module, the artemis-users.properties file consists of a list of
properties of the form, UserName=Password. For example, to define the users system, user, and guest,
you could create a file like the following:

system=manager
user=password
guest=password

Passwords in artemis-users.properties can be hashed. Such passwords should follow the syntax
ENC(<hash>).

Hashed passwords can easily be added to artemis-users.properties using the user CLI command
from the Artemis instance. This command will not work from the Artemis home, and it will also not
work unless the broker has been started.

./artemis user add --user-command-user guest --user-command-password guest --role
admin

This will use the default codec to perform a "one-way" hash of the password and alter both the
artemis-users.properties and artemis-roles.properties files with the specified values.

The artemis-roles.properties file consists of a list of properties of the form, Role=UserList, where
UserList is a comma-separated list of users. For example, to define the roles admins, users, and
guests, you could create a file like the following:

admins=system
users=system,user
guests=guest

As mentioned above, the Artemis command-line interface supports a command to add a user.
Commands to list (one or all) users, remove a user, and reset a user’s password and/or role(s) are
also supported via the command-line interface as well as the normal management interfaces (e.g.
JMX, web console, etc.).

Warning

Management and CLI operations to manipulate user & role data are only
available when using the PropertiesLoginModule.

In general, using properties files and broker-centric user management for
anything other than very basic use-cases is not recommended. The broker is
designed to deal with messages. It’s not in the business of managing users,
although that functionality is provided at a limited level for convenience.
LDAP is recommended for enterprise level production use-cases.

LDAPLoginModule

The LDAP login module enables you to perform authentication and authorization by checking the
incoming credentials against user data stored in a central X.500 directory server. For systems that
already have an X.500 directory server in place, this means that you can rapidly integrate ActiveMQ
Artemis with the existing security database and user accounts can be managed using the X.500
system. It is implemented by org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule.

initialContextFactory

must always be set to com.sun.jndi.ldap.LdapCtxFactory

connectionURL

specify the location of the directory server using an ldap URL, ldap://Host:Port. You can
optionally qualify this URL, by adding a forward slash, /, followed by the DN of a particular node
in the directory tree. For example, ldap://ldapserver:10389/ou=system.

authentication

specifies the authentication method used when binding to the LDAP server. Can take either of
the values, simple (username and password), GSSAPI (Kerberos SASL) or none (anonymous).

connectionUsername

the DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system. Directory servers generally require clients to present username/password
credentials in order to open a connection.

connectionPassword

the password that matches the DN from connectionUsername. In the directory server, in the DIT,
the password is normally stored as a userPassword attribute in the corresponding directory entry.

saslLoginConfigScope

the scope in JAAS configuration (login.config) to use to obtain Kerberos initiator credentials
when the authentication method is SASL GSSAPI. The default value is broker-sasl-gssapi.

connectionProtocol

currently, the only supported value is a blank string. In future, this option will allow you to
select the Secure Socket Layer (SSL) for the connection to the directory server. This option must
be set explicitly to an empty string, because it has no default value.

connectionTimeout

specifies the string representation of an integer representing the connection timeout in
milliseconds. If the LDAP provider cannot establish a connection within that period, it aborts the
connection attempt. The integer should be greater than zero. An integer less than or equal to
zero means to use the network protocol’s (i.e., TCP’s) timeout value.

If connectionTimeout is not specified, the default is to wait for the connection to be established or
until the underlying network times out.

When connection pooling has been requested for a connection, this property also determines
the maximum wait time for a connection when all connections in the pool are in use and the
maximum pool size has been reached. If the value of this property is less than or equal to zero
under such circumstances, the provider will wait indefinitely for a connection to become
available; otherwise, the provider will abort the wait when the maximum wait time has been
exceeded. See connectionPool for more details.

readTimeout

specifies the string representation of an integer representing the read timeout in milliseconds

for LDAP operations. If the LDAP provider cannot get a LDAP response within that period, it
aborts the read attempt. The integer should be greater than zero. An integer less than or equal to
zero means no read timeout is specified which is equivalent to waiting for the response
infinitely until it is received.

If readTimeout is not specified, the default is to wait for the response until it is received.

userBase

selects a particular subtree of the DIT to search for user entries. The subtree is specified by a DN,
which specifes the base node of the subtree. For example, by setting this option to
ou=User,ou=ActiveMQ,ou=system, the search for user entries is restricted to the subtree beneath
the ou=User,ou=ActiveMQ,ou=system node.

userSearchMatching

specifies an LDAP search filter, which is applied to the subtree selected by userBase. Before
passing to the LDAP search operation, the string value you provide here is subjected to string
substitution, as implemented by the java.text.MessageFormat class. Essentially, this means that
the special string, {0}, is substituted by the username, as extracted from the incoming client
credentials.

After substitution, the string is interpreted as an LDAP search filter, where the LDAP search
filter syntax is defined by the IETF standard, RFC 2254. A short introduction to the search filter
syntax is available from Oracle’s JNDI tutorial, Search Filters.

For example, if this option is set to (uid={0}) and the received username is jdoe, the search filter
becomes (uid=jdoe) after string substitution. If the resulting search filter is applied to the
subtree selected by the user base, ou=User,ou=ActiveMQ,ou=system, it would match the entry,
uid=jdoe,ou=User,ou=ActiveMQ,ou=system (and possibly more deeply nested entries, depending on
the specified search depth—see the userSearchSubtree option).

userSearchSubtree

specify the search depth for user entries, relative to the node specified by userBase. This option is
a boolean. false indicates it will try to match one of the child entries of the userBase node (maps
to javax.naming.directory.SearchControls.ONELEVEL_SCOPE). true indicates it will try to match any
entry belonging to the subtree of the userBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

userRoleName

specifies the name of the multi-valued attribute of the user entry that contains a list of role
names for the user (where the role names are interpreted as group names by the broker’s
authorization plug-in). If you omit this option, no role names are extracted from the user entry.

roleBase

if you want to store role data directly in the directory server, you can use a combination of role
options (roleBase, roleSearchMatching, roleSearchSubtree, and roleName) as an alternative to (or in
addition to) specifying the userRoleName option. This option selects a particular subtree of the DIT
to search for role/group entries. The subtree is specified by a DN, which specifes the base node of
the subtree. For example, by setting this option to ou=Group,ou=ActiveMQ,ou=system, the search for
role/group entries is restricted to the subtree beneath the ou=Group,ou=ActiveMQ,ou=system node.

https://docs.oracle.com/javase/jndi/tutorial/basics/directory/filter.html

roleName

specifies the attribute type of the role entry that contains the name of the role/group (e.g. C, O,
OU, etc.). If you omit this option the full DN of the role is used.

roleSearchMatching

specifies an LDAP search filter, which is applied to the subtree selected by roleBase. This works
in a similar manner to the userSearchMatching option, except that it supports two substitution
strings, as follows:

• {0} - substitutes the full DN of the matched user entry (that is, the result of the user search).
For example, for the user, jdoe, the substituted string could be
uid=jdoe,ou=User,ou=ActiveMQ,ou=system.

• {1} - substitutes the received username. For example, jdoe.

For example, if this option is set to (member=uid={1}) and the received username is jdoe, the
search filter becomes (member=uid=jdoe) after string substitution (assuming ApacheDS search
filter syntax). If the resulting search filter is applied to the subtree selected by the role base,
ou=Group,ou=ActiveMQ,ou=system, it matches all role entries that have a member attribute equal to
uid=jdoe (the value of a member attribute is a DN).

+ This option must always be set to enable role searching because it has no default value.
Leaving it unset disables role searching and the role information must come from userRoleName.

+ If you use OpenLDAP, the syntax of the search filter is (member:=uid=jdoe).

roleSearchSubtree

specify the search depth for role entries, relative to the node specified by roleBase. This option
can take boolean values, as follows:

• false (default) - try to match one of the child entries of the roleBase node (maps to
javax.naming.directory.SearchControls.ONELEVEL_SCOPE).

• true — try to match any entry belonging to the subtree of the roleBase node (maps to
javax.naming.directory.SearchControls.SUBTREE_SCOPE).

authenticateUser

boolean flag to disable authentication. Useful as an optimisation when this module is used just
for role mapping of a Subject’s existing authenticated principals; default is true.

referral

specify how to handle referrals; valid values: ignore, follow, throw; default is ignore.

ignorePartialResultException

boolean flag for use when searching Active Directory (AD). AD servers don’t handle referrals
automatically, which causes a PartialResultException to be thrown when referrals are
encountered by a search, even if referral is set to ignore. Set to true to ignore these exceptions;
default is false.

expandRoles

boolean indicating whether to enable the role expansion functionality or not; default false. If

enabled, then roles within roles will be found. For example, role A is in role B. User X is in role A,
which means user X is in role B by virtue of being in role A.

expandRolesMatching

specifies an LDAP search filter which is applied to the subtree selected by roleBase. Before
passing to the LDAP search operation, the string value you provide here is subjected to string
substitution, as implemented by the java.text.MessageFormat class. Essentially, this means that
the special string, {0}, is substituted by the role name as extracted from the previous role search.
This option must always be set to enable role expansion because it has no default value.
Example value: (member={0}).

noCacheExceptions

comma separated list of class names or regular expressions to match exceptions which may be
thrown during communication with the LDAP server; default is empty. Typically any failure to
authenticate will be stored in the authentication cache so that the underlying security data store
(e.g. LDAP) is spared any unnecessary traffic. For example, an application with the wrong
password attempting to login multiple times in short order might adversely impact the LDAP
server. However, in cases where the failure is, for example, due to a temporary network outage
and the security-invalidation-interval is relatively high then not caching such failures would
be better. Users can enumerate any relevant exceptions which the cache should ignore (e.g.
java.net.ConnectException). The name of the exception or the regular expression should match
the root cause from the relevant stack-trace. Users can confirm the configured exceptions are
being skipped by enabling debug logging for
org.apache.activemq.artemis.core.security.impl.SecurityStoreImpl.

debug

boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it
should be set to false, or omitted; default is false

Any additional configuration option not recognized by the LDAP login module itself is passed as-is
to the underlying LDAP connection logic.

Add user entries under the node specified by the userBase option. When creating a new user entry
in the directory, choose an object class that supports the userPassword attribute (for example, the
person or inetOrgPerson object classes are typically suitable). After creating the user entry, add the
userPassword attribute, to hold the user’s password.

If you want to store role data in dedicated role entries (where each node represents a particular
role), create a role entry as follows. Create a new child of the roleBase node, where the objectClass
of the child is groupOfNames. Set the cn (or whatever attribute type is specified by roleName) of the
new child node equal to the name of the role/group. Define a member attribute for each member of
the role/group, setting the member value to the DN of the corresponding user (where the DN is
specified either fully, uid=jdoe,ou=User,ou=ActiveMQ,ou=system, or partially, uid=jdoe).

If you want to add roles to user entries, you would need to customize the directory schema, by
adding a suitable attribute type to the user entry’s object class. The chosen attribute type must be
capable of handling multiple values.

CertificateLoginModule

The JAAS certificate authentication login module must be used in combination with SSL and the
clients must be configured with their own certificate. In this scenario, authentication is actually
performed during the SSL/TLS handshake, not directly by the JAAS certificate authentication plug-
in. The role of the plug-in is as follows:

• To further constrain the set of acceptable users, because only the user DNs explicitly listed in
the relevant properties file are eligible to be authenticated.

• To associate a list of groups with the received user identity, facilitating integration with the
authorization feature.

• To require the presence of an incoming certificate (by default, the SSL/TLS layer is configured to
treat the presence of a client certificate as optional).

The JAAS certificate login module stores a collection of certificate DNs in a pair of flat files. The files
associate a username and a list of group IDs with each DN.

The certificate login module is implemented by the following class:

org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule

The following CertLogin login entry shows how to configure certificate login module in the
login.config file:

CertLogin {
 org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
 debug=true
 org.apache.activemq.jaas.textfiledn.user="users.properties"
 org.apache.activemq.jaas.textfiledn.role="roles.properties";
};

In the preceding example, the JAAS realm is configured to use a single
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule login module.
The options supported by this login module are as follows:

debug

boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it
should be set to false, or omitted; default is false

org.apache.activemq.jaas.textfiledn.user

specifies the location of the user properties file (relative to the directory containing the login
configuration file).

org.apache.activemq.jaas.textfiledn.role

specifies the location of the role properties file (relative to the directory containing the login
configuration file).

reload

boolean flag; whether or not to reload the properties files when a modification occurs; default is
false

normalise

boolean flag; whether the DN values should be validated and normalised into the X500Name
string format used for matching; default is false. Using this option can avoid the ambiguity
around the string form of a DN that is discussed below. When true, the DN string is validated,
and then normalised into the internal X500Name format.

In the context of the certificate login module, the users.properties file consists of a list of properties
of the form, UserName=StringifiedSubjectDN or UserName=/SubjectDNRegExp/. For example, to define
the users, system, user and guest as well as a hosts user matching several DNs, you could create a
file like the following:

system=CN=system,O=Progress,C=US
user=CN=humble user,O=Progress,C=US
guest=CN=anon,O=Progress,C=DE
hosts=/CN=host\\d+\\.acme\\.com,O=Acme,C=UK/

Note that the backslash character has to be escaped because it has a special treatment in properties
files.

Each username is mapped to a subject DN, encoded as a string (where the string encoding is
specified by RFC 2253). For example, the system username is mapped to the
CN=system,O=Progress,C=US subject DN. When performing authentication, the plug-in extracts the
subject DN from the received certificate, converts it to the standard string format, and compares it
with the subject DNs in the users.properties file by testing for string equality. Consequently, you
must be careful to ensure that the subject DNs appearing in the users.properties file are an exact
match for the subject DNs extracted from the user certificates.



Technically, there is some residual ambiguity in the DN string format. For example,
the domainComponent attribute could be represented in a string either as the string,
DC, or as the OID, 0.9.2342.19200300.100.1.25. Normally, you do not need to worry
about this ambiguity. But it could potentially be a problem, if you changed the
underlying implementation of the Java security layer.

The easiest way to obtain the subject DNs from the user certificates is by invoking the keytool utility
to print the certificate contents. To print the contents of a certificate in a keystore, perform the
following steps:

1. Export the certificate from the keystore file into a temporary file. For example, to export the
certificate with alias broker-localhost from the broker.ks keystore file, enter the following
command:

keytool -export -file broker.export -alias broker-localhost -keystore broker.ks

-storepass password

After running this command, the exported certificate is in the file, broker.export.

2. Print out the contents of the exported certificate. For example, to print out the contents of
broker.export, enter the following command:

keytool -printcert -file broker.export

Which should produce output similar to that shown here:

Owner: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
Issuer: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
Serial number: 4537c82e
Valid from: Thu Oct 19 19:47:10 BST 2006 until: Wed Jan 17 18:47:10 GMT 2007
Certificate fingerprints:
 MD5: 3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37
 SHA1: F0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C

The string following Owner: gives the subject DN. The format used to enter the subject DN
depends on your platform. The Owner: string above could be represented as either
CN=localhost,\ OU=broker,\ O=Unknown,\ L=Unknown,\ ST=Unknown,\ C=Unknown or
CN=localhost,OU=broker,O=Unknown,L=Unknown,ST=Unknown,C=Unknown.

The roles.properties file consists of a list of properties of the form, Role=UserList, where UserList is
a comma-separated list of users. For example, to define the roles admins, users, and guests, you
could create a file like the following:

admins=system
users=system,user
guests=guest

SCRAMPropertiesLoginModule

The SCRAM properties login module implements the SASL challenge response for the SCRAM-SHA
mechanism. The data in the properties file reference via org.apache.activemq.jaas.properties.user
needs to be generated by the login module it’s self, as part of user registration. It contains proof of
knowledge of passwords, rather than passwords themselves. For more usage detail refer to SCRAM-
SHA SASL Mechanism.

amqp-sasl-scram {
 org.apache.activemq.artemis.spi.core.security.jaas.SCRAMPropertiesLoginModule
required
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";

};

SCRAMLoginModule

The SCRAM login module converts a valid SASL SCRAM-SHA Authenticated identity into a JAAS User
Principal. This Principal can then be used for role mapping.

{
 org.apache.activemq.artemis.spi.core.security.jaas.SCRAMLoginModule
};

ExternalCertificateLoginModule

The external certificate login module is used to propagate a validated TLS client certificate’s
subjectDN into a JAAS UserPrincipal. This allows subsequent login modules to do role mapping for
the TLS client certificate.

org.apache.activemq.artemis.spi.core.security.jaas.ExternalCertificateLoginModule
required
 ;

PrincipalConversionLoginModule

The principal conversion login module is used to convert an existing validated Principal into a JAAS
UserPrincipal. The module is configured with a list of class names used to match existing Principals.
If no UserPrincipal exists, the first matching Principal will be added as a UserPrincipal of the same
Name.

org.apache.activemq.artemis.spi.core.security.jaas.PrincipalConversionLoginModule
required
 principalClassList=org.apache.x.Principal,org.apache.y.Principal
 ;

Krb5LoginModule

The Kerberos login module is used to propagate a validated SASL GSSAPI kerberos token identity
into a validated JAAS UserPrincipal. This allows subsequent login modules to do role mapping for
the kerberos identity.

org.apache.activemq.artemis.spi.core.security.jaas.Krb5LoginModule required
 ;

The simplest way to make the login configuration available to JAAS is to add the directory
containing the file, login.config, to your CLASSPATH.

KubernetesLoginModule

The Kubernetes login module enables you to perform authentication and authorization by
validating the Bearer token against the Kubernetes API. The authentication is done by submitting a
TokenReview request that the Kubernetes cluster validates. The response will tell whether the user is
authenticated and the associated username and roles. It is implemented by
org.apache.activemq.artemis.spi.core.security.jaas.KubernetesLoginModule.

ignoreTokenReviewRoles

when true, do not map roles from the TokenReview user groups. default false

org.apache.activemq.jaas.kubernetes.role

the optional path to the file which contains role mapping, useful when
ignoreTokenReviewRoles=true

reload

boolean flag; whether or not to reload the properties file when a modification occurs; default is
false

debug

boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it
should be set to false, or omitted; default is false

The login module must be allowed to query the required Rest API. For that, it will use the available
token under /var/run/secrets/kubernetes.io/serviceaccount/token. Besides, in order to trust the
connection the client will use the ca.crt file existing in the same folder. These two files will be
mounted in the container. The service account running the KubernetesLoginModule must be
allowed to create::TokenReview. The system:auth-delegator role is typically use for that purpose.

The optional roles properties file consists of a list of properties of the form, Role=UserList, where
UserList is a comma-separated list of users. For example, to define the roles admins, users, and
guests, you could create a file like the following:

admins=system:serviceaccounts:example-ns:admin-sa
users=system:serviceaccounts:other-ns:test-sa

44.7.3. SCRAM-SHA SASL Mechanism

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication mechanism
that can establish mutual authentication using passwords. Apache ActiveMQ Artemis supports
SCRAM-SHA-256 and SCRAM-SHA-512 SASL mechanisms to provide authentication for AMQP
connections.

The following properties of SCRAM make it safe to use SCRAM-SHA even on unencrypted
connections:

• The passwords are not sent in the clear over the communication channel. The client is
challenged to offer proof it knows the password of the authenticating user, and the server is

challenged to offer proof it had the password to initialise its authentication store. Only the proof
is exchanged.

• The server and client each generate a new challenge for each authentication exchange, making
it resilient against replay attacks.

Configuring the server to use SCRAM-SHA

The desired SCRAM-SHA mechanisms must be enabled on the AMQP acceptor in broker.xml by
adding them to the saslMechanisms list url parameter. In this example, SASL is restricted to only the
SCRAM-SHA-256 mechanism:

 <acceptor name="amqp">tcp://localhost:5672?protocols=AMQP;saslMechanisms=SCRAM-SHA-
256;saslLoginConfigScope=amqp-sasl-scram

Of note is the reference to the sasl login config scope saslLoginConfigScope=amqp-sasl-scram that
holds the relevant SCRAM login module. The mechanism makes use of JAAS to complete the SASL
exchanges.

An example configuration scope for login.config that will implement SCRAM-SHA-256 using
property files, is as follows:

amqp-sasl-scram {
 org.apache.activemq.artemis.spi.core.security.jaas.SCRAMPropertiesLoginModule
required
 org.apache.activemq.jaas.properties.user="artemis-users.properties"
 org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};

Configuring a user with SCRAM-SHA data on the server

With SCRAM-SHA, the server’s users properties file do not contain any passwords, instead they
contain derivative data that can be used to respond to a challenge. The secure encoded form of the
password must be generated using the main method of
org.apache.activemq.artemis.spi.core.security.jaas.SCRAMPropertiesLoginModule from the artemis-
server module and inserting the resulting lines into your artemis-users.properties file.

java -cp "<distro-lib-dir>/*"
org.apache.activemq.artemis.spi.core.security.jaas.SCRAMPropertiesLoginModule
<username> <password> [<iterations>]

An sample of the output can be found in the amqp examples, examples/protocols/amqp/sasl-
scram/src/main/resources/activemq/server0/artemis-users.properties

44.7.4. Kerberos Authentication

You must have the Kerberos infrastructure set up in your deployment environment before the

server can accept Kerberos credentials. The server can acquire its Kerberos acceptor credentials by
using JAAS and a Kerberos login module. The JDK provides the Krb5LoginModule which executes
the necessary Kerberos protocol steps to authenticate and obtain Kerberos credentials.

GSSAPI SASL Mechanism

Using SASL over AMQP, Kerberos authentication is supported using the GSSAPI SASL mechanism.
With SASL doing Kerberos authentication, TLS can be used to provide integrity and confidentially
to the communications channel in the normal way.

The GSSAPI SASL mechanism must be enabled on the AMQP acceptor in broker.xml by adding it to
the saslMechanisms list url parameter: saslMechanisms="GSSAPI<,PLAIN, etc>.

<acceptor name="amqp">
tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI</acceptor>

The GSSAPI mechanism implementation on the server will use a JAAS configuration scope named
amqp-sasl-gssapi to obtain its Kerberos acceptor credentials. An alternative configuration scope can
be specified on the AMQP acceptor using the url parameter: saslLoginConfigScope=<some other
scope>.

An example configuration scope for login.config that will pick up a Kerberos keyTab for the
Kerberos acceptor Principal amqp/localhost is as follows:

amqp-sasl-gssapi {
 com.sun.security.auth.module.Krb5LoginModule required
 isInitiator=false
 storeKey=true
 useKeyTab=true
 principal="amqp/localhost"
 debug=true;
};

44.7.5. Role Mapping

On the server, a Kerberos or SCRAM-SHA JAAS authenticated Principal must be added to the
Subject’s principal set as an Apache ActiveMQ Artemis UserPrincipal using the corresponding
Apache ActiveMQ Artemis Krb5LoginModule or SCRAMLoginModule login modules. They are separate to
allow conversion and role mapping to be as restrictive or permissive as desired.

The PropertiesLoginModule or LDAPLoginModule can then be used to map the authenticated
Principal to an Apache ActiveMQ Artemis Role. Note that in the case of Kerberos, the Peer Principal
does not exist as an Apache ActiveMQ Artemis user, only as a role member.

In the following example, any existing Kerberos authenticated peer will convert to an Apache
ActiveMQ Artemis user principal and will have role mapping applied by the LDAPLoginModule as
appropriate.

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

activemq {
 org.apache.activemq.artemis.spi.core.security.jaas.Krb5LoginModule required
 ;
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule optional
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="ldap://localhost:1024"
 authentication=GSSAPI
 saslLoginConfigScope=broker-sasl-gssapi
 connectionProtocol=s
 userBase="ou=users,dc=example,dc=com"
 userSearchMatching="(krb5PrincipalName={0})"
 userSearchSubtree=true
 authenticateUser=false
 roleBase="ou=system"
 roleName=cn
 roleSearchMatching="(member={0})"
 roleSearchSubtree=false
 ;
};

44.7.6. Basic Security Manager

As the name suggests, the ActiveMQBasicSecurityManager is basic. It is not pluggable like the JAAS
security manager and it only supports authentication via username and password credentials.
Furthermore, the Hawtio-based web console requires JAAS. Therefore you will still need to
configure a login.config if you plan on using the web console. However, this security manager may
still may have a couple of advantages depending on your use-case.

All user & role data is stored in the bindings journal (or bindings table if using JDBC). The
advantage here is that in a primary/backup use-case any user management performed on the
primary broker will be reflected on the backup upon failover.

Typically LDAP would be employed for this kind of use-case, but not everyone wants or is able to
administer an independent LDAP server. One significant benefit of LDAP is that user data can be
shared between multiple active brokers. However, this is not possible with the
ActiveMQBasicSecurityManager or, in fact, any other configuration potentially available out of the
box. Nevertheless, if you just want to share user data between a single live/backup pair then the
basic security manager may be a good fit for you.

User management is provided by the broker’s management API. This includes the ability to add, list,
update, and remove users & roles. As with all management functions, this is available via JMX,
management messages, HTTP (via Jolokia), web console, etc. These functions are also available
from the ActiveMQ Artemis command-line interface. Having the broker store this data directly
means that it must be running in order to manage users. There is no way to modify the bindings
data manually.

To be clear, any management access via HTTP (e.g. web console or Jolokia) will go through Hawtio
JAAS. MBean access via JConsole or other remote JMX tool will go through the basic security
manager. Management messages will also go through the basic security manager.

Configuration

The configuration for the ActiveMQBasicSecurityManager happens in bootstrap.xml just like it does
for all security manager implementations. Start by removing <jaas-security /> section and add
<security-manager /> configuration as described below.

The ActiveMQBasicSecurityManager requires some special configuration for the following reasons:

• the bindings data which holds the user & role data cannot be modified manually

• the broker must be running to manage users

• the broker often needs to be secured from first boot

If, for example, the broker was configured to use the ActiveMQBasicSecurityManager and was started
from scratch then no clients would be able to connect because there would be no users & roles
configured. However, in order to configure users & roles one would need to use the management
API which would require the proper credentials. It’s a catch-22 problem. Therefore, it is essential to
configure "bootstrap" credentials that will be automatically created when the broker starts. There
are properties to define either:

• a single user whose credentials can then be used to add other users

• properties files from which to load users & roles in bulk

Here’s an example of the single bootstrap user configuration:

<broker xmlns="http://activemq.apache.org/schema">

 <security-manager class-
name="org.apache.activemq.artemis.spi.core.security.ActiveMQBasicSecurityManager">
 <property key="bootstrapUser" value="myUser"/>
 <property key="bootstrapPassword" value="myPass"/>
 <property key="bootstrapRole" value="myRole"/>
 </security-manager>

 ...
</broker>

bootstrapUser

The name of the bootstrap user.

bootstrapPassword

The password for the bootstrap user; supports masking.

bootstrapRole

The role of the bootstrap user.

If your use-case requires multiple users to be available when the broker starts then you can use a
configuration like this:

https://en.wikipedia.org/wiki/Catch-22_(logic)

<broker xmlns="http://activemq.apache.org/schema">

 <security-manager class-
name="org.apache.activemq.artemis.spi.core.security.ActiveMQBasicSecurityManager">
 <property key="bootstrapUserFile" value="artemis-users.properties"/>
 <property key="bootstrapRoleFile" value="artemis-roles.properties"/>
 </security-manager>

 ...
</broker>

bootstrapUserFile

The name of the file from which to load users. This is a properties file formatted exactly the same
as the user properties file used by the PropertiesLoginModule. This file should be on the broker’s
classpath (e.g. in the etc directory).

bootstrapRoleFile

The role of the bootstrap user. This is a properties file formatted exactly the same as the role
properties file used by the PropertiesLoginModule. This file should be on the broker’s classpath
(e.g. in the etc directory).

Regardless of whether you configure a single bootstrap user or load many users from properties
files, any user with which additional users are created should be in a role with the appropriate
permissions on the activemq.management address. For example if you’ve specified a bootstrapUser
then the bootstrapRole will need the following permissions:

• createNonDurableQueue

• createAddress

• consume

• manage

• send

For example:

<security-setting match="activemq.management.#">
 <permission type="createNonDurableQueue" roles="myRole"/>
 <permission type="createAddress" roles="myRole"/>
 <permission type="consume" roles="myRole"/>
 <permission type="manage" roles="myRole"/>
 <permission type="send" roles="myRole"/>
</security-setting>



Any bootstrap credentials will be reset whenever you start the broker no matter
what changes may have been made to them at runtime previously, so depending
on your use-case you should decide if you want to leave bootstrap configuration

permanent or if you want to remove it after initial configuration.

44.8. Mapping external roles
Roles from external authentication providers (i.e. LDAP) can be mapped to internally used roles.
The is done through role-mapping entries in the security-settings block:

<security-settings>
 [...]
 <role-mapping from="cn=admins,ou=Group,ou=ActiveMQ,ou=system" to="my-admin-role"/>
 <role-mapping from="cn=users,ou=Group,ou=ActiveMQ,ou=system" to="my-user-role"/>
</security-settings>


Role mapping is additive. That means the user will keep the original role(s) as well
as the newly assigned role(s).


This role mapping only affects the roles which are used to authorize queue access
through the configured acceptors. It can not be used to map the role required to
access the web console.

44.9. SASL
AMQP supports SASL. The following mechanisms are supported: PLAIN, EXTERNAL, ANONYMOUS,
GSSAPI, SCRAM-SHA-256, SCRAM-SHA-512. The published list can be constrained via the amqp
acceptor saslMechanisms property.


EXTERNAL will only be chosen if a subject is available from the TLS client
certificate.

44.10. Changing the username/password for clustering
In order for cluster connections to work correctly, each node in the cluster must make connections
to the other nodes. The username/password they use for this should always be changed from the
installation default to prevent a security risk.

Please see Management for instructions on how to do this.

44.11. Securing the console
Artemis comes with a web console that allows user to browse Artemis documentation via an
embedded server. By default the web access is plain HTTP. It is configured in bootstrap.xml:

<web path="web">
 <binding uri="http://localhost:8161">

 <app url="console" war="console.war"/>
 </binding>
</web>

Alternatively you can edit the above configuration to enable secure access using HTTPS protocol.
e.g.:

<web path="web">
 <binding uri="https://localhost:8443"
 keyStorePath="${artemis.instance}/etc/keystore.jks"
 keyStorePassword="password">
 <app url="jolokia" war="jolokia-war-1.3.5.war"/>
 </binding>
</web>

As shown in the example, to enable https the first thing to do is config the bind to be an https url. In
addition, You will have to configure a few extra properties described as below.

keyStorePath

The path of the key store file.

keyStorePassword

The key store’s password.

clientAuth

The boolean flag indicates whether or not client authentication is required. Default is false.

trustStorePath

The path of the trust store file. This is needed only if clientAuth is true.

trustStorePassword

The trust store’s password.

44.11.1. Config access using client certificates

The web console supports authentication with client certificates, see the following steps:

• Add the certificate login module to the login.config file, i.e.

activemq-cert {
 org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
required
 debug=true
 org.apache.activemq.jaas.textfiledn.user="cert-users.properties"
 org.apache.activemq.jaas.textfiledn.role="cert-roles.properties";
};

• Change the hawtio realm to match the realm defined in the login.config file for the certificate
login module. This is configured in the artemis.profile via the system property
-Dhawtio.realm=activemq-cert.

• Create a key pair for the client and import the public key in a truststore file.

keytool -storetype pkcs12 -keystore client-keystore.p12 -storepass securepass
-keypass securepass -alias client -genkey -keyalg "RSA" -keysize 2048 -dname
"CN=ActiveMQ Artemis Client, OU=Artemis, O=ActiveMQ, L=AMQ, S=AMQ, C=AMQ" -ext
bc=ca:false -ext eku=cA
keytool -storetype pkcs12 -keystore client-keystore.p12 -storepass securepass
-alias client -exportcert -rfc > client.crt
keytool -storetype pkcs12 -keystore client-truststore.p12 -storepass securepass
-keypass securepass -importcert -alias client-ca -file client.crt -noprompt

• Enable secure access using HTTPS protocol with client authentication, use the truststore file
created in the previous step to set the trustStorePath and trustStorePassword:

<web path="web">
 <binding uri="https://localhost:8443"
 keyStorePath="${artemis.instance}/etc/server-keystore.p12"
 keyStorePassword="password"
 clientAuth="true"
 trustStorePath="${artemis.instance}/etc/client-truststore.p12"
 trustStorePassword="password">
 <app url="jolokia" war="jolokia-war-1.3.5.war"></app>
 </binding>
</web>

• Use the private key created in the previous step to set up your client, i.e. if the client app is a
browser install the private key in the browser.

44.12. Controlling JMS ObjectMessage deserialization
Artemis provides a simple class filtering mechanism with which a user can specify which packages
are to be trusted and which are not. Objects whose classes are from trusted packages can be
deserialized without problem, whereas those from 'not trusted' packages will be denied
deserialization.

Artemis keeps a deny list to keep track of packages that are not trusted and a allow list for trusted
packages. By default both lists are empty, meaning any serializable object is allowed to be
deserialized. If an object whose class matches one of the packages in deny list, it is not allowed to be
deserialized. If it matches one in the allow list the object can be deserialized. If a package appears
in both deny list and allow list, the one in deny list takes precedence. If a class neither matches with
deny list nor with the allow list, the class deserialization will be denied unless the allow list is
empty (meaning the user doesn’t specify the allow list at all).

A class is considered as a 'match' if:

• its full name exactly matches one of the entries in the list.

• its package matches one of the entries in the list or is a sub-package of one of the entries.

For example, if a class full name is "org.apache.pkg1.Class1", some matching entries could be:

• org.apache.pkg1.Class1 - exact match.

• org.apache.pkg1 - exact package match.

• org.apache — sub package match.

A * means 'match-all' in a deny or allow list.

44.12.1. Config via Connection Factories

To specify the allow and deny lists one can use the URL parameters deserializationDenyList and
deserializationAllowList. For example, using JMS:

ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory
("vm://0?deserializationDenyList=org.apache.pkg1,org.some.pkg2");

The above statement creates a factory that has a deny list contains two forbidden packages,
"org.apache.pkg1" and "org.some.pkg2", separated by a comma.

44.12.2. Config via system properties

There are two system properties available for specifying deny list and allow list:

org.apache.activemq.artemis.jms.deserialization.allowlist

comma separated list of entries for the allow list.

org.apache.activemq.artemis.jms.deserialization.denylist

comma separated list of entries for the deny list.

Once defined, all JMS object message deserialization in the VM is subject to checks against the two
lists. However if you create a ConnectionFactory and set a new set of deny/allow lists on it, the new
values will override the system properties.

44.12.3. Config for resource adapters

Message beans using a JMS resource adapter to receive messages can also control their object
deserialization via properly configuring relevant properties for their resource adapters. There are
two properties that you can configure with connection factories in a resource adapter:

deserializationDenyList

comma separated values for deny list

deserializationAllowList

comma separated values for allow list

These properties, once specified, are eventually set on the corresponding internal factories.

44.13. Masking Passwords
For details about masking passwords in broker.xml please see the Masking Passwords chapter.

44.14. Custom Security Manager
The underpinnings of the broker’s security implementation can be changed if so desired. The
broker uses a component called a "security manager" to implement the actual authentication and
authorization checks. By default, the broker uses
org.apache.activemq.artemis.spi.core.security.ActiveMQJAASSecurityManager to provide JAAS
integration, but users can provide their own implementation of
org.apache.activemq.artemis.spi.core.security.ActiveMQSecurityManager5 and configure it in
bootstrap.xml using the security-manager element, e.g.:

<broker xmlns="http://activemq.apache.org/schema">

 <security-manager class-name="com.foo.MySecurityManager">
 <property key="myKey1" value="myValue1"/>
 <property key="myKey2" value="myValue2"/>
 </security-manager>

 ...
</broker>

The security-manager example demonstrates how to do this is more detail.

44.15. Per-Acceptor Security Domains
It’s possible to override the broker’s JAAS security domain by specifying a security domain on an
individual acceptor. Simply use the securityDomain parameter and indicate which domain from
your login.config to use, e.g.:

<acceptor name="myAcceptor">
tcp://127.0.0.1:61616?securityDomain=mySecurityDomain</acceptor>

Any client connecting to this acceptor will be have security enforced using mySecurityDomain.

44.16. UUID Resources
The uuid-namespace value can be used with a security-setting match just as it can with an address-
setting. For example:

<uuid-namespace>uuid</uuid-namespace>

<security-settings>
 <security-setting match="uuid.#">
 <permission type="createAddress" roles="myRole"/>
 <permission type="createNonDurableQueue" roles="myRole"/>
 <permission type="deleteAddress" roles="myRole"/>
 <permission type="deleteNonDurableQueue" roles="myRole"/>
 </security-setting>
</security-settings>

Using this configuration any user in myRole can create and delete all the resources necessary to deal
with, for example, temporary JMS queues or topics. However, users without myRole will not be able
to create or delete those resources.

Chapter 45. Masking Passwords
By default all passwords in Apache ActiveMQ Artemis server’s configuration files are in plain text
form. This usually poses no security issues as those files should be well protected from
unauthorized accessing. However, in some circumstances a user doesn’t want to expose its
passwords to more eyes than necessary.

Apache ActiveMQ Artemis can be configured to use 'masked' passwords in its configuration files. A
masked password is an obscure string representation of a real password. To mask a password a
user will use an 'codec'. The codec takes in the real password and outputs the masked version. A
user can then replace the real password in the configuration files with the new masked password.
When Apache ActiveMQ Artemis loads a masked password it uses the codec to decode it back into
the real password.

Apache ActiveMQ Artemis provides a default codec. Optionally users can use or implement their
own codec for masking the passwords.

In general, a masked password can be identified using one of two ways. The first one is the ENC()
syntax, i.e. any string value wrapped in ENC() is to be treated as a masked password. For example

ENC(xyz)

The above indicates that the password is masked and the masked value is xyz.

The ENC() syntax is the preferred way of masking a password and is universally supported in every
password configuration in Artemis.

The other, legacy way is to use a mask-password attribute to tell that a password in a configuration
file should be treated as 'masked'. For example:

<mask-password>true</mask-password>
<cluster-password>xyz</cluster-password>

This method is now deprecated and exists only to maintain backward-compatibility. Newer
configurations may not support it.

45.1. Generating a Masked Password
To mask a password use the mask command from the bin directory of your Artemis instance. This
command will not work from the Artemis home.

By default, the mask command uses the legacy two-way algorithm of the default codec unless a
custom codec is defined in broker.xml and the --password-codec option is true. The legacy two-way
algorithm is now deprecated and exists only to maintain backward-compatibility, use a custom
codec instead. Here’s a simple example:

./artemis mask <plaintextPassword>

You’ll get something like:

result: 32c6f67dae6cd61b0a7ad1702033aa81e6b2a760123f4360

Just copy 32c6f67dae6cd61b0a7ad1702033aa81e6b2a760123f4360 and replace your plaintext password
with it using the ENC() syntax, e.g. ENC(32c6f67dae6cd61b0a7ad1702033aa81e6b2a760123f4360).

You can also use the --key parameter with the default codec. Read more about the default codec for
further details about this parameter.

This process works for passwords in:

• broker.xml

• login.config

• bootstrap.xml

• management.xml

This process does not work for passwords in:

• artemis-users.properties

Masked passwords for artemis-users.properties can be generated using the mask command using
the --hash command-line option. However, this is also possible using the set of tools provided by the
user command described below.

45.2. Masking Configuration
Besides supporting the ENC() syntax, the server configuration file (i.e. broker.xml) has a property
that defines the default masking behaviors over the entire file scope.

mask-password: this boolean type property indicates if a password should be masked or not. Set it to
true if you want your passwords masked. The default value is false. As noted above, this
configuration parameter is deprecated in favor of the ENC() syntax.

password-codec: this string type property identifies the name of the class which will be used to
decode the masked password within the broker. If not specified then the default
org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec will be used. Read more about
using a custom codec.

45.2.1. artemis-users.properties

Apache ActiveMQ Artemis' default JAAS security manager uses plain properties files where the user
passwords are specified in a hashed form by default. Note, the passwords are technically hashed
rather than masked in this context. The default PropertiesLoginModule will not decode the
passwords in artemis-users.properties but will instead hash the input and compare the two hashed
values for password verification.

Use the following command from the CLI of the Artemis instance you wish to add the

user/password to. This command will not work from the Artemis home used to create the instance,
and it will also not work unless the broker has been started. For example:

./artemis user add --user-command-user guest --user-command-password guest --role
admin

This will use the default codec to perform a one-way hash of the password and alter both the
artemis-users.properties and artemis-roles.properties files with the specified values.

Passwords in artemis-users.properties are automatically detected as hashed or not by looking for
the syntax ENC(<hash>). The mask-password parameter does not need to be true to use hashed
passwords here.



Management and CLI operations to manipulate user & role data are only available
when using the PropertiesLoginModule.

In general, using properties files and broker-centric user management for
anything other than very basic use-cases is not recommended. The broker is
designed to deal with messages. It’s not in the business of managing users,
although that functionality is provided at a limited level for convenience. LDAP is
recommended for enterprise level production use-cases.

45.2.2. cluster-password

If it is specified in ENC() syntax it will be treated as masked, or if mask-password is true the cluster-
password will be treated as masked.

45.2.3. Connectors & Acceptors

In broker.xml connector and acceptor configurations sometimes needs to specify passwords. For
example, if a user wants to use an acceptor with sslEnabled=true it can specify keyStorePassword and
trustStorePassword. Because Acceptors and Connectors are pluggable implementations, each
transport will have different password masking needs.

The preferred way is simply to use the ENC() syntax.

If using the legacy mask-password and password-codec values then when a connector or acceptor is
initialised, Apache ActiveMQ Artemis will add these values to the parameters using the keys
activemq.usemaskedpassword and activemq.passwordcodec respectively. The Netty and InVM
implementations will use these as needed and any other implementations will have access to these
to use if they so wish.

45.2.4. Core Bridges

Core Bridges are configured in the server configuration file and so the masking of its password
properties follows the same rules as that of cluster-password. It supports ENC() syntax.

For using mask-password property, the following table summarizes the relations among the above-

mentioned properties

mask-password cluster-password acceptor/connector
passwords

bridge password

absent plain text plain text plain text

false plain text plain text plain text

true masked masked masked

It is recommended that you use the ENC() syntax for new applications/deployments.

Examples


In the following examples if related attributed or properties are absent, it means
they are not specified in the configure file.

• Unmasked

<cluster-password>bbc</cluster-password>

This indicates the cluster password is a plain text value bbc.

• Masked 1

<cluster-password>ENC(80cf731af62c290)</cluster-password>

This indicates the cluster password is a masked value 80cf731af62c290.

• Masked 2

<mask-password>true</mask-password>
<cluster-password>80cf731af62c290</cluster-password>

This indicates the cluster password is a masked value and Apache ActiveMQ Artemis will use
the default codec to decode it. All other passwords in the configuration file, Connectors,
Acceptors and Bridges, will also use masked passwords.

45.2.5. bootstrap.xml

The broker embeds a web-server for hosting some web applications such as a management console.
It is configured in bootstrap.xml as a web component. The web server can be secured using the
https protocol, and it can be configured with a keystore password and/or truststore password
which by default are specified in plain text forms.

To mask these passwords you need to use ENC() syntax. The mask-password boolean is not supported
here.

You can also set the passwordCodec attribute if you want to use a password codec other than the
default one. For example

<web path="web" rootRedirectLocation="console">
 <binding name="artemis"
 uri="https://localhost:8443"
 keyStorePassword="ENC(-5a2376c61c668aaf)"
 trustStorePassword="ENC(3d617352d12839eb71208edf41d66b34)">
 <app name="console" url="console" war="console.war"/>
 </binding>
</web>

45.2.6. management.xml

The broker embeds a JMX connector which is used for management. The connector can be secured
using SSL and it can be configured with a keystore password and/or truststore password which by
default are specified in plain text forms.

To mask these passwords you need to use ENC() syntax. The mask-password boolean is not supported
here.

You can also set the password-codec attribute if you want to use a password codec other than the
default one. For example

<connector
 connector-port="1099"
 connector-host="localhost"
 secured="true"
 key-store-path="myKeystore.jks"
 key-store-password="ENC(3a34fd21b82bf2a822fa49a8d8fa115d"
 trust-store-path="myTruststore.jks"
 trust-store-password="ENC(3a34fd21b82bf2a822fa49a8d8fa115d)"/>

With this configuration, both passwords in ra.xml and all of its MDBs will have to be in masked
form.

45.2.7. PropertiesLoginModule

Artemis supports Properties login module to be configured in JAAS configuration file (default name
is login.config). By default, the passwords of the users are in plain text or masked with the the
default codec.

To use a custom codec class, set the org.apache.activemq.jaas.properties.password.codec property
to the class name e.g. to use the com.example.MySensitiveDataCodecImpl codec class:

PropertiesLoginWithPasswordCodec {
 org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required

 debug=true
 org.apache.activemq.jaas.properties.user="users.properties"
 org.apache.activemq.jaas.properties.role="roles.properties"

org.apache.activemq.jaas.properties.password.codec="com.example.MySensitiveDataCodecIm
pl";
};

45.2.8. LDAPLoginModule

Artemis supports LDAP login modules to be configured in JAAS configuration file (default name is
login.config). When connecting to an LDAP server usually you need to supply a connection
password in the config file. By default this password is in plain text form.

To mask it you need to configure the passwords in your login module using ENC() syntax. To specify
a codec using the following property:

passwordCodec - the password codec class name. (the default codec will be used if it is absent)

For example:

LDAPLoginExternalPasswordCodec {
 org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule required
 debug=true
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connectionURL="ldap://localhost:1024"
 connectionUsername="uid=admin,ou=system"
 connectionPassword="ENC(-170b9ef34d79ed12)"

passwordCodec="org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec;key=hello
world"
 connectionProtocol=s
 authentication=simple
 userBase="ou=system"
 userSearchMatching="(uid={0})"
 userSearchSubtree=false
 roleBase="ou=system"
 roleName=dummyRoleName
 roleSearchMatching="(uid={1})"
 roleSearchSubtree=false
 ;
};

45.2.9. JCA Resource Adapter

Both ra.xml and MDB activation configuration have a password property that can be masked
preferably using ENC() syntax.

Alternatively it can use an optional attribute in ra.xml to indicate that a password is masked:

UseMaskedPassword

If setting to "true" the passwords are masked. Default is false.

There is another property in ra.xml that can specify a codec:

PasswordCodec

Class name and its parameters for the codec used to decode the masked password. Ignored if
UseMaskedPassword is false. The format of this property is a full qualified class name optionally
followed by key/value pairs. It is the same format as that for JMS Bridges. Example:

Example 1 Using the ENC() syntax:

<config-property>
 <config-property-name>password</config-property-name>
 <config-property-type>String</config-property-type>
 <config-property-value>ENC(80cf731af62c290)</config-property-value>
</config-property>
<config-property>
 <config-property-name>PasswordCodec</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>com.foo.ACodec;key=helloworld</config-property-value>
</config-property>

Example 2 Using the "UseMaskedPassword" property:

<config-property>
 <config-property-name>UseMaskedPassword</config-property-name>
 <config-property-type>boolean</config-property-type>
 <config-property-value>true</config-property-value>
</config-property>
<config-property>
 <config-property-name>password</config-property-name>
 <config-property-type>String</config-property-type>
 <config-property-value>80cf731af62c290</config-property-value>
</config-property>
<config-property>
 <config-property-name>PasswordCodec</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>com.foo.ACodec;key=helloworld</config-property-value>
</config-property>

45.3. Choosing a codec for password masking
As described in the previous sections, all password masking requires a codec. A codec uses an
algorithm to convert a masked password into its original clear text form in order to be used in
various security operations. The algorithm used for decoding must match that for encoding.
Otherwise the decoding may not be successful.

For user’s convenience Apache ActiveMQ Artemis provides a default codec. However, a user can
implement their own if they wish.

45.3.1. The Default Codec

Whenever no codec is specified in the configuration, the default codec is used. The class name for
the default codec is org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec. It provides 2
algorithms: one-way and two-way. The one-way algorithm can hash a string and is the default
algorithm used by PropertiesLoginModule. The two-way algorithm can encode/decode a string by
using a key. The two-way algorithm has a default key in
org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec, but using the default key leaves
open the possibility that nefarious actors could also use that key to unmask the password(s). It is
now deprecated and exists only to maintain backward-compatibility, use a custom codec instead.
The key used here is important since the same key must be used to both mask and unmask the
password. It is just a string of characters which the codec feeds to the underlying algorithm. There
are a few ways to to supply your own key:

1. Specify the key in the codec configuration using the key=value syntax. Depending on which
password you’re trying to mask the configuration specifics will differ slightly, but this can be
done, for example, in broker.xml with <password-codec>:

<password-
codec>org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec;key=myKey</pass
word-codec>

Similar configurations are possible in any file that supports password masking, e.g.
boostrap.xml, login.config, management.xml, etc. The main drawback with this method is that the
key will be stored in plain-text in the configuration file(s).

2. Set the system property -Dartemis.default.sensitive.string.codec.key=myKey.

3. Set the environment property ARTEMIS_DEFAULT_SENSITIVE_STRING_CODEC_KEY. The benefit of using
this method is that the key is more obscure since it will not exist in any configuration file. It can
be set immediately before the broker starts and then cleared from the environment immediately
after the broker finishes starting.

45.3.2. Using a custom codec

It is possible to use a custom codec rather than the built-in one. Simply make sure the codec is in
Apache ActiveMQ Artemis’s classpath. The custom codec can also be service loaded rather than
class loaded, if the codec’s service provider is installed in the classpath. Then configure the server
to use it as follows:

<password-codec>com.foo.SomeCodec;key1=value1;key2=value2</password-codec>

If your codec needs params passed to it you can do this via key/value pairs when configuring. For
instance if your codec needs say a "key-location" parameter, you can define like so:

<password-codec>com.foo.NewCodec;key-location=/some/url/to/keyfile</password-codec>

Then configure your cluster-password like this:

<cluster-password>ENC(masked_password)</cluster-password>

When Apache ActiveMQ Artemis reads the cluster-password it will initialize the NewCodec and use it
to decode "mask_password". It also process all passwords using the new defined codec.

Implementing Custom Codecs

To use a different codec than the built-in one, you either pick one from existing libraries or you
implement it yourself. All codecs must implement the
org.apache.activemq.artemis.utils.SensitiveDataCodec<String> interface. So a new codec would be
defined like

public class MyCodec implements SensitiveDataCodec<String> {
 @Override
 public String decode(Object mask) throws Exception {
 // Decode the mask into clear text password.
 return "the password";
 }

 @Override
 public String encode(Object secret) throws Exception {
 // Mask the clear text password.
 return "the masked password";
 }

 @Override
 public void init(Map<String, String> params) {
 // Initialization done here. It is called right after the codec has been
created.
 }

 @Override
 public boolean verify(char[] value, String encodedValue) {
 // Return true if the value matches the encodedValue.
 return checkValueMatchesEncoding(value, encodedValue);
 }
}

Last but not least, once you get your own codec please add it to the classpath otherwise the broker
will fail to load it!

Chapter 46. Resource Limits
Sometimes it’s helpful to set particular limits on what certain users can do beyond the normal
security settings related to authorization and authentication. For example, limiting how many
connections a user can create or how many queues a user can create. This chapter will explain how
to configure such limits.

46.1. Configuring Limits Via Resource Limit Settings
Here is an example of the XML used to set resource limits:

<resource-limit-settings>
 <resource-limit-setting match="myUser">
 <max-sessions>5</max-sessions>
 <max-queues>3</max-queues>
 </resource-limit-setting>
</resource-limit-settings>

Unlike the match from address-setting, this match does not use any wild-card syntax. It’s a simple 1:1
mapping of the limits to a user.

max-sessions

How many sessions the matched user can create on the broker. The default is -1 which means
there is no limit.

Why sessions and not connections?

The session is the fundamental networked resource in the Core API.

There is no conceptual separation between a connection and a session in the Core API as
there is, for example, in JMS/Jakarta Messaging. When an application uses the Core JMS
implementation to create a JMS Connection what’s actually created behind-the-scenes is a
Core session. This session is used to validate the client application’s credentials and JMS
client ID (if available). When the application creates a JMS Session then another Core
session is created.

The same basic thing happens for the other supported protocols (e.g. STOMP, AMQP,
MQTT). When a client creates a network connection to the broker the broker responds by
creating an internal, server-side session.

The number of these sessions can be limited on a per-user basis.

To be clear, the broker does track basic TCP connections, and these too can be limited (i.e.
via the connectionsAllowed acceptor URL parameter), but these connections don’t carry
credentials and therefore cannot be limited on a per-user basis.

max-queues

How many queues the matched user can create. The default is -1 which means there is no limit.

Chapter 47. Performance Tuning
In this chapter we’ll discuss how to tune Apache ActiveMQ Artemis for optimum performance.

47.1. Tuning persistence
• To get the best performance from Apache ActiveMQ Artemis whilst using persistent messages it

is recommended that the file store is used. Apache ActiveMQ Artemis also supports JDBC
persistence, but there is a performance cost when persisting to a database vs local disk.

• Put the message journal on its own physical volume. If the disk is shared with other processes
e.g. transaction co-ordinator, database or other journals which are also reading and writing
from it, then this may greatly reduce performance since the disk head may be skipping all over
the place between the different files. One of the advantages of an append only journal is that
disk head movement is minimised - this advantage is destroyed if the disk is shared. If you’re
using paging or large messages make sure they’re ideally put on separate volumes too.

• Minimum number of journal files. Set journal-min-files to a number of files that would fit your
average sustainable rate. This number represents the lower threshold of the journal file pool.

• To set the upper threshold of the journal file pool. (journal-min-files being the lower
threshold). Set journal-pool-files to a number that represents something near your maximum
expected load. The journal will spill over the pool should it need to, but will shrink back to the
upper threshold, when possible. This allows reuse of files, without taking up more disk space
than required. If you see new files being created on the journal data directory too often, i.e. lots
of data is being persisted, you need to increase the journal-pool-size, this way the journal would
reuse more files instead of creating new data files, increasing performance

• Journal file size. The journal file size should be aligned to the capacity of a cylinder on the disk.
The default value 10MiB should be enough on most systems.

• Use ASYNCIO journal. If using Linux, try to keep your journal type as ASYNCIO. ASYNCIO will scale
better than Java NIO.

• Tune journal-buffer-timeout. The timeout can be increased to increase throughput at the
expense of latency.

• If you’re running ASYNCIO you might be able to get some better performance by increasing
journal-max-io. DO NOT change this parameter if you are running NIO.

• If you are 100% sure you don’t need power failure durability guarantees, disable journal-data-
sync and use NIO or MAPPED journal: you’ll benefit a huge performance boost on writes with
process failure durability guarantees.

47.2. Tuning JMS
There are a few areas where some tweaks can be done if you are using the JMS API

• Disable message id. Use the setDisableMessageID() method on the MessageProducer class to
disable message ids if you don’t need them. This decreases the size of the message and also
avoids the overhead of creating a unique ID.

• Disable message timestamp. Use the setDisableMessageTimeStamp() method on the
MessageProducer class to disable message timestamps if you don’t need them.

• Avoid ObjectMessage. ObjectMessage is convenient but it comes at a cost. The body of a
ObjectMessage uses Java serialization to serialize it to bytes. The Java serialized form of even
small objects is very verbose so takes up a lot of space on the wire, also Java serialization is slow
compared to custom marshalling techniques. Only use ObjectMessage if you really can’t use one
of the other message types, i.e. if you really don’t know the type of the payload until run-time.

• Avoid AUTO_ACKNOWLEDGE. AUTO_ACKNOWLEDGE mode requires an acknowledgement to be sent from
the server for each message received on the client, this means more traffic on the network. If
you can, use DUPS_OK_ACKNOWLEDGE or use CLIENT_ACKNOWLEDGE or a transacted session and batch up
many acknowledgements with one acknowledge/commit.

• Avoid durable messages. By default JMS messages are durable. If you don’t really need durable
messages then set them to be non-durable. Durable messages incur a lot more overhead in
persisting them to storage.

• Batch many sends or acknowledgements in a single transaction. Apache ActiveMQ Artemis will
only require a network round trip on the commit, not on every send or acknowledgement.

47.3. Other Tunings
There are various other places in Apache ActiveMQ Artemis where we can perform some tuning:

• Use Asynchronous Send Acknowledgements. If you need to send durable messages non
transactionally and you need a guarantee that they have reached the server by the time the call
to send() returns, don’t set durable messages to be sent blocking, instead use asynchronous send
acknowledgements to get your acknowledgements of send back in a separate stream, see
Guarantees of sends and commits for more information on this.

• Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged before
they are sent to the client. This reduces the amount of acknowledgement traffic on the wire. For
more information on this, see Extra Acknowledge Modes.

• Disable security. You may get a small performance boost by disabling security by setting the
security-enabled parameter to false in broker.xml.

• Disable persistence. If you don’t need message persistence, turn it off altogether by setting
persistence-enabled to false in broker.xml.

• Sync transactions lazily. Setting journal-sync-transactional to false in broker.xml can give you
better transactional persistent performance at the expense of some possibility of loss of
transactions on failure. See Guarantees of sends and commits for more information.

• Sync non transactional lazily. Setting journal-sync-non-transactional to false in broker.xml can
give you better non-transactional persistent performance at the expense of some possibility of
loss of durable messages on failure. See Guarantees of sends and commits for more information.

• Send messages non blocking. Setting block-on-durable-send and block-on-non-durable-send to
false in the jms config (if you’re using JMS and JNDI) or directly on the ServerLocator. This
means you don’t have to wait a whole network round trip for every message sent. See
Guarantees of sends and commits for more information.

• If you have very fast consumers, you can increase consumer-window-size. This effectively
disables consumer flow control.

• Use the core API not JMS. Using the JMS API you will have slightly lower performance than
using the core API, since all JMS operations need to be translated into core operations before the
server can handle them. If using the core API try to use methods that take SimpleString as much
as possible. SimpleString, unlike java.lang.String does not require copying before it is written to
the wire, so if you re-use SimpleString instances between calls then you can avoid some
unnecessary copying.

• If using frameworks like Spring, configure destinations permanently broker side and enable
cacheDestinations on the client side. See the Setting The Destination Cache for more information
on this.

47.4. Tuning Transport Settings
• TCP buffer sizes. If you have a fast network and fast machines you may get a performance boost

by increasing the TCP send and receive buffer sizes. See the Configuring the Transport for more
information on this.


Note that some operating systems like later versions of Linux include TCP auto-
tuning and setting TCP buffer sizes manually can prevent auto-tune from
working and actually give you worse performance!

• Increase limit on file handles on the server. If you expect a lot of concurrent connections on
your servers, or if clients are rapidly opening and closing connections, you should make sure
the user running the server has permission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase the
number of allowable open file handles in the file /etc/security/limits.conf e.g. add the lines

serveruser soft nofile 20000
serveruser hard nofile 20000

This would allow up to 20000 file handles to be open by the user serveruser.

• Use batch-delay and set direct-deliver to false for the best throughput for very small messages.
Apache ActiveMQ Artemis comes with a preconfigured connector/acceptor pair (netty-
throughput) in broker.xml and JMS connection factory (ThroughputConnectionFactory) in activemq-
jms.xmlwhich can be used to give the very best throughput, especially for small messages. See
the Configuring the Transport for more information on this.

47.5. Tuning the VM
We highly recommend you use the latest Java JVM for the best performance. We test internally
using the Sun JVM, so some of these tunings won’t apply to JDKs from other providers (e.g. IBM or
JRockit)

• Memory settings. Give as much memory as you can to the server. Apache ActiveMQ Artemis can
run in low memory by using paging (described in Paging) but if it can run with all queues in
RAM this will improve performance. The amount of memory you require will depend on the
size and number of your queues and the size and number of your messages. Use the JVM
arguments -Xms and -Xmx to set server available RAM. We recommend setting them to the same
high value.

When under periods of high load, it is likely that Artemis will be generating and destroying lots
of objects. This can result in a build up of stale objects. To reduce the chance of running out of
memory and causing a full GC (which may introduce pauses and unintentional behaviour), it is
recommended that the max heap size (-Xmx) for the JVM is set at least to 5 x the global-max-size
of the broker. As an example, in a situation where the broker is under high load and running
with a global-max-size of 1GB, it is recommended the max heap size is set to 5GB.

47.6. Avoiding Anti-Patterns
• Re-use connections / sessions / consumers / producers. Probably the most common messaging

anti-pattern we see is users who create a new connection/session/producer for every message
they send or every message they consume. This is a poor use of resources. These objects take
time to create and may involve several network round trips. Always re-use them.



Spring’s JmsTemplate is known to use this anti-pattern. It can only safely be used
with a connection pool (e.g. in a Java EE application server using JCA), and
even then it should only be used for sending messages. It cannot be safely be
used for synchronously consuming messages, even with a connection pool. If
you need a connection pool take a look at this which was forked from the
ActiveMQ code-base into its own project with full support for JMS 2.

• Avoid fat messages. Verbose formats such as XML take up a lot of space on the wire and
performance will suffer as result. Avoid XML in message bodies if you can.

• Don’t create temporary queues for each request. This common anti-pattern involves the
temporary queue request-response pattern. With the temporary queue request-response
pattern a message is sent to a target and a reply-to header is set with the address of a local
temporary queue. When the recipient receives the message they process it then send back a
response to the address specified in the reply-to. A common mistake made with this pattern is to
create a new temporary queue on each message sent. This will drastically reduce performance.
Instead the temporary queue should be re-used for many requests.

• Don’t use Message-Driven Beans for the sake of it. As soon as you start using MDBs you are
greatly increasing the codepath for each message received compared to a straightforward
message consumer, since a lot of extra application server code is executed. Ask yourself do you
really need MDBs? Can you accomplish the same task using just a normal message consumer?

47.7. Troubleshooting

https://github.com/messaginghub/pooled-jms

47.7.1. UDP not working

In certain situations UDP used on discovery may not work. Typical situations are:

1. The nodes are behind a firewall. If your nodes are on different machines then it is possible that
the firewall is blocking the multicasts. you can test this by disabling the firewall for each node
or adding the appropriate rules.

2. You are using a home network or are behind a gateway. Typically home networks will redirect
any UDP traffic to the Internet Service Provider which is then either dropped by the ISP or just
lost. To fix this you will need to add a route to the firewall/gateway that will redirect any
multicast traffic back on to the local network instead.

3. All the nodes are in one machine. If this is the case then it is a similar problem to point 2 and
the same solution should fix it. Alternatively you could add a multicast route to the loopback
interface. On linux the command would be:

you should run this as root
route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

This will redirect any traffic directed to the 224.0.0.0 to the loopback interface. This will also
work if you have no network at all. On Mac OS X, the command is slightly different:

sudo route add 224.0.0.0 127.0.0.1 -netmask 240.0.0.0

Chapter 48. Performance Tools
Artemis provides some built-in performance test tools based on the JMS 2 API to help users (and
developers) to stress test a configured Artemis broker instance in different scenarios.

These command-line tools won’t represent a full-fat benchmark (such as Open Messaging), but can
be used as building blocks to produce one. They are also quite useful on their own.

In summary, the provided perf tools are:

1. producer tool: it can generate both all-out throughput or target-rate load, using BytesMessage of
a configured size

2. consumer tool: it uses a MessageListener to consume messages sent by the producer command

3. client tools: it packs both tools as a single command

Most users will just need the client tool, but the producer and consumer tools allow performing tests
in additional scenario(s):

• delaying consumer start, in order to cause the broker to page

• running producers and consumers on different machines

• …

The examples below (running on a 64 bit Linux 5.14 with Intel® Core™ i7-9850H CPU @ 2.60GHz ×
12 with Turbo Boost disabled, 32 GB of RAM and SSD) show different use cases of increasing
complexity. As they progress, some internal architectural details of the tool and the configuration
options supported, are explored.



The tools can run both from within the broker’s instance folder or from the home
folder. In both cases, the user should set JAVA_ARGS environment variable to
override default heap and GC parameters (e.g. -XX:+UseParallelGC -Xms512M
-Xmx1024M)

48.1. Case 1: Single producer Single consumer over a
queue
This is the simplest possible case: running a load test with 1 producer and 1 consumer on a non-
durable queue TEST_QUEUE, using non-persistent 1024 bytes long (by default) messages, using auto-
acknowledge.

Let’s see what happens after typing:

$./artemis perf client queue://TEST_QUEUE
Connection brokerURL = tcp://localhost:61616
2022-01-18 10:30:54,535 WARN [org.apache.activemq.artemis.core.client] AMQ212053:
CompletionListener/SendAcknowledgementHandler used with confirmationWindowSize=-1.
Enable confirmationWindowSize to receive acks from server!

https://javaee.github.io/jms-spec/pages/JMS20FinalRelease
https://openmessaging.cloud/docs/benchmarks/
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/bytesmessage
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/messagelistener
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/deliverymode#NON_PERSISTENT
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/session#AUTO_ACKNOWLEDGE
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/session#AUTO_ACKNOWLEDGE

--- warmup false
--- sent: 7316 msg/sec
--- blocked: 6632 msg/sec
--- completed: 7320 msg/sec
--- received: 7317 msg/sec
...

The test keeps on running, until SIGTERM or SIGINT signals are sent to the Java process (on Linux
Console it translates into pressing CTRL + C). Before looking what the metrics mean, there’s an
initial WARN log that shouldn’t be ignored:

WARN [org.apache.activemq.artemis.core.client] AMQ212053:
CompletionListener/SendAcknowledgementHandler used with confirmationWindowSize=-1.
Enable confirmationWindowSize to receive acks from server!

It shows two things:

1. the load generator uses async message producers

2. confirmationWindowSize is an Artemis CORE protocol specific setting; the perf commands uses
CORE as the default JMS provider

48.1.1. Live Latency Console Reporting

The perf client command can report on Console different latency percentiles metrics by adding
--show-latency to the command arguments, but in order to obtain meaningful metrics, we need to
address WARN by setting confirmationWindowSize on the producer url, setting --consumer-url to save
applying the same configuration for consumer(s).

In short, the command is using these additional parameters:

--show-latency --url tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616

Running it

$./artemis perf client --show-latency --url
tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 queue://TEST_QUEUE
--- warmup false
--- sent: 8114 msg/sec
--- blocked: 8114 msg/sec
--- completed: 8114 msg/sec
--- received: 8113 msg/sec
--- send ack time: mean: 113.01 us - 50.00%: 106.00 us - 90.00%: 142.00 us
- 99.00%: 204.00 us - 99.90%: 371.00 us - 99.99%: 3455.00 us - max:
3455.00 us

https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/messageproducer#send-javax.jms.Destination-javax.jms.Message-javax.jms.CompletionListener-

--- transfer time: mean: 213.71 us - 50.00%: 126.00 us - 90.00%: 177.00 us
- 99.00%: 3439.00 us - 99.90%: 7967.00 us - 99.99%: 8895.00 us - max:
8895.00 us
CTRL + C pressed
--- SUMMARY
--- result: success
--- total sent: 70194
--- total blocked: 70194
--- total completed: 70194
--- total received: 70194
--- aggregated send time: mean: 101.53 us - 50.00%: 86.00 us - 90.00%:
140.00 us - 99.00%: 283.00 us - 99.90%: 591.00 us - 99.99%: 2007.00 us - max:
24959.00 us
--- aggregated transfer time: mean: 127.48 us - 50.00%: 97.00 us - 90.00%:
166.00 us - 99.00%: 449.00 us - 99.90%: 4671.00 us - 99.99%: 8255.00 us - max:
27263.00 us

Some notes:

1. WARN message is now gone

2. send ack time and transfer time statistics are printed at second interval

3. total and aggregated metrics are printed on test completion (more on this later)

The meaning of the live latency statistics are:

send ack time

percentiles of latency to acknowledge sent messages

transfer time

percentiles of latency to transfer messages from producer(s) to consumer(s)

The perf commands uses JMS 2 async message producers that allow the load generator to
accumulate in-flight sent messages and depending on the protocol implementation, may block its
producer thread due to producer flow control. e.g: the Artemis CORE protocol can block producers
threads to refill producers credits, while the QPID-JMS won’t.

The perf tool is implementing its own in-flight sent requests tracking and can be configured to limit
the amount of pending sent messages, while reporting the rate by which producers are "blocked"
awaiting completions



Producer threads are blocked?

Although the load back-pressure mechanism is non-blocking, given that the load
generator cannot push further load while back-pressured by the protocol client,
the load is semantically "blocked". This detail is relevant to explain the live rate
statistics on Console:

By default, the perf tools (i.e: client and producer) limits the number of in-flight request to 1: to
change the default setting users should add --max-pending parameter configuration.

https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/messageproducer#send-javax.jms.Destination-javax.jms.Message-javax.jms.CompletionListener-
https://qpid.apache.org/components/jms/index.html



Setting --max-pending 0 will disable the load generator in-flight sent messages
limiter, allowing the tool to accumulate an unbounded number of in-flight
messages, risking OutOfMemoryError.

This is NOT RECOMMENDED!

More detail on the metrics:

warmup

The generator phase while the statistics sample is collected; warmup duration can be set by
setting --warmup

sent

The message sent rate

blocked

The rate of attempts to send a new message, "blocked" awaiting --max-pending refill

completed

The rate of message send acknowledgements received by producer(s)

received

The rate of messages received by consumer(s)

48.1.2. How to read the live statistics?

+ The huge amount of blocked vs sent means that the broker wasn’t fast enough to refill the single
--max-pending budget before sending a new message. + It can be changed into:

--max-pending 100

$./artemis perf client --warmup 20 --max-pending 100 --show-latency --url
tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 queue://TEST_QUEUE
Connection brokerURL = tcp://localhost:61616?confirmationWindowSize=20000
first samples shows very BAD performance because client JVM is still warming up
--- warmup true
--- sent: 27366 msg/sec
--- blocked: 361 msg/sec
--- completed: 27305 msg/sec
--- received: 26195 msg/sec
--- send ack time: mean: 1743.39 us - 50.00%: 1551.00 us - 90.00%: 3119.00 us
- 99.00%: 5215.00 us - 99.90%: 8575.00 us - 99.99%: 8703.00 us - max:
23679.00 us
--- transfer time: mean: 11860.32 us - 50.00%: 11583.00 us - 90.00%: 18559.00 us
- 99.00%: 24319.00 us - 99.90%: 31359.00 us - 99.99%: 31615.00 us - max:
31615.00 us
... > 20 seconds later ...

performance is now way better then during warmup
--- warmup false
--- sent: 86525 msg/sec
--- blocked: 5734 msg/sec
--- completed: 86525 msg/sec
--- received: 86556 msg/sec
--- send ack time: mean: 1109.13 us - 50.00%: 1103.00 us - 90.00%: 1447.00 us
- 99.00%: 1687.00 us - 99.90%: 5791.00 us - 99.99%: 5983.00 us - max:
5983.00 us
--- transfer time: mean: 4662.94 us - 50.00%: 1679.00 us - 90.00%: 12159.00 us
- 99.00%: 14079.00 us - 99.90%: 14527.00 us - 99.99%: 14783.00 us - max:
14783.00 us
CTRL + C
--- SUMMARY
--- result: success
--- total sent: 3450389
--- total blocked: 168863
--- total completed: 3450389
--- total received: 3450389
--- aggregated send time: mean: 1056.09 us - 50.00%: 1003.00 us - 90.00%:
1423.00 us - 99.00%: 1639.00 us - 99.90%: 4287.00 us - 99.99%: 7103.00 us - max:
19583.00 us
--- aggregated transfer time: mean: 18647.51 us - 50.00%: 10751.00 us - 90.00%:
54271.00 us - 99.00%: 84991.00 us - 99.90%: 90111.00 us - 99.99%: 93183.00 us -
max: 94207.00 us

Some notes on the results:

• we now have a reasonable blocked/sent ratio (< ~10%)

• sent rate has improved ten-fold if compared to previous results

And on the SUMMARY statistics:

• total counters include measurements collected with warmup true

• aggregated latencies don’t include measurements collected with warmup true

48.1.3. How to compare latencies across tests?

The Console output format isn’t designed for easy latency comparisons, however the perf
commands expose --hdr <hdr file name> parameter to produce a HDR Histogram compatible
report that can be opened with different visualizers + eg Online HdrHistogram Log Analyzer,
HdrHistogramVisualizer or HistogramLogAnalyzer.


Any latency collected trace on this guide is going to use Online HdrHistogram Log
Analyzer as HDR Histogram visualizer tool.

Below is the visualization of the HDR histograms collected while adding to the previous benchmark

http://hdrhistogram.org/
https://hdrhistogram.github.io/HdrHistogramJSDemo/logparser.html
https://github.com/ennerf/HdrHistogramVisualizer
https://github.com/HdrHistogram/HistogramLogAnalyzer
https://hdrhistogram.github.io/HdrHistogramJSDemo/logparser.html
https://hdrhistogram.github.io/HdrHistogramJSDemo/logparser.html

--hdr /tmp/non_durable_queue.hdr

Whole test execution shows tagged latencies, to distinguish warmup ones:

Filtering out warmup latencies, it looks like

Latency results shows that at higher percentiles transfer latency is way higher than the sent one
(reminder: sent it’s the time to acknowledge sent messages), probably meaning that some queuing-
up is happening on the broker.

In order to test this theory we switch to target rate tests.

48.2. Case 2: Target Rate Single producer Single
consumer over a queue
perf client and perf producer tools allow specifying a target rate to schedule producer(s) requests:
adding

--rate <msg/sec integer value>

The previous example last run shows that --max-pending 100 guarantees < 10% blocked/sent
messages with aggregated latencies

--- aggregated send time: mean: 1056.09 us - 50.00%: 1003.00 us - 90.00%:
1423.00 us - 99.00%: 1639.00 us - 99.90%: 4287.00 us - 99.99%: 7103.00 us - max:
19583.00 us
--- aggregated transfer time: mean: 18647.51 us - 50.00%: 10751.00 us - 90.00%:
54271.00 us - 99.00%: 84991.00 us - 99.90%: 90111.00 us - 99.99%: 93183.00 us -

max: 94207.00 us

We would like to lower transfer time sub-millisecond; let’s try by running a load test with ~30% of
the max perceived sent rate, by setting:

--rate 30000 --hdr /tmp/30K.hdr

The whole command is then:

$./artemis perf client --rate 30000 --hdr /tmp/30K.hdr --warmup 20 --max-pending 100
--show-latency --url tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 queue://TEST_QUEUE
... after 20 warmup seconds ...
--- warmup false
--- sent: 30302 msg/sec
--- blocked: 0 msg/sec
--- completed: 30302 msg/sec
--- received: 30303 msg/sec
--- send delay time: mean: 24.20 us - 50.00%: 21.00 us - 90.00%: 54.00 us
- 99.00%: 72.00 us - 99.90%: 233.00 us - 99.99%: 659.00 us - max:
731.00 us
--- send ack time: mean: 150.48 us - 50.00%: 120.00 us - 90.00%: 172.00 us
- 99.00%: 1223.00 us - 99.90%: 2543.00 us - 99.99%: 3183.00 us - max:
3247.00 us
--- transfer time: mean: 171.53 us - 50.00%: 135.00 us - 90.00%: 194.00 us
- 99.00%: 1407.00 us - 99.90%: 2607.00 us - 99.99%: 3151.00 us - max:
3183.00 us
CTRL + C
--- SUMMARY
--- result: success
--- total sent: 1216053
--- total blocked: 845
--- total completed: 1216053
--- total received: 1216053
--- aggregated delay send time: mean: 35.84 us - 50.00%: 20.00 us - 90.00%:
55.00 us - 99.00%: 116.00 us - 99.90%: 3359.00 us - 99.99%: 5503.00 us - max:
6495.00 us
--- aggregated send time: mean: 147.38 us - 50.00%: 117.00 us - 90.00%:
165.00 us - 99.00%: 991.00 us - 99.90%: 4191.00 us - 99.99%: 5695.00 us - max:
7103.00 us
--- aggregated transfer time: mean: 178.48 us - 50.00%: 134.00 us - 90.00%:
188.00 us - 99.00%: 1359.00 us - 99.90%: 5471.00 us - 99.99%: 8831.00 us - max:
12799.00 us

We’ve now achieved sub-millisecond transfer latencies until 90.00 pencentile. + Opening
/tmp/30K.hdr makes easier to see it:

Now send and transfer time looks quite similar and there’s no sign of queueing, but…

48.2.1. What delay send time means?

This metric is borrowed from the Coordinated Omission concept, and it measures the delay of
producer(s) while trying to send messages at the requested rate.

The source of such delay could be:

• slow responding broker: the load generator reached --max-pending and the expected rate cannot
be honored

• client running out of resources (lack of CPU time, GC pauses, etc etc): load generator cannot
keep-up with the expected rate because it is just "too fast" for it

• protocol-dependent blocking behaviours: CORE JMS 2 async send can block due to
producerWindowSize exhaustion

A sane run of a target rate test should keep delay send time under control or investigation actions
must be taken to understand what’s the source of the delay. + Let’s show it with an example: we’ve
already checked the all-out rate of the broker ie ~90K msg/sec

By running a --rate 90000 test under the same conditions, latencies will look as

It clearly shows that the load generator is getting delayed and cannot keep-up with the expected
rate.

Below is a more complex example involving destinations (auto)generation with "asymmetric" load
i.e: the producer number is different from consumer number.

http://highscalability.com/blog/2015/10/5/your-load-generator-is-probably-lying-to-you-take-the-red-pi.html

48.3. Case 3: Target Rate load on 10 durable topics,
each with 3 producers and 2 unshared consumers
The perf tool can auto generate destinations using

--num-destinations <number of destinations to generate>

and naming them by using the destination name specified as the seed and an ordered sequence
suffix.

eg

--num-destinations 3 topic://TOPIC

would generate 3 topics: TOPIC0, TOPIC1, TOPIC2.

With the default configuration (without specifying --num-destinations) it would just create TOPIC,
without any numerical suffix.

In order to create a load generation on 10 topics, each with 3 producers and 2 unshared consumers:

--producers 3 --consumers 2 --num-destinations 10 topic://TOPIC

The whole perf client all-out throughput command would be:

same as in the previous cases
./artemis perf client --warmup 20 --max-pending 100 --s
how-latency --url tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 \
--producers 3 --consumers 2 --num-destinations 10 --durable --persistent
topic://DURABLE_TOPIC
this last part above is new

and it would print…

javax.jms.IllegalStateException: Cannot create durable subscription - client ID has
not been set

Given that the generator is creating unshared durable Topic subscriptions, is it mandatory to set a
ClientID for each connection used.

The perf client tool creates a connection for each consumer by default and auto-generates both
ClientIDs and subscriptions names (as required by the unshared durable Topic subscriptions API).
ClientID still requires users to specify Client ID prefixes with --clientID <Client ID prefix> and

https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/session#createDurableConsumer-javax.jms.Topic-java.lang.String-
https://jakarta.ee/specifications/messaging/2.0/apidocs/javax/jms/session#createDurableConsumer-javax.jms.Topic-java.lang.String-

takes care to unsubscribe the consumers on test completion.

The complete commands now looks like:

./artemis perf client --warmup 20 --max-pending 100 --show-latency --url
tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 \
--producers 3 --consumers 2 --num-destinations 10 --durable --persistent
topic://DURABLE_TOPIC --clientID test_id
after few seconds
--- warmup false
--- sent: 74842 msg/sec
--- blocked: 2702 msg/sec
--- completed: 74641 msg/sec
--- received: 146412 msg/sec
--- send ack time: mean: 37366.13 us - 50.00%: 37119.00 us - 90.00%: 46079.00 us
- 99.00%: 68095.00 us - 99.90%: 84479.00 us - 99.99%: 94719.00 us - max:
95743.00 us
--- transfer time: mean: 44060.66 us - 50.00%: 43263.00 us - 90.00%: 54527.00 us
- 99.00%: 75775.00 us - 99.90%: 87551.00 us - 99.99%: 91135.00 us - max:
91135.00 us
CTRL + C
--- SUMMARY
--- result: success
--- total sent: 2377653
--- total blocked: 80004
--- total completed: 2377653
--- total received: 4755306
--- aggregated send time: mean: 39423.69 us - 50.00%: 38911.00 us - 90.00%:
49663.00 us - 99.00%: 66047.00 us - 99.90%: 85503.00 us - 99.99%: 101887.00 us -
max: 115711.00 us
--- aggregated transfer time: mean: 46216.99 us - 50.00%: 45311.00 us - 90.00%:
57855.00 us - 99.00%: 78335.00 us - 99.90%: 97791.00 us - 99.99%: 113151.00 us -
max: 125439.00 us

Results shows that tranfer time isn’t queuing up, meaning that subscribers are capable to keep-up
with the producers: hence a reasonable rate to test could be ~80% of the perceived sent rate ie
--rate 60000:

./artemis perf client --warmup 20 --max-pending 100 --show-latency --url
tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 \
--producers 3 --consumers 2 --num-destinations 10 --durable --persistent
topic://DURABLE_TOPIC --clientID test_id \
--rate 60000
after many seconds while running
--- warmup false
--- sent: 55211 msg/sec
--- blocked: 2134 msg/sec

--- completed: 54444 msg/sec
--- received: 111622 msg/sec
--- send delay time: mean: 6306710.04 us - 50.00%: 6094847.00 us - 90.00%: 7766015.00
us - 99.00%: 8224767.00 us - 99.90%: 8257535.00 us - 99.99%: 8257535.00 us - max:
8257535.00 us
--- send ack time: mean: 50072.92 us - 50.00%: 50431.00 us - 90.00%: 57855.00 us
- 99.00%: 65023.00 us - 99.90%: 71167.00 us - 99.99%: 71679.00 us - max:
71679.00 us
--- transfer time: mean: 63672.92 us - 50.00%: 65535.00 us - 90.00%: 78847.00 us
- 99.00%: 86015.00 us - 99.90%: 90623.00 us - 99.99%: 93183.00 us - max:
94719.00 us
it won't get any better :(

What’s wrong with the send delay time? + Results show that the load generator cannot keep up
with the expected rate and it’s accumulating a huge delay on the expected scheduled load: lets
trying fixing it by adding more producers threads, adding

--threads <producer threads>

By using two producers threads, the command now looks like:

./artemis perf client --warmup 20 --max-pending 100 --show-latency --url
tcp://localhost:61616?confirmationWindowSize=20000 --consumer-url
tcp://localhost:61616 \
--producers 3 --consumers 2 --num-destinations 10 --durable --persistent
topic://DURABLE_TOPIC --clientID test_id \
--rate 60000 --threads 2
after few seconds warming up....
--- warmup false
--- sent: 59894 msg/sec
--- blocked: 694 msg/sec
--- completed: 58925 msg/sec
--- received: 114857 msg/sec
--- send delay time: mean: 3189.96 us - 50.00%: 277.00 us - 90.00%: 10623.00 us
- 99.00%: 35583.00 us - 99.90%: 47871.00 us - 99.99%: 56063.00 us - max:
58367.00 us
--- send ack time: mean: 31500.93 us - 50.00%: 31231.00 us - 90.00%: 48383.00 us
- 99.00%: 65535.00 us - 99.90%: 83455.00 us - 99.99%: 95743.00 us - max:
98303.00 us
--- transfer time: mean: 38151.21 us - 50.00%: 37119.00 us - 90.00%: 55807.00 us
- 99.00%: 84479.00 us - 99.90%: 104959.00 us - 99.99%: 118271.00 us - max:
121855.00 us

send delay time now seems under control, meaning that the load generator need some tuning in
order to work at its best.

Chapter 49. Thread management
This chapter describes how Apache ActiveMQ Artemis uses and pools threads and how you can
manage them.

First we’ll discuss how threads are managed and used on the server side then we’ll look at the client
side.

49.1. Server-Side Thread Management
Thread pools exist for each of the following:

• scheduled tasks

• general use

• asynchronous IO

• paging

• remoting (managed by Netty on a per-acceptor basis)



Broker Identification in Thread Names

Many thread names contain broker identification. This is done to assist in cases
where multiple brokers are running in the same JVM (e.g. in the test-suite). The
identification which appears in the thread name is determined by the following in
order of precedence:

• identity set in the internal ConfigurationImpl object (done by tests)

• name set in broker.xml

• the hexadecimal representation of the ActiveMQServerImpl Java Object’s identity
acquired via System.identityHashCode

49.1.1. Scheduled Thread Pool

The scheduled thread pool is used for most activities on the server side that require running
periodically or with delays. This includes tasks like scanning:

• queues for expired messages or scheduled deliveries

• configuration files for changes

• unused addresses & queues for deletion

The maximum number of thread used by this pool is configure in broker.xml with the scheduled-
thread-pool-max-size parameter, e.g.:

<scheduled-thread-pool-max-size>10</scheduled-thread-pool-max-size>

The default scheduled-thread-pool-max-size is 5 . A value of 0 is not allowed.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#identityHashCode(java.lang.Object)

The name for threads from this pool will contain activemq-scheduled.

49.1.2. General Purpose Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. The
maximum number of threads used by this pool is configure in broker.xml with the thread-pool-max-
size parameter, e.g.:

<thread-pool-max-size>60</thread-pool-max-size>

The default thread-pool-max-size is 30. A value of -1 signifies that the thread pool has no upper
bound and new threads will be created on demand if there are not enough threads already
available to satisfy demand. A value of 0 is not allowed.

Any threads in this pool which are idle for 60 seconds will be terminated.

The name for threads from this pool will contain activemq-<brokerName>.

49.1.3. Asynchronous IO

Threads from this pool are used for journal-related disk I/O, JDBC, & replication.

The name for threads from this pool will contain activemq-io-<brokerName>.

49.1.4. Paging

Threads from this pool are used to write to and read from paging (disk or JDBC).

The name for threads from this pool will contain activemq-paging-<brokerName>.

49.1.5. Netty Acceptors

Apache ActiveMQ Artemis will, by default, cap Netty threads on a per-acceptor basis at three times
the number of cores (or hyper-threads) as reported by Runtime.getRuntime().availableProcessors()
for processing network traffic. To override this value, you can set the number of threads by
specifying the parameter remotingThreads in the transport configuration. See the configuring
transports for more information on this.

Threads names will include the name of their corresponding acceptor with the prefix activemq-
remoting-. For example, for the acceptor named amqp the corresponding thread names will contain
activemq-remoting-amqp-<brokerName>.

49.1.6. Other Server-Side Threads

A thread dump from the server’s JVM will have other threads as well. Here’s other names you
might find in a thread dump and the function they perform.

activemq-web

thread pool managed by Jetty (i.e. the embedded web server) to handle HTTP connections (e.g.

from the web console or other Jolokia clients)

activemq-failure-check-thread

checks TTL on incoming connections

activemq-buffer-timeout

flushes disk IO buffers upon timeout

activemq-libaio-poller

polls AIO for callbacks

activemq-critical-analyzer

monitors for timeouts of various critical server operations

activemq-shutdown-timer

monitors configuration directory for status file to stop the server

activemq-remoting-service

in-vm connectivity and invoking failure listeners for Netty

Log4j2-TF-*-Scheduled-*

executes Log4j2 tasks related to CronTriggeringPolicy used by default log4j2.properties

49.2. Client-Side Thread Management
On the client side, Apache ActiveMQ Artemis maintains a single, "global" static scheduled thread
pool and a single, "global" static general thread pool for use by all clients using the same classloader
in that JVM instance.

The static scheduled thread pool has a maximum size of 5 threads by default. This can be changed
using the scheduledThreadPoolMaxSize URI parameter.

The general purpose thread pool has an unbounded maximum size. This is changed using the
threadPoolMaxSize URL parameter.

If required Apache ActiveMQ Artemis can also be configured so that each ClientSessionFactory
instance does not use these "global" static pools but instead maintains its own scheduled and
general purpose pool. Any sessions created from that ClientSessionFactory will use those pools
instead. This is configured using the useGlobalPools boolean URL parameter.

Chapter 50. Scheduled Messages
Scheduled messages differ from normal messages in that they won’t be delivered until a specified
time in the future, at the earliest.

To do this, a special property is set on the message before sending it.

50.1. Scheduled Delivery Property
The property name used to identify a scheduled message is "_AMQ_SCHED_DELIVERY" (or the constant
Message.HDR_SCHEDULED_DELIVERY_TIME).

The specified value must be a positive long corresponding to the time the message must be
delivered (in milliseconds). An example of sending a scheduled message using the JMS API is as
follows.

TextMessage message = session.createTextMessage("This is a scheduled message message
which will be delivered in 5 sec.");
message.setLongProperty("_AMQ_SCHED_DELIVERY", System.currentTimeMillis() + 5000);
producer.send(message);

...

// message will not be received immediately but 5 seconds later
TextMessage messageReceived = (TextMessage) consumer.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the core
message before sending.

50.2. Example
See the Scheduled Message Example which shows how scheduled messages can be used with JMS.

Chapter 51. Last-Value Queues
Last-Value queues are special queues which discard any messages when a newer message with the
same value for a well-defined Last-Value property is put in the queue. In other words, a Last-Value
queue only retains the last value.

A typical example for Last-Value queue is for stock prices, where you are only interested by the
latest value for a particular stock.

Messages sent to an Last-Value queue without the specified property will be delivered as normal
and will never be "replaced".

51.1. Configuration

Last Value Key Configuration

Last-Value queues can be statically configured in broker.xml via the last-value-key

<address name="foo.bar">
 <multicast>
 <queue name="orders1" last-value-key="reuters_code" />
 </multicast>
</address>

Specified on creating a queue by using the CORE api specifying the parameter lastValue to true.

Or on auto-create when using the JMS Client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?last-value-key=reuters_code");
Topic topic = session.createTopic("my.destination.name?last-value-key=reuters_code");

Address wildcards can be used to configure Last-Value queues for a set of addresses (see here).

<address-setting match="lastValueQueue">
 <default-last-value-key>reuters_code</default-last-value-key>
</address-setting>

By default, default-last-value-key is null.

Legacy Last Value Configuration

Last-Value queues can also just be configured via the last-value boolean property, doing so it will
default the last-value-key to _AMQ_LVQ_NAME.

<address name="foo.bar">
 <multicast>
 <queue name="orders1" last-value="true" />
 </multicast>
</address>

Specified on creating a queue by using the CORE api specifying the parameter lastValue to true.

Or on auto-create when using the JMS Client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?last-value=true");
Topic topic = session.createTopic("my.destination.name?last-value=true");

Also the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="lastValueQueue">
 <default-last-value-queue>true</default-last-value-queue>
</address-setting>

By default, default-last-value-queue is false.

Note that address-setting last-value-queue config is deprecated, please use default-last-value-
queue instead.

51.2. Last-Value Property
The property name used to identify the last value is configurable at the queue level mentioned
above.

If using the legacy setting to configure an LVQ then the default property "_AMQ_LVQ_NAME" is used (or
the constant Message.HDR_LAST_VALUE_NAME from the Core API).

For example, using the sample configuration

<address name="foo.bar">
 <multicast>
 <queue name="orders1" last-value-key="reuters_code" />
 </multicast>
</address>

if two messages with the same value for the Last-Value property are sent to a Last-Value queue,
only the latest message will be kept in the queue:

// send 1st message with Last-Value property `reuters_code` set to `VOD`
TextMessage message = session.createTextMessage("1st message with Last-Value property
set");
message.setStringProperty("reuters_code", "VOD");
producer.send(message);

// send 2nd message with Last-Value property `reuters_code` set to `VOD`
message = session.createTextMessage("2nd message with Last-Value property set");
message.setStringProperty("reuters_code", "VOD");
producer.send(message);

...

// only the 2nd message will be received: it is the latest with
// the Last-Value property set
TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);
System.out.format("Received message: %s\n", messageReceived.getText());

51.3. Forcing all consumers to be non-destructive
It’s common to combine last-value queues with non-destructive semantics.

51.4. Clustering
The fundamental ideas behind last-value queues and clustering are at odds with each other.

Clustering was designed as a way to increase message throughput through horizontal scaling. The
messages in a clustered queue can be spread across all nodes in the cluster. This allows clients to be
distributed across the cluster to leverage the computing resources all the nodes rather than being
bottlenecked on a single node.

However, if you wanted to use a last-value queue in a cluster then in order to enforce last-value
semantics all messages would be required to go to a queue on a single node. This would effectively
nullify the benefits of clustering. Also, the arrival of messages on and and redistribution of those
messages from nodes other than the node where the last-value semantics would be enforced would
almost certainly impact which message is considered "last."

For these reasons last-value queues are not supported in a traditional cluster. However, it would be
possible to use a connection router in front of a cluster (or even a set of non-clustered brokers) to
ensure all clients which need to use the same last-value queue are directed to the same node. See
the connection router for more details on configuration, etc.

51.5. Example
See the last-value queue example which shows how last value queues are configured and used with
JMS.

Chapter 52. Non-Destructive Queues
When a consumer attaches to a queue, the normal behaviour is that messages are sent to that
consumer are acquired exclusively by that consumer, and when the consumer acknowledges them,
the messages are removed from the queue.

Another common pattern is to have queue "browsers" which send all messages to the browser, but
do not prevent other consumers from receiving the messages, and do not remove them from the
queue when the browser is done with them. Such a browser is an instance of a "non-destructive"
consumer.

If every consumer on a queue is non destructive then we can obtain some interesting behaviours.
In the case of a last value queue then the queue will always contain the most up to date value for
every key.

A queue can be created to enforce all consumers are non-destructive using the following queue
configuration:

<address name="foo.bar">
 <multicast>
 <queue name="orders1" non-destructive="true" />
 </multicast>
</address>

Or on auto-create when using the JMS client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?non-destructive=true");
Topic topic = session.createTopic("my.destination.name?non-destructive=true");

Also the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="nonDestructiveQueue">
 <default-non-destructive>true</default-non-destructive>
</address-setting>

By default, default-non-destructive is false.

52.1. Limiting the Size of the Queue
For queues other than last-value queues, having only non-destructive consumers could mean that
messages would never get deleted, leaving the queue to grow without constraint. To prevent this
you can use the ability to set a default expiry-delay. See expiry-delay for more details on this. You
could also use a ring queue.

Chapter 53. Ring Queue
Queues operate with first-in, first-out (FIFO) semantics which means that messages, in general, are
added to the "tail" of the queue and removed from the "head." A "ring" queue is a special type of
queue with a fixed size. The fixed size is maintained by removing the message at the head of the
queue when the number of messages on the queue reaches the configured size.

For example, consider a queue configured with a ring size of 3 and a producer which sends the
messages A, B, C, & D in that order. Once C is sent the number of messages in the queue will be 3
which is the same as the configured ring size. We can visualize the queue growth like this…

After A is sent:

 |---|
head/tail -> | A |
 |---|

After B is sent:

 |---|
head -> | A |
 |---|
tail -> | B |
 |---|

After C is sent:

 |---|
head -> | A |
 |---|
 | B |
 |---|
tail -> | C |
 |---|

When D is sent it will be added to the tail of the queue and the message at the head of the queue (i.e.
A) will be removed so the queue will look like this:

 |---|
head -> | B |
 |---|
 | C |
 |---|
tail -> | D |
 |---|

This example covers the most basic use case with messages being added to the tail of the queue.
However, there are a few other important use cases involving:

• Messages in delivery & rollbacks

• Scheduled messages

• Paging

However, before we get to those use cases let’s look at the basic configuration of a ring queue.

53.1. Configuration
There are 2 parameters related to ring queue configuration.

The ring-size parameter can be set directly on the queue element. The default value comes from the
default-ring-size address-setting (see below).

<addresses>
 <address name="myRing">
 <anycast>
 <queue name="myRing" ring-size="3" />
 </anycast>
 </address>
</addresses>

The default-ring-size is an address-setting which applies to queues on matching addresses which
don’t have an explicit ring-size set. This is especially useful for auto-created queues. The default
value is -1 (i.e. no limit).

<address-settings>
 <address-setting match="ring.#">
 <default-ring-size>3</default-ring-size>
 </address-setting>
</address-settings>

The ring-size may be updated at runtime. If the new ring-size is set lower than the previous ring-
size the broker will not immediately delete enough messages from the head of the queue to enforce
the new size. New messages sent to the queue will force the deletion of old messages (i.e. the queue
won’t grow any larger), but the queue will not reach its new size until it does so naturally through
the normal consumption of messages by clients.

53.2. Messages in Delivery & Rollbacks
When messages are "in delivery" they are in an in-between state where they are not technically on
the queue but they are also not yet acknowledged. The broker is at the consumer’s mercy to either
acknowledge such messages or not. In the context of a ring queue, messages which are in-delivery
cannot be removed from the queue.

This presents a few dilemmas.

Due to the nature of messages in delivery a client can actually send more messages to a ring queue
than it would otherwise permit. This can make it appear that the ring-size is not being enforced
properly. Consider this simple scenario:

• Queue foo with ring-size="3"

• 1 Consumer on queue foo

• Message A sent to foo & dispatched to consumer

• messageCount=1, deliveringCount=1

• Message B sent to foo & dispatched to consumer

• messageCount=2, deliveringCount=2

• Message C sent to foo & dispatched to consumer

• messageCount=3, deliveringCount=3

• Message D sent to foo & dispatched to consumer

• messageCount=4, deliveringCount=4

The messageCount for foo is now 4, one greater than the ring-size of 3! However, the broker has no
choice but to allow this because it cannot remove messages from the queue which are in delivery.

Now consider that the consumer is closed without actually acknowledging any of these 4 messages.
These 4 in-delivery, unacknowledged messages will be cancelled back to the broker and added to
the head of the queue in the reverse order from which they were consumed. This, of course, will
put the queue over its configured ring-size. Therefore, since a ring queue prefers messages at the
tail of the queue over messages at the head it will keep B, C, & D and delete A (since A was the last
message added to the head of the queue).

Transaction or core session rollbacks are treated the same way.

If you wish to avoid these kinds of situations and you’re using the core client directly or the core
JMS client you can minimize messages in delivery by reducing the size of consumerWindowSize (1024
* 1024 bytes by default).

53.3. Scheduled Messages
When a scheduled message is sent to a queue it isn’t immediately added to the tail of the queue like
normal messages. It is held in an intermediate buffer and scheduled for delivery onto the head of
the queue according to the details of the message. However, scheduled messages are nevertheless
reflected in the message count of the queue. As with messages which are in delivery this can make
it appear that the ring queue’s size is not being enforced. Consider this simple scenario:

• Queue foo with ring-size="3"

• At 12:00 message A sent to foo scheduled for 12:05

• messageCount=1, scheduledCount=1

• At 12:01 message B sent to foo

• messageCount=2, scheduledCount=1

• At 12:02 message C sent to foo

• messageCount=3, scheduledCount=1

• At 12:03 message D sent to foo

• messageCount=4, scheduledCount=1

The messageCount for foo is now 4, one greater than the ring-size of 3! However, the scheduled
message is not technically on the queue yet (i.e. it is on the broker and scheduled to be put on the
queue). When the scheduled delivery time for 12:05 comes the message will put on the head of the
queue, but since the ring queue’s size has already been reach the scheduled message A will be
removed.

53.4. Paging
Similar to scheduled messages and messages in delivery, paged messages don’t count against a ring
queue’s size because messages are actually paged at the address level, not the queue level. A paged
message is not technically on a queue although it is reflected in a queue’s messageCount.

It is recommended that paging is not used for addresses with ring queues. In other words, ensure
that the entire address will be able to fit into memory or use the DROP, BLOCK or FAIL address-full-
policy.

Chapter 54. Retroactive Addresses
A "retroactive" address is an address that will preserve messages sent to it for queues which will be
created on it in the future. This can be useful in, for example, publish-subscribe use cases where
clients want to receive the messages sent to the address before they actually connected and created
their multicast "subscription" queue. Typically messages sent to an address before a queue was
created on it would simply be unavailable to those queues, but with a retroactive address a fixed
number of messages can be preserved by the broker and automatically copied into queues
subsequently created on the address. This works for both anycast and multicast queues.

54.1. Internal Retroactive Resources
To implement this functionality the broker will create 4 internal resources for each retroactive
address:

1. A non-exclusive divert to grab the messages from the retroactive address.

2. An address to receive the messages from the divert.

3. Two ring queues to hold the messages sent to the address by the divert - one for anycast and
one for multicast. The general caveats for ring queues still apply here. See the chapter on ring
queues for more details.

These resources are important to be aware of as they will show up in the web console and other
management or metric views. They will be named according to the following pattern:

<internal-naming-prefix><delimiter><source-
address><delimiter>(divert|address|queue<delimiter>(anycast|multicast))<delimiter>retr
o

For example, if an address named myAddress had a retroactive-message-count of 10 and the default
internal-naming-prefix (i.e. $.artemis.internal.) and the default delimiter (i.e. .) were being used
then resources with these names would be created:

1. A divert on myAddress named $.artemis.internal.myAddress.divert.retro

2. An address named $.artemis.internal.myAddress.address.retro

3. A multicast queue on the address from step #2 named
$.artemis.internal.myAddress.queue.multicast.retro with a ring-size of 10.

4. An anycast queue on the address from step #2 named
$.artemis.internal.myAddress.queue.anycast.retro with a ring-size of 10.

This pattern is important to note as it allows one to configure address-settings if necessary. To
configure custom address-settings you’d use a match like:

..*.<source-address>.*.retro

Using the same example as above the match would be:

..*.myAddress.*.retro


Changing the broker’s internal-naming-prefix once these retroactive resources are
created will break the retroactive functionality.

54.2. Configuration
To configure an address to be "retroactive" simply configure the retroactive-message-count address-
setting to reflect the number of messages you want the broker to preserve, e.g.:

<address-settings>
 <address-setting match="orders">
 <retroactive-message-count>100</retroactive-message-count>
 </address-setting>
</address-settings>

The value for retroactive-message-count can be updated at runtime either via broker.xml or via the
management API just like any other address-setting. However, if you reduce the value of
retroactive-message-count an additional administrative step will be required since this
functionality is implemented via ring queues. This is because a ring queue whose ring-size is
reduced will not automatically delete messages from the queue to meet the new ring-size in order
to avoid unintended message loss. Therefore, administrative action will be required in this case to
manually reduce the number of messages in the ring queue via the management API.

Chapter 55. Exclusive Queues
Exclusive queues are special queues which dispatch all messages to only one consumer at a time.

This is useful when you want all messages to be processed serially but you can’t or don’t want to
use Message Grouping.

An example might be orders sent to an address and you need to consume them in the exact same
order they were produced.

Obviously exclusive queues have a draw back that you cannot scale out the consumers to improve
consumption as only one consumer would technically be active. Here we advise that you look at
message groups first.

55.1. Configuring Exclusive Queues
Exclusive queues can be statically configured using the exclusive boolean property:

<address name="foo.bar">
 <multicast>
 <queue name="orders1" exclusive="true"/>
 </multicast>
</address>

Specified on creating a Queue by using the CORE api specifying the parameter exclusive to true.

Or on auto-create when using the JMS Client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?exclusive=true");
Topic topic = session.createTopic("my.destination.name?exclusive=true");

Also the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="lastValueQueue">
 <default-exclusive-queue>true</default-exclusive-queue>
</address-setting>

By default, default-exclusive-queue is false. Address wildcards can be used to configure exclusive
queues for a set of addresses.

55.2. Example
See the exclusive queue example which shows how exclusive queues are configured and used with

JMS.

Chapter 56. Message Grouping
Message groups are sets of messages that have the following characteristics:

• Messages in a message group share the same group id, i.e. they have same group identifier
property (JMSXGroupID for JMS, _AMQ_GROUP_ID for Apache ActiveMQ Artemis Core API).

• Messages in a message group are always consumed by the same consumer, even if there are
many consumers on a queue. They pin all messages with the same group id to the same
consumer. If that consumer closes another consumer is chosen and will receive all messages
with the same group id.

Message groups are useful when you want all messages for a certain value of the property to be
processed serially by the same consumer.

An example might be orders for a certain stock. You may want orders for any particular stock to be
processed serially by the same consumer. To do this you can create a pool of consumers (perhaps
one for each stock, but less will work too), then set the stock name as the value of the
_AMQ_GROUP_ID property.

This will ensure that all messages for a particular stock will always be processed by the same
consumer.



Grouped messages can impact the concurrent processing of non-grouped messages
due to the underlying FIFO semantics of a queue. For example, if there is a chunk
of 100 grouped messages at the head of a queue followed by 1,000 non-grouped
messages then all the grouped messages will need to be sent to the appropriate
client (which is consuming those grouped messages serially) before any of the non-
grouped messages can be consumed. The functional impact in this scenario is a
temporary suspension of concurrent message processing while all the grouped
messages are processed. This can be a performance bottleneck so keep it in mind
when determining the size of your message groups, and consider whether or not
you should isolate your grouped messages from your non-grouped messages.

56.1. Using Core API
The property name used to identify the message group is "_AMQ_GROUP_ID" (or the constant
MessageImpl.HDR_GROUP_ID). Alternatively, you can set autogroup to true on the SessionFactory which
will pick a random unique id.

56.2. Using JMS
The property name used to identify the message group is JMSXGroupID.

// send 2 messages in the same group to ensure the same
// consumer will receive both
Message message = ...
message.setStringProperty("JMSXGroupID", "Group-0");

producer.send(message);

message = ...
message.setStringProperty("JMSXGroupID", "Group-0");
producer.send(message);

Alternatively, you can set autogroup to true on the ActiveMQConnectonFactory which will pick a
random unique id. This can also be set in the JNDI context environment, e.g. jndi.properties. Here’s
a simple example using the "ConnectionFactory" connection factory which is available in the
context by default

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.myConnectionFactory=tcp://localhost:61616?autoGroup=true

Alternatively you can set the group id via the connection factory. All messages sent with producers
created via this connection factory will set the JMSXGroupID to the specified value on all messages
sent. This can also be set in the JNDI context environment, e.g. jndi.properties. Here’s a simple
example using the "ConnectionFactory" connection factory which is available in the context by
default:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.myConnectionFactory=tcp://localhost:61616?groupID=Group-0

56.3. Closing a Message Group
You generally don’t need to close a message group, you just keep using it. However, if you really do
want to close a group you can add a negative sequence number.

Example:

Message message = session.createTextMessage("<foo>hey</foo>");
message.setStringProperty("JMSXGroupID", "Group-0");
message.setIntProperty("JMSXGroupSeq", -1);
...
producer.send(message);

This closes the message group so if another message is sent in the future with the same message
group ID it will be reassigned to a new consumer.

56.4. Notifying Consumer of Group Ownership change
ActiveMQ supports putting a boolean header on the first message sent to a consumer for a
particular message group.

To enable this you must set a header key that the broker will use to set the flag.

In the examples we use JMSXGroupFirstForConsumer but it can be any header key value you want.

By setting group-first-key to JMSXGroupFirstForConsumer at the queue level, every time a new group
is assigned a consumer the header JMSXGroupFirstForConsumer will be set to true on the first
message.

<address name="foo.bar">
 <multicast>
 <queue name="orders1" group-first-key="JMSXGroupFirstForConsumer"/>
 </multicast>
</address>

Or on auto-create when using the core JMS client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?group-first-
key=JMSXGroupFirstForConsumer");
Topic topic = session.createTopic("my.destination.name?group-first-
key=JMSXGroupFirstForConsumer");

Also, the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="my.address">
 <default-group-first-key>JMSXGroupFirstForConsumer</default-group-first-key>
</address-setting>

By default, this is off.

56.5. Rebalancing Message Groups
Sometimes after new consumers are added you can find that they have no groups assigned, and
thus are not being utilised. This is because all the groups are already assigned to existing
consumers. However, it is possible to rebalance the groups so that all the consumers are the queue
are assigned one or more groups.


At the exact moment of a reset a message to the originally associated consumer
could be in flight at the same time a new message for the same group is dispatched
to the new associated consumer.

56.5.1. Manually

Use the management API (e.g via the web console) by invoking resetAllGroups on the associated
queue.

56.5.2. Automatically

By setting group-rebalance to true at the queue level every time a consumer is added it will trigger a
rebalance/reset of the groups.

As noted above, when group rebalance is done there is a risk you may have inflight messages being
processed. By default, the broker will continue to dispatch whilst rebalance is occuring. To ensure
that inflight messages are processed before dispatch of new messages post rebalance, to different
consumers, you can set group-rebalance-pause-dispatch to true which will cause the dispatch to
pause whilst rebalance occurs until all inflight messages are processed.

<address name="foo.bar">
 <multicast>
 <queue name="orders1" group-rebalance="true" group-rebalance-pause-
dispatch="true"/>
 </multicast>
</address>

Or on auto-create when using the core JMS client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?group-rebalance=true&group-
rebalance-pause-dispatch=true");
Topic topic = session.createTopic("my.destination.name?group-rebalance=true&group-
rebalance-pause-dispatch=true");

Also, the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="my.address">
 <default-group-rebalance>true</default-group-rebalance>
 <default-group-rebalance-pause-dispatch>true</default-group-rebalance-pause-
dispatch>
</address-setting>

By default, default-group-rebalance is false meaning this is disabled/off. By default, default-group-
rebalance-pause-dispatch is false meaning this is disabled/off.

56.6. Group Buckets
For handling groups in a queue with bounded memory allowing better scaling of groups, you can
enable group buckets, essentially the group id is hashed into a bucket instead of keeping track of
every single group id.

Setting group-buckets to -1 keeps default behaviour which means the queue keeps track of every
group but suffers from unbounded memory use.

Setting group-buckets to 0 disables grouping (0 buckets), on a queue. This can be useful on a
multicast address, where many queues exist but one queue you may not care for ordering and
prefer to keep round robin behaviour.

There is a number of ways to set group-buckets.

<address name="foo.bar">
 <multicast>
 <queue name="orders1" group-buckets="1024"/>
 </multicast>
</address>

Specified on creating a Queue by using the CORE api specifying the parameter group-buckets to 20.

Or on auto-create when using the JMS Client by using address parameters when creating the
destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?group-buckets=1024");
Topic topic = session.createTopic("my.destination.name?group-buckets=1024");

Also the default for all queues under and address can be defaulted using the address-setting
configuration:

<address-setting match="my.bucket.address">
 <default-group-buckets>1024</default-group-buckets>
</address-setting>

By default, default-group-buckets is -1 this is to keep compatibility with existing default behaviour.

Address wildcards can be used to configure group-buckets for a set of addresses.

56.7. Example
See the Message Group Example which shows how message groups are configured and used with
JMS and via a connection factory.

56.8. Clustered Grouping
Before looking at the details for configuring clustered grouping support it is worth examining the
idea of clustered grouping as a whole. In general, combining clustering and message grouping is a
poor choice because the fundamental ideas of grouped (i.e. ordered) messages and horizontal
scaling through clustering are essentially at odds with each other.

Message grouping enforces ordered message consumption. Ordered message consumption requires
that each message be fully consumed and acknowledged before the next message in the group is
consumed. This results in serial message processing (i.e. no concurrency).

However, the idea of clustering is to scale brokers horizontally in order to increase message
throughput by adding consumers which can process messages concurrently. But since the message
groups are ordered the messages in each group cannot be consumed concurrently which defeats
the purpose of horizontal scaling.

Clustered grouping is not recommended for these reasons.

However, if you’ve evaluated your overall use-case with these design caveats in mind and have
determined that clustered grouping is still viable then read on for all the configuration details and
best practices.

56.8.1. Clustered Grouping Configuration

Using message groups in a cluster is a bit more complex. This is because messages with a particular
group id can arrive on any node so each node needs to know about which group id’s are bound to
which consumer on which node. The consumer handling messages for a particular group id may be
on a different node of the cluster, so each node needs to know this information so it can route the
message correctly to the node which has that consumer.

To solve this there is the notion of a grouping handler. Each node will have its own grouping
handler and when a messages is sent with a group id assigned, the handlers will decide between
them which route the message should take.

Here is a sample config for each type of handler. This should be configured in broker.xml.

<grouping-handler name="my-grouping-handler">
 <type>LOCAL</type>
 <address>jms</address>
 <timeout>5000</timeout>
</grouping-handler>

<grouping-handler name="my-grouping-handler">
 <type>REMOTE</type>
 <address>jms</address>
 <timeout>5000</timeout>
</grouping-handler>

type

Two types of handlers are supported - LOCAL and REMOTE. Each cluster should choose 1 node to
have a LOCAL grouping handler and all the other nodes should have REMOTE handlers. It’s the LOCAL
handler that actually makes the decision as to what route should be used, all the other REMOTE
handlers converse with this.

address

Refers to a cluster connection and the address it uses. Refer to the clustering section on how to
configure clusters.

timeout

How long to wait for a decision to be made. An exception will be thrown during the send if this
timeout is reached, this ensures that strict ordering is kept.

The decision as to where a message should be routed to is initially proposed by the node that
receives the message. The node will pick a suitable route as per the normal clustered routing
conditions, i.e. round robin available queues, use a local queue first and choose a queue that has a
consumer. If the proposal is accepted by the grouping handlers the node will route messages to this
queue from that point on, if rejected an alternative route will be offered and the node will again
route to that queue indefinitely. All other nodes will also route to the queue chosen at proposal
time. Once the message arrives at the queue then normal single server message group semantics
take over and the message is pinned to a consumer on that queue.

You may have noticed that there is a single point of failure with the single local handler. If this node
crashes then no decisions will be able to be made. Any messages sent will be not be delivered and
an exception thrown. To avoid this happening Local Handlers can be replicated on another backup
node. Simple create your back up node and configure it with the same Local handler.

56.8.2. Clustered Grouping Best Practices

Some best practices should be followed when using clustered grouping:

1. Make sure your consumers are distributed evenly across the different nodes if possible. This is
only an issue if you are creating and closing consumers regularly. Since messages are always
routed to the same queue once pinned, removing a consumer from this queue may leave it with
no consumers meaning the queue will just keep receiving the messages. Avoid closing
consumers or make sure that you always have plenty of consumers, i.e., if you have 3 nodes
have 3 consumers.

2. Use durable queues if possible. If queues are removed once a group is bound to it, then it is
possible that other nodes may still try to route messages to it. This can be avoided by making
sure that the queue is deleted by the session that is sending the messages. This means that when
the next message is sent it is sent to the node where the queue was deleted meaning a new
proposal can successfully take place. Alternatively you could just start using a different group
id.

3. Always make sure that the node that has the Local Grouping Handler is replicated. These means
that on failover grouping will still occur.

4. In case you are using group-timeouts, the remote node should have a smaller group-timeout
with at least half of the value on the main coordinator. This is because this will determine how
often the last-time-use value should be updated with a round trip for a request to the group
between the nodes.

56.8.3. Clustered Grouping Example

See the Clustered Grouping Example which shows how to configure message groups with a
ActiveMQ Artemis Cluster.

Chapter 57. Consumer Priority
Consumer priorities allow you to ensure that high priority consumers receive messages while they
are active.

Normally, active consumers connected to a queue receive messages from it in a round-robin
fashion. When consumer priorities are in use, messages are delivered round-robin if multiple
active consumers exist with the same high priority.

Messages will only going to lower priority consumers when the high priority consumers do not
have credit available to consume the message, or those high priority consumers have declined to
accept the message (for instance because it does not meet the criteria of any selectors associated
with the consumer).

Where a consumer does not set, the default priority 0 is used.

57.1. Core

57.1.1. JMS Example

When using the JMS Client you can set the priority to be used, by using address parameters when
creating the destination used by the consumer.

Queue queue = session.createQueue("my.destination.name?consumer-priority=50");
Topic topic = session.createTopic("my.destination.name?consumer-priority=50");

consumer = session.createConsumer(queue);

The range of priority values is -231 to 231-1.

57.2. OpenWire

57.2.1. JMS Example

The priority for a consumer is set using Destination Options as follows:

queue = new ActiveMQQueue("TEST.QUEUE?consumer.priority=10");
consumer = session.createConsumer(queue);

Because of the limitation of OpenWire, the range of priority values is: 0 to 127. The highest priority
is 127.

57.3. AMQP
In AMQP 1.0 the priority of the consumer is set in the properties map of the attach frame where the

broker side of the link represents the sending side of the link.

The key for the entry must be the literal string priority, and the value of the entry must be an
integral number in the range -231 to 231-1.

Chapter 58. Message Expiry
Messages can be set with an optional time to live when sending them.

Apache ActiveMQ Artemis will not deliver a message to a consumer after it’s time-to-live has been
exceeded. If the message hasn’t been delivered by the time that time-to-live is reached the server
can discard it.

Apache ActiveMQ Artemis’s addresses can be assigned an expiry address so that, when messages
are expired, they are removed from the queue and sent to the expiry address. Many different
queues can be bound to an expiry address. These expired messages can later be consumed for
further inspection.

58.1. Core API
Using the Apache ActiveMQ Artemis Core API you can set an expiration time directly on the
message:

// message will expire in 5000ms from now
message.setExpiration(System.currentTimeMillis() + 5000);

58.2. JMS API
JMS MessageProducer allows setting a time-to-live for the messages it sends:

// messages sent by this producer will be retained for 5s (5000ms) before expiration
producer.setTimeToLive(5000);

58.3. Expired Message Properties
Expired messages get special properties plus this additional property:

_AMQ_ACTUAL_EXPIRY

a Long property containing the actual expiration time of the expired message

58.4. Configuring Expiry Addresses
Expiry addresses are defined in the address-setting configuration:

<!-- expired messages in exampleQueue will be sent to the expiry address expiryQueue
-->
<address-setting match="exampleQueue">
 <expiry-address>expiryQueue</expiry-address>

</address-setting>

58.5. Dropping Expired Messages
If messages are expired and no expiry address is specified or explicitly unset (e.g. using <expiry-
address/>) then messages are simply removed from the queue and dropped. Address wildcards can
be used to configure expiry address for a set of addresses.

If a wildcard is used to configure the expiry address for a set of addresses and you want to unset the
expiry address for a particular addess (or set of addresses) then you can do so, e.g.:

<address-setting match="#">
 <expiry-address>expiryQueue</expiry-address>
</address-setting>
<address-setting match="exampleQueue">
 <expiry-address/> <!-- unset expiry-address so messages which expire from queues
bound to matching addresses are dropped -->
</address-setting>

58.6. Configuring Expiry Delay
There are multiple address-settings which you can use to modify the expiry delay for incoming
messages:

1. no-expiry

2. expiry-delay

3. max-expiry-delay & min-expiry-delay

These settings are applied exclusively in this order of precedence. For example, if no-expiry is set
and expiry-delay is also set then expiry-delay is ignored completely and no-expiry is enforced.


If you set any of these values for the expiry-address then messages which expire
will have corresponding new expiry delays potentially causing the expired
messages to themselves expire and be removed completely from the broker.

Let’s look at each of these in turn.

58.6.1. Never Expire

If you want to force messages to never expire regardless of their existing settings then set no-expiry
to true, e.g.:

<!-- messages will never expire -->
<address-setting match="exampleQueue">
 <no-expiry>true</no-expiry>

</address-setting>

For example, if no-expiry is set to true and a message which is using an expiration of 10 arrives then
its expiration time of 10 will be changed to 0.

The default is false.

58.6.2. Modify Default Expiry

To modify the expiry delay on a message using the default expiration (i.e. 0) set expiry-delay, e.g.

<!-- expired messages in exampleQueue will be sent to the expiry address expiryQueue
-->
<address-setting match="exampleQueue">
 <expiry-address>expiryQueue</expiry-address>
 <expiry-delay>10</expiry-delay>
</address-setting>

For example, if expiry-delay is set to 10 and a message which is using the default expiration time
(i.e. 0) arrives then its expiration time of 0 will be changed to 10. However, if a message which is
using an expiration time of 20 arrives then its expiration time will remain unchanged.

This value is measured in milliseconds. The default is -1 (i.e. disabled).

58.6.3. Enforce an Expiry Range

To enforce a range of expiry delay values

<address-setting match="exampleQueue">
 <min-expiry-delay>10</min-expiry-delay>
 <max-expiry-delay>100</max-expiry-delay>
</address-setting>

Semantics are as follows:

• Messages without an expiration will be set to max-expiry-delay.

◦ If max-expiry-delay is not defined then the message will be set to min-expiry-delay.

◦ If min-expiry-delay is not defined then the message will not be changed.

• Messages with an expiration above max-expiry-delay will be set to max-expiry-delay.

• Messages with an expiration below min-expiry-delay will be set to min-expiry-delay.

• Messages with an expiration within min-expiry-delay and max-expiry-delay range will not be
changed.

These values are measured in milliseconds. The default for both is -1 (i.e. disabled).

 Setting a value of 0 for max-expiry-delay will cause messages to expire immediately.

58.7. Expiring Expired Messages
It may be necessary to expire the expired messages themselves. Here’s an example of how to do
that:

<address-setting match="#">
 <expiry-address>expiryQueue</expiry-address>
</address-setting>
<address-setting match="expiryQueue">
 <expiry-address/>
 <expiry-delay>600000</expiry-delay>
</address-setting>

Using this configuration any message which expires will be sent to expiryQueue. Any of these
expired messages which sit in a queue bound to expiryQueue will expire after 5 minutes (i.e. 600000
milliseconds) and be dropped since the expiry-address is explicitly unset.

58.8. Configuring Automatic Creation of Expiry
Resources
It’s common to segregate expired messages by their original address. For example, a message sent
to the stocks address that expired for some reason might be ultimately routed to the EXP.stocks
queue, and likewise a message sent to the orders address that expired might be routed to the
EXP.orders queue.

Using this pattern can make it easy to track and administrate expired messages. However, it can
pose a challenge in environments which predominantly use auto-created addresses and queues.
Typically administrators in those environments don’t want to manually create an address-setting
to configure the expiry-address much less the actual address and queue to hold the expired
messages.

The solution to this problem is to set the auto-create-expiry-resources address-setting to true (it’s
false by default) so that the broker will create the address and queue to deal with the expired
messages automatically. The address created will be the one defined by the expiry-address. A
MULTICAST queue will be created on that address. It will be named by the address to which the
message was previously sent, and it will have a filter defined using the property _AMQ_ORIG_ADDRESS
so that it will only receive messages sent to the relevant address. The queue name can be configured
with a prefix and suffix. See the relevant settings in the table below:

address-setting default

expiry-queue-prefix EXP.

expiry-queue-suffix (empty string)

Here is an example configuration:

<address-setting match="#">
 <expiry-address>expiryAddress</expiry-address>
 <auto-create-expiry-resources>true</auto-create-expiry-resources>
 <expiry-queue-prefix></expiry-queue-prefix> <!-- override the default -->
 <expiry-queue-suffix>.EXP</expiry-queue-suffix>
</address-setting>

The queue holding the expired messages can be accessed directly either by using the queue’s name
by itself (e.g. when using the core client) or by using the fully qualified queue name (e.g. when
using a JMS client) just like any other queue. Also, note that the queue is auto-created which means
it will be auto-deleted as per the relevant address-settings.

58.9. Configuring The Expiry Reaper Thread
A reaper thread will periodically inspect the queues to check if messages have expired.

The reaper thread can be configured with the following properties in broker.xml

message-expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is
30000ms, set to -1 to disable the reaper thread)

58.10. Example
See the Message Expiration Example which shows how message expiry is configured and used with
JMS.

Chapter 59. Large Messages
Apache ActiveMQ Artemis can be configured to give special treatment to messages which are
beyond a configured size. Instead of keeping the entire contents of these messages in memory the
broker will hold just a thin object on the queues with a reference to the content (e.g. in a file or a
database table).

This is supported on Core Protocol and on the AMQP Protocol.

59.1. Configuring the server
When using the file journal large messages are stored on disk on the server. The configuration
property large-messages-directory specifies where large messages are stored.

<configuration...>
 <core...>
 ...
 <large-messages-directory>data/large-messages</large-messages-directory>
 ...
 </core>
</configuration>

By default large-messages-directory is data/largemessages.


For the best performance we recommend using the file journal with the large
messages directory on a different physical volume to the message journal or
paging directory.

For JDBC persistence the large-message-table should be configured.

<configuration...>
 <core...>
 ...
 <store>
 <database-store>
 ...
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-name>
 ...
 </database-store>
 </store>
 ...
 </core>
</configuration>

By default large-message-table is LARGE_MESSAGE_TABLE.

By default when writing the final bytes to a large message all writes are synchronized to the storage

medium. This can be configured via large-message-sync, e.g.:

<configuration...>
 <core...>
 ...
 <large-message-sync>true</large-message-sync>
 ...
 </core>
</configuration>

By default large-message-sync is true.

59.2. Configuring the Core Client
Any message larger than a certain size is considered a large message. Large messages will be split
up and sent in fragments. This is determined by the URL parameter minLargeMessageSize



Apache ActiveMQ Artemis messages are encoded using 2 bytes per character so if
the message data is filled with ASCII characters (which are 1 byte) the size of the
resulting Apache ActiveMQ Artemis message would roughly double. This is
important when calculating the size of a "large" message as it may appear to be
less than the minLargeMessageSize before it is sent, but it then turns into a "large"
message once it is encoded.

The default value is 100KiB.

Configuring the transport directly from the client side will provide more information on how to
instantiate the core session factory or JMS connection factory.

59.3. Compressed Large Messages on Core Protocol
You can choose to send large messages in compressed form using compressLargeMessage URL
parameter.

If you specify the boolean URL parameter compressLargeMessage as true, the system will use the ZIP
algorithm to compress the message body as the message is transferred to the server’s side. Notice
that there’s no special treatment at the server’s side, all the compressing and uncompressing is
done at the client.

This behavior can be tuned further by setting an optional parameter: compressionLevel. This will
decide how much the message body should be compressed. compressionLevel accepts an integer of
-1 or a value between 0-9. The default value is -1 which corresponds to around level 6-7.

If the compressed size of a large message is below minLargeMessageSize, it is sent to server as regular
messages. This means that the message won’t be written into the server’s large-message data
directory, thus reducing the disk I/O.


A higher compressionLevel means the message body will get further compressed,
but this is at the cost of speed and computational overhead. Make sure to tune this
value according to its specific use-case.

59.4. Streaming large messages from Core Protocol
Apache ActiveMQ Artemis supports setting the body of messages using input and output streams
(java.lang.io)

These streams are then used directly for sending (input streams) and receiving (output streams)
messages.

When receiving messages there are 2 ways to deal with the output stream; you may choose to block
while the output stream is recovered using the method ClientMessage.saveOutputStream or
alternatively using the method ClientMessage.setOutputstream which will asynchronously write the
message to the stream. If you choose the latter the consumer must be kept alive until the message
has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored in your
disk, but you could also send things like JDBC Blobs, SocketInputStream, things you recovered from
HTTPRequests etc. Anything as long as it implements java.io.InputStream for sending messages or
java.io.OutputStream for receiving them.

59.4.1. Streaming over Core API

The following table shows a list of methods available at ClientMessage which are also available
through JMS by the use of object properties.

Name Description JMS Equivalent

setBodyInputStream(InputStrea
m)

Set the InputStream used to
read a message body when
sending it.

JMS_AMQ_InputStream

setOutputStream(OutputStream
)

Set the OutputStream that will
receive the body of a message.
This method does not block.

JMS_AMQ_OutputStream

saveOutputStream(OutputStrea
m)

Save the body of the message to
the OutputStream. It will block
until the entire content is
transferred to the OutputStream.

JMS_AMQ_SaveStream

To set the output stream when receiving a core message:

ClientMessage msg = consumer.receive(...);

// This will block here until the stream was transferred
msg.saveOutputStream(someOutputStream);

ClientMessage msg2 = consumer.receive(...);

// This will not wait the transfer to finish
msg2.setOutputStream(someOtherOutputStream);

Set the input stream when sending a core message:

ClientMessage msg = session.createMessage();
msg.setInputStream(dataInputStream);

Notice also that for messages with more than 2GiB the getBodySize() will return invalid values since
this is an integer (which is also exposed to the JMS API). On those cases you can use the message
property _AMQ_LARGE_SIZE.

59.4.2. Streaming over JMS

When using JMS, Apache ActiveMQ Artemis maps the streaming methods on the core API (see
ClientMessage API table above) by setting object properties . You can use the method
Message.setObjectProperty to set the input and output streams.

The InputStream can be defined through the JMS Object Property JMS_AMQ_InputStream on
messages being sent:

BytesMessage message = session.createBytesMessage();

FileInputStream fileInputStream = new FileInputStream(fileInput);

BufferedInputStream bufferedInput = new BufferedInputStream(fileInputStream);

message.setObjectProperty("JMS_AMQ_InputStream", bufferedInput);

someProducer.send(message);

The OutputStream can be set through the JMS Object Property JMS_AMQ_SaveStream on messages
being received in a blocking way.

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);

File outputFile = new File("huge_message_received.dat");

FileOutputStream fileOutputStream = new FileOutputStream(outputFile);

BufferedOutputStream bufferedOutput = new BufferedOutputStream(fileOutputStream);

// This will block until the entire content is saved on disk

messageReceived.setObjectProperty("JMS_AMQ_SaveStream", bufferedOutput);

Setting the OutputStream could also be done in a non blocking way using the property
JMS_AMQ_OutputStream.

// This won't wait the stream to finish. You need to keep the consumer active.
messageReceived.setObjectProperty("JMS_AMQ_OutputStream", bufferedOutput);


When using JMS, Streaming large messages are only supported on StreamMessage
and BytesMessage.

59.4.3. Streaming Alternative on Core Protocol

If you choose not to use the InputStream or OutputStream capability of Apache ActiveMQ Artemis You
could still access the data directly in an alternative fashion.

On the Core API just get the bytes of the body as you normally would.

ClientMessage msg = consumer.receive();

byte[] bytes = new byte[1024];
for (int i = 0 ; i < msg.getBodySize(); i += bytes.length)
{
 msg.getBody().readBytes(bytes);
 // Whatever you want to do with the bytes
}

If using JMS API, BytesMessage and StreamMessage also supports it transparently.

BytesMessage rm = (BytesMessage)cons.receive(10000);

byte data[] = new byte[1024];

for (int i = 0; i < rm.getBodyLength(); i += 1024)
{
 int numberOfBytes = rm.readBytes(data);
 // Do whatever you want with the data
}

59.5. Configuring AMQP Acceptor
You can configure the property amqpMinLargeMessageSize at the acceptor.

The default value is 102400 (100KBytes).

Setting it to -1 will disable large message support.


setting amqpMinLargeMessageSize to -1, your AMQP message might be stored as a
Core Large Message if the size of the message does not fit into the journal. This is
the former semantic of the broker and it is kept this way for compatibility reasons.

<acceptors>
 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic.-->
 <acceptor name="amqp">tcp://0.0.0.0:5672?;
amqpMinLargeMessageSize=102400; </acceptor>
</acceptors>

59.6. Large message example
Please see the Large Message Example which shows how large messages are configured and used
with JMS.

Chapter 60. Paging
Apache ActiveMQ Artemis transparently supports huge queues containing millions of messages
while the server is running with limited memory.

In such a situation it’s not possible to store all of the queues in memory at any one time, so Apache
ActiveMQ Artemis transparently pages messages into and out of memory as they are needed, thus
allowing massive queues with a low memory footprint.

Apache ActiveMQ Artemis will start paging messages to disk, when the size of all messages in
memory for an address exceeds a configured maximum size.

The default configuration from Artemis has destinations with paging.

60.1. Page Files
Messages are stored per address on the file system. Each address has an individual folder where
messages are stored in multiple files (page files). Each file will contain messages up to a max
configured size (page-size-bytes). The system will navigate the files as needed, and it will remove
the page file as soon as all the messages are acknowledged up to that point.

Browsers will read through the page-cursor system.

Consumers with selectors will also navigate through the page-files and it will ignore messages that
don’t match the criteria.



When you have a queue, and consumers filtering the queue with a very restrictive
selector you may get into a situation where you won’t be able to read more data
from paging until you consume messages from the queue.

Example: in one consumer you make a selector as 'color="red"' but you only have
one color red 1 millions messages after blue, you won’t be able to consume red
until you consume blue ones.

This is different to browsing as we will "browse" the entire queue looking for
messages and while we "depage" messages while feeding the queue.

60.1.1. Configuration

You can configure the location of the paging folder in broker.xml.

• paging-directory Where page files are stored. Apache ActiveMQ Artemis will create one folder
for each address being paged under this configured location. Default is data/paging.

60.2. Paging Mode
As soon as messages delivered to an address exceed the configured size, that address alone goes
into page mode. If max-size-bytes == 0 or max-size-messages == 0, an address will always use paging

to route messages.



Paging is done individually per address. If you configure a max-size-bytes or max-
messages for an address, that means each matching address will have a maximum
size that you specified. It DOES NOT mean that the total overall size of all matching
addresses is limited to max-size-bytes. Use global-max-size or global-max-messages
for that!

60.2.1. Configuration

Configuration is done at the address settings in broker.xml.

<address-settings>
 <address-setting match="jms.someaddress">
 <max-size-bytes>104857600</max-size-bytes>
 <max-size-messages>1000</max-size-messages>
 <page-size-bytes>10485760</page-size-bytes>
 <address-full-policy>PAGE</address-full-policy>
 <page-limit-bytes>10G</page-limit-bytes>
 <page-limit-messages>1000000</page-limit-messages>
 <page-full-policy>FAIL</page-full-policy>
 </address-setting>
</address-settings>



The management-address settings cannot be changed or overridden ie
management messages aren’t allowed to page/block/fail and are considered an
internal broker management mechanism. The memory occupation of the
management-address is not considered while evaluating if global-max-size is hit
and can’t cause other non-management addresses to trigger a configured address-
full-policy.

This is the list of available parameters on the address settings.

Property Name Description Default

max-size-bytes What’s the max memory the
address could have before
entering on page mode.

-1 (disabled)

max-size-messages The max number of messages
the address could have before
entering on page mode.

-1 (disabled)

page-size-bytes The size of each page file used
on the paging system

10MB

Property Name Description Default

address-full-policy This must be set to PAGE for
paging to enable. If the value is
PAGE then further messages will
be paged to disk. If the value is
DROP then further messages will
be silently dropped. If the value
is FAIL then the messages will
be dropped and the client
message producers will receive
an exception. If the value is
BLOCK then client message
producers will block when they
try and send further messages.

PAGE

max-read-page-messages Maximum number of paged
messages that the broker can
read into memory per-queue.
The default value is -1, which
means that no limit applies.

-1 (disabled)

max-read-page-bytes Maximum memory, in bytes,
that can be used to read paged
messages into memory per-
queue. When applying this
limit, the broker takes into
account both messages that are
currently delivering and
messages that are ready to be
delivered to consumers. The
default value is 2 * page-size
(usually being 20 MB). If
consumers are slow to
acknowledge messages, you can
increase the default value to
ensure that the memory is not
consumed by messages pending
acknowledgment, which can
starve the broker of messages.

2 * page-size-bytes

prefetch-page-messages Number of paged messages that
the broker can read from disk
into memory per-queue. The
default value is taken from
max-read-page-messages,
usually at -1, which means that
no limit applies.

max-read-page-messages

Property Name Description Default

prefetch-page-bytes Number of paged messages that
the broker can read from disk
into memory per-queue. The
default value is taken from
max-read-page-messages,
usually at -1, which means that
no limit applies.

if not defined, max-read-page-
bytes

page-limit-bytes After entering page mode, how
much data would the system
allow incoming. Notice this will
be internally converted as
number of pages.

page-limit-messages After entering page mode, how
many messages would the
system allow incoming on
paging.

page-full-policy Valid results are DROP or FAIL.
This tells what to do if the
system is reaching page-limit-
bytes or page-limit-messages
after paging


When using the JDBC storage, the effective page-size-bytes used is limited to jdbc-
max-page-size-bytes, configured in the JDBC storage section.

60.2.2. max-size-bytes and max-size-messages simultaneous usage

It is possible to define max-size-messages (as the maximum number of messages) and max-
messages-size (as the max number of estimated memory used by the address) concurrently. The
configured policy will start based on the first value to reach its mark.

Maximum read from page

max-read-page-messages, max-read-page-bytes, prefetch-page-messages and prefetch-page-bytes are
used to control reading from paged file into the Queue. The broker will add messages as long as all
these limits are satisfied.

If all these values are set to -1 the broker will keep reading messages as long as the consumer is
reaching for more messages. However this would keep the broker unprotected from consumers
allocating huge transactions or consumers that don’t have flow control enabled.

60.3. Global Max Size
Beyond the max-size-bytes on the address you can also set the global-max-size on the main
configuration. If you set max-size-bytes = -1 on paging the global-max-size can still be used.

60.4. Global Max Messages
You can also specify global-max-messages on the main configuration, specifying how many messages
the system would accept before entering into the configured full policy mode configured.

When you have more messages than what is configured global-max-size any new produced
message will make that destination to go through its paging policy.

global-max-size is calculated as a percentage of the max memory available to the Java Virtual
Machine, unless specified in the broker.xml configuration directly. The percentage value used is
configurable using the option global-max-size-percent-of-jvm-max-memory in the XML configuration
and if not specified the default value of global-max-size-percent-of-jvm-max-memory is 50% or half
the max available memory.

By default global-max-messages = -1 meaning it’s disabled.

60.5. Dropping messages
Instead of paging messages when the max size is reached, an address can also be configured to just
drop messages when the address is full.

To do this just set the address-full-policy to DROP in the address settings

60.6. Dropping messages and throwing an exception to
producers
Instead of paging messages when the max size is reached, an address can also be configured to
drop messages and also throw an exception on the client-side when the address is full.

To do this just set the address-full-policy to FAIL in the address settings

60.7. Blocking producers
Instead of paging messages when the max size is reached, an address can also be configured to
block producers from sending further messages when the address is full, thus preventing the
memory being exhausted on the server.

When memory is freed up on the server, producers will automatically unblock and be able to
continue sending.

To do this just set the address-full-policy to BLOCK in the address settings

In the default configuration, all addresses are configured to block producers after 10 MiB of data
are in the address.

60.8. Caution with Addresses with Multiple Multicast
Queues
When a message is routed to an address that has multiple multicast queues bound to it, e.g. a JMS
subscription in a Topic, there is only 1 copy of the message in memory. Each queue only deals with
a reference to this. Because of this the memory is only freed up once all queues referencing the
message have delivered it.

If you have a single lazy subscription, the entire address will suffer IO performance hit as all the
queues will have messages being sent through an extra storage on the paging system.

For example:

• An address has 10 multicast queues

• One of the queues does not deliver its messages (maybe because of a slow consumer).

• Messages continually arrive at the address and paging is started.

• The other 9 queues are empty even though messages have been sent.

In this example all the other 9 queues will be consuming messages from the page system. This may
cause performance issues if this is an undesirable state.

60.9. Monitoring Disk
The broker can be configured to perform scans on the disk to determine if disk is beyond a
configured limit. Since the disk is a critical piece of infrastructure for data integrity the broker will
automatically shut itself down if it runs out of disk space. Configuring a limit allows the broker to
enforce flow control on clients sending messages to the broker so that the disk never fills up
completely.


If the protocol used to send the messages doesn’t support flow control (e.g. STOMP)
then an exception will be thrown and the connection for the client will be dropped
so that it can no longer send messages and consume disk space.

60.9.1. Max Disk Usage

A limit on the maximum disk space used can be configured through max-disk-usage This is the
percentage of disk used. For example, if the disk’s capacity was 500GiB and max-disk-usage was 50
then the broker would start blocking producers once 250GiB of disk space was used.

60.9.2. Minimum Disk Free

A limit on the minimum disk space free can be configured through min-disk-free This is specific
amount and not a percentage like with max-disk-usage. For example, if the disk’s capacity was
500GiB and min-disk-free was 100GiB then the broker would start blocking producers once 400GiB
of disk space was used.


If both max-disk-usage and min-disk-free are configured then min-disk-free will
take priority.

60.10. Page Sync Timeout
The pages are synced periodically and the sync period is configured through page-sync-timeout in
nanoseconds. When using NIO journal, by default has the same value of journal-buffer-timeout.
When using ASYNCIO, the default should be 3333333.

60.11. Memory usage from Paged Messages.
The system should keep at least one paged file in memory caching ahead reading messages. Also
every active subscription could keep one paged file in memory. So, if your system has too many
queues it is recommended to minimize the page-size.

60.12. Page Limits and Page Full Policy
Since version 2.28.0 is possible to configure limits on how much data is paged. This is to avoid a
single destination using the entire disk in case their consumers are gone.

You can configure either page-limit-bytes or page-limit-messages, along with page-full-policy on
the address settings limiting how much data will be recorded in paging.

If you configure page-full-policy as DROP, messages will be simply dropped while the clients will
not get any exceptions, while if you configured FAIL the producers will receive a JMS Exception for
the error condition.



The page-limit-bytes is used to identify a maximum number of page files
internally (i.e. page-limit-bytes / page-size-bytes) which is then compared against
the current number of page files. If configured, page-limit-bytes must be equal or
greater than page-size-bytes or it will cause immediate block. If the limit
determined from page-limit-bytes, once converted to a number of pages, is less
than the current number of page files in the store then paging will be blocked
based on page-full-policy until the number of current page files drops to less than
or equal to the calculated file limit. It will become blocked again once the number
of page files is greater than the value determined by page-limit-bytes (page-limit-
bytes / page-size-bytes).

60.13. Example
See the Paging Example which shows how to use paging with Apache ActiveMQ Artemis.

Chapter 61. Duplicate Message Detection
Apache ActiveMQ Artemis includes powerful automatic duplicate message detection, filtering out
duplicate messages without you having to code your own fiddly duplicate detection logic at the
application level. This chapter will explain what duplicate detection is, how Apache ActiveMQ
Artemis uses it, and how to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if the
target server or connection fails sometime after sending the message, but before the sender
receives a response that the send (or commit) was processed successfully then the sender cannot
know for sure if the message was sent successfully to the address.

If the target server or connection failed after the send was received and processed but before the
response was sent back then the message will have been sent to the address successfully, but if the
target server or connection failed before the send was received and finished processing then it will
not have been sent to the address successfully. From the senders point of view it’s not possible to
distinguish these two cases.

When the server recovers this leaves the client in a difficult situation. It knows the target server
failed, but it does not know if the last message reached its destination successfully. If it decides to
resend the last message then that could result in a duplicate message being sent to the address. If
each message was an order or a trade then this could result in the order being fulfilled twice or the
trade being double booked. This is clearly not a desirable situation.

Sending the message(s) in a transaction does not help either. If the server or connection fails while
the transaction commit is being processed it is also indeterminate whether the transaction was
successfully committed or not!

To solve these issues Apache ActiveMQ Artemis provides automatic duplicate messages detection
for messages sent to addresses.

61.1. Using Duplicate Detection for Message Sending
To enable duplicate message detection for sent messages you just need to set a special duplicate ID
property on the message to a unique value. You can create the value however you like, as long as it
is unique.



Using duplicate detection to move messages between nodes can give you the same
once and only once delivery guarantees as if you were using an XA transaction to
consume messages from source and send them to the target, but with less
overhead and much easier configuration than using XA.

If you’re sending messages in a transaction then you don’t have to set the property for every
message you send in that transaction. You only need to set it once in the transaction. If the server
detects a duplicate message for any message in the transaction then it will ignore the entire
transaction.

The name of the duplicate ID property is _AMQ_DUPL_ID. As a convenience for Java-based applications

using the Core client org.apache.activemq.artemis.api.core.Message.HDR_DUPLICATE_DETECTION_ID can
be used.

When using JMS the property’s value must be a String, and similarly a string type would be used in
other client APIs or protocols used with the broker.

Here’s an example of setting the property using the JMS API:

Message jmsMessage = session.createMessage();

String myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

If using the Artemis Core client the value of the property can be of type String, SimpleString, or
byte[].

Here’s an example of setting the property using the Core API:

ClientMessage message = session.createMessage(true);

SimpleString myUniqueID = SimpleString.of("This is my unique id"); // Could use a
UUID for this

message.putStringProperty(HDR_DUPLICATE_DETECTION_ID, myUniqueID);

61.2. Duplicate Detection Semantics
The server maintains a circular, fixed-size, per-address cache of duplicate IDs from messages it
receives.

When the server receives the message it will check if the duplicate ID property is set. If it is then it
will check to see if its cache for the correspond address already contains that duplicate ID. If the
cache already contains that duplicate ID then the message will not be routed to any queues, and the
server will log a WARN message, e.g.:

WARN [org.apache.activemq.artemis.core.server] AMQ222059: Duplicate message detected
- message will not be routed. Message information:
CoreMessage[messageID=15, durable=false, userID=null, priority=4, timestamp=Thu Jan 01
00:00:00 UTC 1970, expiration=0, durable=false, address=myAddress, size=166,
properties=TypedProperties[_AMQ_DUPL_ID=[6100 6200 6300 6400 6500 6600
6700]]]@1034478028

If the cache does not contain that duplicate ID then it is added to the cache and the message is
routed to any applicable queues.

Since the cache is circular then if it has a maximum size of n elements the n + 1th id stored will

overwrite the 0th element in the cache. Duplicate IDs are only removed from the cache when they
are overwritten or cleared administratively (e.g. using the clearDuplicateIdCache operation on the
corresponding AddressControl from the web console). Even if a message is acknowledged or expires
its duplicate ID is not removed from the cache because another message with that same duplicate
ID may still be sent.

61.3. Configuring the Duplicate ID Cache
The size of the duplicate ID cache can be configured globally for all addresses or on a per-address
basis.

Whether the cache is persisted to storage is also configurable.


When choosing a size of the duplicate id cache be sure to set it to a larger enough
size so if you resend messages all the previously sent ones are in the cache not
having been overwritten.

61.3.1. Global Configuration

The maximum size of the cache is configured by the parameter id-cache-size in broker.xml, e.g.:

<core>
 ...
 <id-cache-size>5000</id-cache-size>
 ...
</core>

The default value for the global id-cache-size is 20000. A value of 0 disables caching.

61.3.2. Address-Specific Configuration

To configure the cache size on a per-address basis use the id-cache-size address-settings section in
broker.xml, e.g.:

<address-setting match="myAddress">
 ...
 <id-cache-size>1000</id-cache-size>
 ...
</address-setting>

When a message is sent to an address with a specific id-cache-size configured it will take
precedence over the global id-cache-size value. This allows for greater flexibility and optimization
of duplicate ID caches.

The default value for the per-address id-cache-size is 20000. A value of 0 disables caching.

61.3.3. Persisting the Cache to Storage

Duplicate ID caches are persisted to storage by default. The benefit to persisting the cache to storage
is that if the broker is stopped for any reason then when it restarts the data will be read from
storage back into the cache so duplicate messages can still be detected even if they were sent before
the broker restarted. However, there is a cost in terms of performance since it takes longer to
persist the data.

Duplicate ID cache persistence is configured by the parameter persist-id-cache in broker.xml, e.g.:

<core>
 ...
 <persist-id-cache>false</id-cache-size>
 ...
</core>

If persist-id-cache is set to true then each ID will be persisted to storage as it is received. This is
configured globally. It can’t be configured on a per-address basis.

The default value for persist-id-cache is true.

61.4. Duplicate Detection and Bridges
Core bridges can be configured to automatically add a unique duplicate id value (if there isn’t
already one in the message) before forwarding the message to its target. This ensures that if the
target server crashes or the connection is interrupted and the bridge resends the message, then if it
has already been received by the target server, it will be ignored.

To configure a core bridge to add the duplicate id header, simply set the use-duplicate-detection to
true when configuring a bridge in broker.xml.

The default value for this parameter is true.

For more information on core bridges and how to configure them, please see Core Bridges.

61.5. Duplicate Detection and Cluster Connections
Cluster connections internally use core bridges to move messages reliable between nodes of the
cluster. Consequently they can also be configured to insert the duplicate id header for each message
they move using their internal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use-duplicate-
detection to true when configuring a cluster connection in broker.xml.

The default value for this parameter is true.

For more information on cluster connections and how to configure them, please see Clusters.

61.6. Performance Considerations
If you do not need duplicate detection at all or only for certain addresses it is best to set the global
id-cache-size to 0 to prevent the server from pre-allocating internal cache-related objects, e.g.:

<core>
 ...
 <id-cache-size>0</id-cache-size>
 ...
</core>

This will prevent needless consumption of heap memory so it is available to the broker for other
uses.

Chapter 62. Message Redelivery and
Undelivered Messages
Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them is
rolled back). Such a message goes back to its queue ready to be redelivered. However, this means it
is possible for a message to be delivered again and again without success thus remaining in the
queue indefinitely, clogging the system.

There are 2 ways to deal with these undelivered messages:

• Delayed redelivery.

It is possible to delay messages redelivery. This gives the client some time to recover from any
transient failures and to prevent overloading its network or CPU resources.

• Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of
unsuccessful deliveries, messages are removed from their queue and sent to the dead letter
address. These messages will not be delivered again from this queue.

Both options can be combined for maximum flexibility.

62.1. Delayed Redelivery
Delaying redelivery can often be useful in cases where clients regularly fail or rollback. Without a
delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the
client rolling back, and delivery being re-attempted ad infinitum in quick succession, consuming
valuable CPU and network resources.

#Persist Redelivery

Two Journal update records are stored every time a redelivery happens. One for the number of
deliveries that happened, and one in case a scheduled redelivery is being used.

It is recommended to keep max-redelivery-records=1 in situations where you are operating with
very short redelivery delays as you will be creating unecessary records on the journal.

62.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<!-- delay redelivery of messages for 5s -->
<address-setting match="exampleQueue">
 <!-- default is 1.0 -->
 <redelivery-delay-multiplier>1.5</redelivery-delay-multiplier>
 <!-- default is 0 (no delay) -->
 <redelivery-delay>5000</redelivery-delay>

 <!-- default is 0.0) -->
 <redelivery-collision-avoidance-factor>0.15</redelivery-collision-avoidance-factor>
 <!-- default is redelivery-delay * 10 -->
 <max-redelivery-delay>50000</max-redelivery-delay>
</address-setting>

If a redelivery-delay is specified, Apache ActiveMQ Artemis will wait this delay before redelivering
the messages.

By default, there is no redelivery delay (redelivery-delayis set to 0).

Other subsequent messages will be delivery regularly, only the cancelled message will be sent
asynchronously back to the queue after the delay.

You can specify a multiplier (the redelivery-delay-multiplier) that will take effect on top of the
redelivery-delay. Each time a message is redelivered the delay period will be equal to the previous
delay * redelivery-delay-multiplier. A max-redelivery-delay can be set to prevent the delay from
becoming too large. The max-redelivery-delay is defaulted to redelivery-delay * 10.

Example:

• redelivery-delay=5000, redelivery-delay-multiplier=2, max-redelivery-delay=15000, redelivery-
collision-avoidance-factor=0.0

1. Delivery Attempt 1. (Unsuccessful)

2. Wait Delay Period: 5000

3. Delivery Attempt 2. (Unsuccessful)

4. Wait Delay Period: 10000 // (5000 * 2) < max-delay-period. Use 10000

5. Delivery Attempt 3: (Unsuccessful)

6. Wait Delay Period: 15000 // (10000 * 2) > max-delay-period: Use max-delay-delivery

Address wildcards can be used to configure redelivery delay for a set of addresses (see
Understanding the Wildcard Syntax), so you don’t have to specify redelivery delay individually for
each address.

The redelivery-delay can be also be modified by configuring the redelivery-collision-avoidance-
factor. This factor will be made either positive or negative at random to control whether the
ultimate value will increase or decrease the redelivery-delay. Then it’s multiplied by a random
number between 0.0 and 1.0. This result is then multiplied by the redelivery-delay and then added
to the redelivery-delay to arrive at the final value.

The algorithm may sound complicated but the bottom line is quite simple: the larger redelivery-
collision-avoidance-factor you choose the larger the variance of the redelivery-delay will be. The
redelivery-collision-avoidance-factor must be between 0.0 and 1.0.

Example:

• redelivery-delay=1000, redelivery-delay-multiplier=1, max-redelivery-delay=15000, redelivery-
collision-avoidance-factor=0.5, (bold values chosen using java.util.Random)

1. Delivery Attempt 1. (Unsuccessful)

2. Wait Delay Period: 875 // 1000 + (1000 * ((0.5 * -1) * .25)

3. Delivery Attempt 2. (Unsuccessful)

4. Wait Delay Period: 1375 // 1000 + (1000 * ((0.5 * 1) * .75)

5. Delivery Attempt 3: (Unsuccessful)

6. Wait Delay Period: 975 // 1000 + (1000 * ((0.5 * -1) * .05)

This feature can be particularly useful in environments where there are multiple consumers on the
same queue all interacting transactionally with the same external system (e.g. a database). If there
is overlapping data in messages which are consumed concurrently then one transaction can
succeed while all the rest fail. If those failed messages are redelivered at the same time then this
process where one consumer succeeds and the rest fail will continue. By randomly padding the
redelivery-delay by a small, configurable amount these redelivery "collisions" can be avoided.

62.1.2. Example

See the examples chapter for an example which shows how delayed redelivery is configured and
used with JMS.

62.2. Dead Letter Addresses
To prevent a client infinitely receiving the same undelivered message (regardless of what is causing
the unsuccessful deliveries), messaging systems define dead letter addresses: after a specified
unsuccessful delivery attempts, the message is removed from its queue and sent to a dead letter
address.

Any such messages can then be diverted to queue(s) where they can later be perused by the system
administrator for action to be taken.

Apache ActiveMQ Artemis’s addresses can be assigned a dead letter address. Once the messages
have been unsuccessfully delivered for a given number of attempts, they are removed from their
queue and sent to the relevant dead letter address. These dead letter messages can later be
consumed from the dead letter address for further inspection.

62.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<!-- undelivered messages in exampleQueue will be sent to the dead letter address
deadLetterQueue after 3 unsuccessful delivery attempts -->
<address-setting match="exampleQueue">
 <dead-letter-address>deadLetterAddress</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
</address-setting>

If a dead-letter-address is not specified, messages will be removed after max-delivery-attempts

unsuccessful attempts.

By default, messages are redelivered 10 times at the maximum. Set max-delivery-attempts to -1 for
infinite redeliveries.

A dead letter address can be set globally for a set of matching addresses and you can set max-
delivery-attempts to -1 for a specific address setting to allow infinite redeliveries only for this
address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see
Understanding the Wildcard Syntax).

62.2.2. Dead Letter Properties

Dead letter messages get special properties.

62.2.3. Automatically Creating Dead Letter Resources

It’s common to segregate undelivered messages by their original address. For example, a message
sent to the stocks address that couldn’t be delivered for some reason might be ultimately routed to
the DLQ.stocks queue, and likewise a message sent to the orders address that couldn’t be delivered
might be routed to the DLQ.orders queue.

Using this pattern can make it easy to track and administrate undelivered messages. However, it
can pose a challenge in environments which predominantly use auto-created addresses and
queues. Typically administrators in those environments don’t want to manually create an address-
setting to configure the dead-letter-address much less the actual address and queue to hold the
undelivered messages.

The solution to this problem is to set the auto-create-dead-letter-resources address-setting to true
(it’s false by default) so that the broker will create the address and queue to deal with the
undelivered messages automatically. The address created will be the one defined by the dead-
letter-address. A MULTICAST queue will be created on that address. It will be named by the address to
which the message was previously sent, and it will have a filter defined using the property
_AMQ_ORIG_ADDRESS so that it will only receive messages sent to the relevant address. The queue name
can be configured with a prefix and suffix. See the relevant settings in the table below:

address-setting default

dead-letter-queue-prefix DLQ.

dead-letter-queue-suffix (empty string)

Here is an example configuration:

<address-setting match="#">
 <dead-letter-address>DLA</dead-letter-address>
 <max-delivery-attempts>3</max-delivery-attempts>
 <auto-create-dead-letter-resources>true</auto-create-dead-letter-resources>
 <dead-letter-queue-prefix></dead-letter-queue-prefix> <!-- override the default -->
 <dead-letter-queue-suffix>.DLQ</dead-letter-queue-suffix>

</address-setting>

The queue holding the undeliverable messages can be accessed directly either by using the queue’s
name by itself (e.g. when using the core client) or by using the fully qualified queue name (e.g.
when using a JMS client) just like any other queue. Also, note that the queue is auto-created which
means it will be auto-deleted as per the relevant address-settings.

62.2.4. Example

See: Dead Letter section of the Examples for an example that shows how dead letter resources can
be statically configured and used with JMS.

62.3. Delivery Count Persistence
In normal use, Apache ActiveMQ Artemis does not update delivery count persistently until a
message is rolled back (i.e. the delivery count is not updated before the message is delivered to the
consumer). In most messaging use cases, the messages are consumed, acknowledged and forgotten
as soon as they are consumed. In these cases, updating the delivery count persistently before
delivering the message would add an extra persistent step for each message delivered, implying a
significant performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens, in
the event of a server crash, messages might have been delivered but that will not have been
reflected in the delivery count. During the recovery phase, the server will not have knowledge of
that and will deliver the message with redelivered set to false while it should be true.

As this behavior breaks strict JMS semantics, Apache ActiveMQ Artemis allows to persist delivery
count before message delivery but this feature is disabled by default due to performance
implications.

To enable it, set persist-delivery-count-before-delivery to true in broker.xml:

<persist-delivery-count-before-delivery>true</persist-delivery-count-before-delivery>

Chapter 63. Persistence
Apache ActiveMQ Artemis ships with two persistence options. The file journal which is highly
optimized for the messaging use case and gives great performance, and also the JDBC Store, which
uses JDBC to connect to a database of your choice.

63.1. File Journal (Default)
The file journal is an append only journal. It consists of a set of files on disk. Each file is pre-created
to a fixed size and initially filled with padding. As operations are performed on the server, e.g. add
message, update message, delete message, records are appended to the journal. When one journal
file is full we move to the next one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head
movement, i.e. we minimise random access operations which is typically the slowest operation on a
disk.

Making the file size configurable means that an optimal size can be chosen, i.e. making each file fit
on a disk cylinder. Modern disk topologies are complex and we are not in control over which
cylinder(s) the file is mapped onto so this is not an exact science. But by minimising the number of
disk cylinders the file is using, we can minimise the amount of disk head movement, since an entire
disk cylinder is accessible simply by the disk rotating - the head does not have to move.

As delete records are added to the journal, Apache ActiveMQ Artemis has a sophisticated file
garbage collection algorithm which can determine if a particular journal file is needed any more -
i.e. has all its data been deleted in the same or other files. If so, the file can be reclaimed and re-
used.

Apache ActiveMQ Artemis also has a compaction algorithm which removes dead space from the
journal and compresses up the data so it takes up less files on disk.

The journal also fully supports transactional operation if required, supporting both local and XA
transactions.

The majority of the journal is written in Java, however we abstract out the interaction with the
actual file system to allow different pluggable implementations. Apache ActiveMQ Artemis ships
with two implementations:

63.1.1. Journal and Data Retention

ActiveMQ Artemis provides a way to store and replay historical data. Refer to Data Retention
chapter for more information.

63.1.2. Java NIO

The first implementation uses standard Java NIO to interface with the file system. This provides
extremely good performance and runs on any platform where there’s a Java 6+ runtime.

data-retention.pdf
https://en.wikipedia.org/wiki/New_I/O

63.1.3. Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO
library (AIO). With AIO, Apache ActiveMQ Artemis will be called back when the data has made it to
disk, allowing us to avoid explicit syncs altogether and simply send back confirmation of
completion when AIO informs us that the data has been persisted.

Using AIO will typically provide even better performance than using Java NIO.

This journal option is only available when running Linux kernel 2.6 or later and after having
installed libaio (if it’s not already installed). For instructions on how to install libaio please see
Installing AIO section.

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs, xfs and
NFSV4.

For more information on libaio please see lib AIO.

libaio is part of the kernel project.

63.1.4. Memory mapped

The third implementation uses a file-backed READ_WRITE memory mapping against the OS page
cache to interface with the file system.

This provides extremely good performance (especially under strictly process failure durability
requirements), almost zero copy (actually is the kernel page cache) and zero garbage (from the Java
HEAP perspective) operations and runs on any platform where there’s a Java 4+ runtime.

Under power failure durability requirements it will perform at least on par with the NIO journal
with the only exception of Linux OS with kernel less or equals 2.6, in which the msync)
implementation necessary to ensure durable writes was different (and slower) from the fsync used
is case of NIO journal.

It benefits by the configuration of OS huge pages, in particular when is used a big number of
journal files and sizing them as multiple of the OS page size in bytes.

63.1.5. Standard Files

The standard Apache ActiveMQ Artemis core server uses two instances of the journal:

• Bindings journal.

This journal is used to store bindings related data. That includes the set of queues that are
deployed on the server and their attributes. It also stores data such as id sequence counters.

The bindings journal is always a NIO journal as it is typically low throughput compared to the
message journal.

The files on this journal are prefixed as activemq-bindings. Each file has a bindings extension.
File size is 1048576, and it is located at the bindings folder.

https://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.MapMode.html#READ_WRITE
https://en.wikipedia.org/wiki/Memory-mapped_file
https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html#force%28%29
https://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.html#force%28boolean%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29

• Message journal.

This journal instance stores all message related data, including the message themselves and also
duplicate-id caches.

By default Apache ActiveMQ Artemis will try and use an AIO journal. If AIO is not available, e.g.
the platform is not Linux with the correct kernel version or AIO has not been installed then it
will automatically fall back to using Java NIO which is available on any Java platform.

The files on this journal are prefixed as activemq-data. Each file has an amq extension. File size is
by the default 10485760 (configurable), and it is located at the journal folder.

For large messages, Apache ActiveMQ Artemis persists them outside the message journal. This is
discussed in Large Messages.

Apache ActiveMQ Artemis can also be configured to page messages to disk in low memory
situations. This is discussed in Paging.

If no persistence is required at all, Apache ActiveMQ Artemis can also be configured not to persist
any data at all to storage as discussed in the Configuring the broker for Zero Persistence section.

Configuring the bindings journal

The bindings journal is configured using the following attributes in broker.xml

bindings-directory

This is the directory in which the bindings journal lives. The default value is data/bindings.

create-bindings-dir

If this is set to true then the bindings directory will be automatically created at the location
specified in bindings-directory if it does not already exist. The default value is true

Configuring the jms journal

The jms config shares its configuration with the bindings journal.

Configuring the message journal

The message journal is configured using the following attributes in broker.xml

journal-directory

This is the directory in which the message journal lives. The default value is data/journal.

For the best performance, we recommend the journal is located on its own physical volume in
order to minimise disk head movement. If the journal is on a volume which is shared with other
processes which might be writing other files (e.g. bindings journal, database, or transaction
coordinator) then the disk head may well be moving rapidly between these files as it writes
them, thus drastically reducing performance.

When the message journal is stored on a SAN we recommend each journal instance that is
stored on the SAN is given its own LUN (logical unit).

node-manager-lock-directory

This is the directory in which the node manager file lock lives. By default has the same value of
journal-directory.

This is useful when the message journal is on a SAN and is being used a Shared Store HA policy
with the broker instances on the same physical machine.

create-journal-dir

If this is set to true then the journal directory will be automatically created at the location
specified in journal-directory if it does not already exist. The default value is true

journal-type

Valid values are NIO, ASYNCIO or MAPPED.

Choosing NIO chooses the Java NIO journal. Choosing ASYNCIO chooses the Linux asynchronous IO
journal. If you choose ASYNCIO but are not running Linux or you do not have libaio installed then
Apache ActiveMQ Artemis will detect this and automatically fall back to using NIO. Choosing
MAPPED chooses the Java Memory Mapped journal.

journal-sync-transactional

If this is set to true then Apache ActiveMQ Artemis will make sure all transaction data is flushed
to disk on transaction boundaries (commit, prepare and rollback). The default value is true.

journal-sync-non-transactional

If this is set to true then Apache ActiveMQ Artemis will make sure non transactional message
data (sends and acknowledgements) are flushed to disk each time. The default value for this is
true.

journal-file-size

The size of each journal file in bytes. The default value for this is 10485760 bytes (10MiB).

journal-min-files

The minimum number of files the journal will maintain. When Apache ActiveMQ Artemis starts
and there is no initial message data, Apache ActiveMQ Artemis will pre-create journal-min-files
number of files.

Creating journal files and filling them with padding is a fairly expensive operation and we want
to minimise doing this at run-time as files get filled. By pre-creating files, as one is filled the
journal can immediately resume with the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should tune
this number of files to match that total amount of data.

journal-pool-files

The system will create as many files as needed however when reclaiming files it will shrink back
to the journal-pool-files.

The default to this parameter is -1, meaning it will never delete files on the journal once created.

Notice that the system can’t grow infinitely as you are still required to use paging for
destinations that can grow indefinitely.

Notice: in case you get too many files you can use compacting.

journal-max-io

Write requests are queued up before being submitted to the system for execution. This
parameter controls the maximum number of write requests that can be in the IO queue at any
one time. If the queue becomes full then writes will block until space is freed up.

When using NIO, this value should always be equal to 1

When using ASYNCIO, the default should be 500.

The system maintains different defaults for this parameter depending on whether it’s NIO or
ASYNCIO (default for NIO is 1, default for ASYNCIO is 500)

There is a limit and the total max ASYNCIO can’t be higher than what is configured at the OS
level (/proc/sys/fs/aio-max-nr) usually at 65536.

journal-buffer-timeout

Instead of flushing on every write that requires a flush, we maintain an internal buffer, and
flush the entire buffer either when it is full, or when a timeout expires, whichever is sooner.
This is used for both NIO and ASYNCIO and allows the system to scale better with many
concurrent writes that require flushing.

This parameter controls the timeout at which the buffer will be flushed if it hasn’t filled already.
ASYNCIO can typically cope with a higher flush rate than NIO, so the system maintains different
defaults for both NIO and ASYNCIO (default for NIO is 3333333 nanoseconds - 300 times per
second, default for ASYNCIO is 500000 nanoseconds - ie. 2000 times per second).

Setting this property to 0 will disable the internal buffer and writes will be directly written to
the journal file immediately.


By increasing the timeout, you may be able to increase system throughput at
the expense of latency, the default parameters are chosen to give a reasonable
balance between throughput and latency.

journal-buffer-size

The size of the timed buffer on ASYNCIO. The default value is 490KiB.

journal-compact-min-files

The minimal number of files before we can consider compacting the journal. The compacting
algorithm won’t start until you have at least journal-compact-min-files

Setting this to 0 will disable the feature to compact completely. This could be dangerous though
as the journal could grow indefinitely. Use it wisely!

The default for this parameter is 10

journal-compact-percentage

The threshold to start compacting. When less than this percentage of journal space is considered
live data, we start compacting. Note also that compacting won’t kick in until you have at least
journal-compact-min-files data files on the journal

The default for this parameter is 30

journal-lock-acquisition-timeout

How long to wait (in milliseconds) to acquire a file lock on the journal before giving up

The default for this parameter is -1 (i.e. indefinite))

journal-datasync

This will disable the use of fdatasync on journal writes. When enabled it ensures full power
failure durability, otherwise process failure durability on journal writes (OS guaranteed). This is
particular effective for NIO and MAPPED journals, which rely on fsync/msync to force write changes
to disk.

Default is true.

Note on disabling journal-datasync

Any modern OS guarantees that on process failures (i.e. crash) all the uncommitted changes
to the page cache will be flushed to the file system, maintaining coherence between
subsequent operations against the same pages and ensuring that no data will be lost. The
predictability of the timing of such flushes, in case of a disabled journal-datasync, depends on
the OS configuration, but without compromising (or relaxing) the process failure durability
semantics as described above. Rely on the OS page cache sacrifice the power failure
protection, while increasing the effectiveness of the journal operations, capable of exploiting
the read caching and write combining features provided by the OS’s kernel page cache
subsystem.

Note on disabling disk write cache

Most disks contain hardware write caches. A write cache can increase the apparent
performance of the disk because writes just go into the cache and are then lazily written to
the disk later.

This happens irrespective of whether you have executed a fsync() from the operating system
or correctly synced data from inside a Java program!

By default many systems ship with disk write cache enabled. This means that even after
syncing from the operating system there is no guarantee the data has actually made it to disk,
so if a failure occurs, critical data can be lost.

Some more expensive disks have non volatile or battery backed write caches which won’t
necessarily lose data on event of failure, but you need to test them!

If your disk does not have an expensive non volatile or battery backed cache and it’s not part
of some kind of redundant array (e.g. RAID), and you value your data integrity you need to
make sure disk write cache is disabled.

Be aware that disabling disk write cache can give you a nasty shock performance wise. If
you’ve been used to using disks with write cache enabled in their default setting, unaware
that your data integrity could be compromised, then disabling it will give you an idea of how
fast your disk can perform when acting really reliably.

On Linux you can inspect and/or change your disk’s write cache settings using the tools
hdparm (for IDE disks) or sdparm or sginfo (for SDSI/SATA disks)

On Windows you can check / change the setting by right clicking on the disk and clicking
properties.

63.1.6. Installing AIO

The Java NIO journal gives great performance, but If you are running Apache ActiveMQ Artemis
using Linux Kernel 2.6 or later, we highly recommend you use the ASYNCIO journal for the very best
persistence performance.

It’s not possible to use the ASYNCIO journal under other operating systems or earlier versions of the
Linux kernel.

If you are running Linux kernel 2.6 or later and don’t already have libaio installed you can easily
install it using the following steps.

63.2. JDBC Persistence
The Apache ActiveMQ Artemis JDBC persistence layer offers the ability to store broker state
(messages, address & queue definitions, etc.) using a database.



Using the ActiveMQ Artemis File Journal is the recommended configuration as it
offers higher levels of performance and is more mature. Performance for both
paging and large messages is especially diminished with JDBC. The JDBC
persistence layer is targeted to those users who must use a database e.g. due to
internal company policy.

ActiveMQ Artemis currently has support for a limited number of database vendors:

1. PostgreSQL

2. MySQL

3. Microsoft SQL Server

4. Oracle

5. DB2

6. Apache Derby

The JDBC store uses a JDBC connection to store messages and bindings data in records in database
tables. The data stored in the database tables is encoded using Apache ActiveMQ Artemis internal
encodings.

63.2.1. Configuring JDBC Persistence

To configure Apache ActiveMQ Artemis to use a database for persisting messages and bindings data
you must do two things.

1. See the documentation on adding runtime dependencies to understand how to make the JDBC
driver available to the broker.

2. Create a store element in your broker.xml config file under the <core> element. For example:

<store>
 <database-store>
 <jdbc-driver-class-name>org.apache.derby.jdbc.EmbeddedDriver</jdbc-driver-class-
name>
 <jdbc-connection-url>jdbc:derby:data/derby/database-store;create=true</jdbc-
connection-url>
 <bindings-table-name>BINDINGS_TABLE</bindings-table-name>
 <message-table-name>MESSAGE_TABLE</message-table-name>
 <page-store-table-name>MESSAGE_TABLE</page-store-table-name>
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-name>
 <node-manager-store-table-name>NODE_MANAGER_TABLE</node-manager-store-table-
name>
 </database-store>
</store>

jdbc-connection-url

The full JDBC connection URL for your database server. The connection url should include all
configuration parameters and database name.


When configuring the server using the XML configuration files please ensure to
escape any illegal chars; "&" for example, is typical in JDBC connection url and
should be escaped to "&".

bindings-table-name

The name of the table in which bindings data will be persisted for the ActiveMQ Artemis server.
Specifying table names allows users to share single database amongst multiple servers, without
interference.

message-table-name

The name of the table in which bindings data will be persisted for the ActiveMQ Artemis server.
Specifying table names allows users to share single database amongst multiple servers, without
interference.

large-message-table-name

The name of the table in which messages and related data will be persisted for the ActiveMQ
Artemis server. Specifying table names allows users to share single database amongst multiple
servers, without interference.

page-store-table-name

The name of the table to house the page store directory information. Note that each address will
have its own page table which will use this name appended with a unique id of up to 20
characters.

node-manager-store-table-name

The name of the table in which the HA Shared Store locks (i.e. primary and backup) and HA
related data will be persisted for the ActiveMQ Artemis server. Specifying table names allows
users to share single database amongst multiple servers, without interference. Each Shared
Store primary/backup pairs must use the same table name and isn’t supported to share the same
table between multiple (and unrelated) primary/backup pairs.

jdbc-driver-class-name

The fully qualified class name of the desired database Driver.

jdbc-network-timeout

The JDBC network connection timeout in milliseconds. The default value is 20000 milliseconds
(ie 20 seconds). When using a shared store it is recommended to set it less then or equal to jdbc-
lock-expiration.

jdbc-lock-renew-period

The period in milliseconds of the keep alive service of a JDBC lock. The default value is 2000
milliseconds (ie 2 seconds).

jdbc-lock-expiration

The time in milliseconds a JDBC lock is considered valid without keeping it alive. The default
value is 20000 milliseconds (ie 20 seconds).

jdbc-journal-sync-period

The time in milliseconds the journal will be synced with JDBC. The default value is 5
milliseconds.

jdbc-allowed-time-diff

The maximal time offset between the broker and the database in milliseconds when requesting
the current time of the database while updating and validating primary and backup locks.
Currently this value only affects the logging and will show a warning if the detected difference
exceeds the limit. The default value is 250 milliseconds.

jdbc-max-page-size-bytes

The maximal size a page can use. The default and recommended maximum value is 100K bytes.
Using larger sizes will result in downloading large blobs that would affect performance when
using paged messages.



Some DBMS (e.g. Oracle, 30 chars) have restrictions on the size of table names, this
should be taken into consideration when configuring table names for the Artemis
database store, pay particular attention to the page store table name, which can be
appended with a unique ID of up to 20 characters. (for Oracle this would mean
configuring a page-store-table-name of max size of 10 chars).

It is also possible to explicitly add the user and password rather than in the JDBC url if you need to
encode it, this would look like:

<store>
 <database-store>
 <jdbc-driver-class-name>org.apache.derby.jdbc.EmbeddedDriver</jdbc-driver-class-
name>
 <jdbc-connection-url>jdbc:derby:data/derby/database-store;create=true</jdbc-
connection-url>
 <jdbc-user>ENC(dasfn353cewc)</jdbc-user>
 <jdbc-password>ENC(ucwiurfjtew345)</jdbc-password>
 <bindings-table-name>BINDINGS_TABLE</bindings-table-name>
 <message-table-name>MESSAGE_TABLE</message-table-name>
 <page-store-table-name>MESSAGE_TABLE</page-store-table-name>
 <large-message-table-name>LARGE_MESSAGES_TABLE</large-message-table-name>
 <node-manager-store-table-name>NODE_MANAGER_TABLE</node-manager-store-table-
name>
 <jdbc-page-max-size-bytes>100K</jdbc-page-max-size-bytes>
 </database-store>
</store>

63.2.2. Configuring JDBC connection pooling

To configure Apache ActiveMQ Artemis to use a database with a JDBC connection pool you need to
set the data source properties, for example:

<store>
 <database-store>
 <data-source-properties>
 <data-source-property key="driverClassName" value="com.mysql.jdbc.Driver"
/>
 <data-source-property key="url"
value="jdbc:mysql://localhost:3306/artemis" />
 <data-source-property key="username" value="artemis" />
 <data-source-property key="password" value="artemis" />
 <data-source-property key="poolPreparedStatements" value="true" />
 </data-source-properties>
 <bindings-table-name>BINDINGS</bindings-table-name>
 <message-table-name>MESSAGES</message-table-name>
 <large-message-table-name>LARGE_MESSAGES</large-message-table-name>
 <page-store-table-name>PAGE_STORE</page-store-table-name>
 <node-manager-store-table-name>NODE_MANAGER_STORE</node-manager-store-table-

name>
 </database-store>
</store>

You can find the documentation of the data source properties at https://commons.apache.org/
proper/commons-dbcp/configuration.html.

To mask the value of a property you can use the same procedure used to mask passwords.

Please note that the reconnection works only if there is no client sending messages. Instead, if there
is an attempt to write to the journal’s tables during the reconnection, then the broker will fail fast
and shutdown.

63.3. Zero Persistence
In some situations, zero persistence is sometimes required for a messaging system. Configuring
Apache ActiveMQ Artemis to perform zero persistence is straightforward. Simply set the parameter
persistence-enabled in broker.xml to false.

Please note that if you set this parameter to false, then zero persistence will occur. That means no
bindings data, message data, large message data, duplicate id caches or paging data will be
persisted.

https://commons.apache.org/proper/commons-dbcp/configuration.html
https://commons.apache.org/proper/commons-dbcp/configuration.html

Chapter 64. Data Tools
You can use the Artemis CLI to execute data maintenance tools:

The following sub-commands are available when running the CLI data command from a particular
broker instance that has already been installed using the create command:

Name Description

print Prints a report about journal records of a non-
running server

exp Export the message data using a special and
independent XML format

imp Imports the journal to a running broker using
the output from expt

encode shows an internal format of the journal encoded
to String

decode imports the internal journal format from encode

compact Compacts the journal of a non running server

recover Recover (undelete) messages from an existing
journal and create a new one.

You can use the CLI help for more information on how to execute each of the tools. For example:

$./artemis help data print
NAME
 artemis data print - Print data records information (WARNING: don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--broker <brokerConfig>]
 [--f] [--jdbc] [--jdbc-bindings-table-name <jdbcBindings>]
 [--jdbc-connection-url <jdbcURL>]
 [--jdbc-driver-class-name <jdbcClassName>]
 [--jdbc-large-message-table-name <jdbcLargeMessages>]
 [--jdbc-message-table-name <jdbcMessages>]
 [--jdbc-node-manager-table-name <jdbcNodeManager>]
 [--jdbc-page-store-table-name <jdbcPageStore>] [--journal <journal>]
 [--large-messages <largeMessges>] [--output <output>]
 [--paging <paging>] [--reclaimed] [--safe] [--verbose] [--]
 [<configuration>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default from broker.xml)

 --broker <brokerConfig>

 This would override the broker configuration from the bootstrap

 --f
 This will allow certain tools like print-data to be performed
 ignoring any running servers. WARNING: Changing data concurrently
 with a running broker may damage your data. Be careful with this
 option.

 --jdbc
 It will activate jdbc

 --jdbc-bindings-table-name <jdbcBindings>
 Name of the jdbc bindigns table

 --jdbc-connection-url <jdbcURL>
 The connection used for the database

 --jdbc-driver-class-name <jdbcClassName>
 JDBC driver classname

 --jdbc-large-message-table-name <jdbcLargeMessages>
 Name of the large messages table

 --jdbc-message-table-name <jdbcMessages>
 Name of the jdbc messages table

 --jdbc-node-manager-table-name <jdbcNodeManager>
 Name of the jdbc node manager table

 --jdbc-page-store-table-name <jdbcPageStore>
 Name of the page store messages table

 --journal <journal>
 The folder used for messages journal (default from broker.xml)

 --large-messages <largeMessges>
 The folder used for large-messages (default from broker.xml)

 --output <output>
 Output name for the file

 --paging <paging>
 The folder used for paging (default from broker.xml)

 --reclaimed
 This option will try to print as many records as possible from
 reclaimed files

 --safe
 It will print your data structure without showing your data

 --verbose
 Adds more information on the execution

 --
 This option can be used to separate command-line options from the
 list of argument, (useful when arguments might be mistaken for
 command-line options

 <configuration>
 Broker Configuration URI, default
 'xml:${ARTEMIS_INSTANCE}/etc/bootstrap.xml'

For a full list of data tools commands available use:

$./artemis help data
NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact|recover) (example ./artemis data
 print)

SYNOPSIS
 artemis data
 artemis data compact [--journal <journal>]
 [--large-messages <largeMessges>] [--paging <paging>]
 [--broker <brokerConfig>] [--bindings <binding>] [--verbose]
 artemis data decode [--journal <journal>]
 [--large-messages <largeMessges>] [--file-size <size>]
 [--paging <paging>] [--prefix <prefix>] [--suffix <suffix>]
 [--broker <brokerConfig>] [--directory <directory>]
 [--bindings <binding>] [--verbose] --input <input>
 artemis data encode [--journal <journal>]
 [--large-messages <largeMessges>] [--file-size <size>]
 [--paging <paging>] [--prefix <prefix>] [--suffix <suffix>]
 [--broker <brokerConfig>] [--bindings <binding>] [--verbose]
 [--directory <directory>]
 artemis data exp [--jdbc-driver-class-name <jdbcClassName>]
 [--journal <journal>] [--jdbc-connection-url <jdbcURL>]
 [--large-messages <largeMessges>]
 [--jdbc-bindings-table-name <jdbcBindings>] [--paging <paging>] [--f]
 [--jdbc-large-message-table-name <jdbcLargeMessages>]
 [--broker <brokerConfig>] [--jdbc-page-store-table-name
<jdbcPageStore>]
 [--bindings <binding>] [--jdbc] [--verbose]
 [--jdbc-message-table-name <jdbcMessages>]
 [--jdbc-node-manager-table-name <jdbcNodeManager>] [--output <output>]
 artemis data imp [--legacy-prefixes] [--password <password>]
 [--transaction] [--verbose] [--port <port>] [--user <user>] [--sort]
 --input <input> [--host <host>]
 artemis data print [--reclaimed]
 [--jdbc-driver-class-name <jdbcClassName>] [--journal <journal>]

 [--jdbc-connection-url <jdbcURL>] [--large-messages <largeMessges>]
 [--jdbc-bindings-table-name <jdbcBindings>] [--paging <paging>] [--f]
 [--jdbc-large-message-table-name <jdbcLargeMessages>] [--safe]
 [--broker <brokerConfig>] [--jdbc-page-store-table-name
<jdbcPageStore>]
 [--bindings <binding>] [--jdbc] [--verbose]
 [--jdbc-message-table-name <jdbcMessages>]
 [--jdbc-node-manager-table-name <jdbcNodeManager>] [--output <output>]
 artemis data recover [--jdbc-driver-class-name <jdbcClassName>]
 [--journal <journal>] [--jdbc-connection-url <jdbcURL>]
 [--large-messages <largeMessges>] [--reclaimed] --target
<outputJournal>
 [--jdbc-bindings-table-name <jdbcBindings>] [--paging <paging>] [--f]
 [--jdbc-large-message-table-name <jdbcLargeMessages>]
 [--broker <brokerConfig>] [--jdbc-page-store-table-name
<jdbcPageStore>]
 [--bindings <binding>] [--jdbc] [--verbose]
 [--jdbc-message-table-name <jdbcMessages>]
 [--jdbc-node-manager-table-name <jdbcNodeManager>] [--output <output>]

COMMANDS
 With no arguments, Display help information

 recover
 Recover (undelete) every message on the journal by creating a new
 output journal. Rolled backed and acked messages will be sent out to
 the output as much as possible.

 With --jdbc-driver-class-name option, JDBC driver classname

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --jdbc-connection-url option, The connection used for the
 database

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --reclaimed option, This option will try to recover as many
 records as possible from reclaimed files

 With --target option, Output folder container the new journal with
 all the generated messages

 With --jdbc-bindings-table-name option, Name of the jdbc bindigns
 table

 With --paging option, The folder used for paging (default from
 broker.xml)

 With --f option, This will allow certain tools like print-data to be
 performed ignoring any running servers. WARNING: Changing data
 concurrently with a running broker may damage your data. Be careful
 with this option.

 With --jdbc-large-message-table-name option, Name of the large
 messages table

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --jdbc-page-store-table-name option, Name of the page store
 messages table

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --jdbc option, It will activate jdbc

 With --verbose option, Adds more information on the execution

 With --jdbc-message-table-name option, Name of the jdbc messages
 table

 With --jdbc-node-manager-table-name option, Name of the jdbc node
 manager table

 With --output option, Output name for the file

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 With --reclaimed option, This option will try to print as many
 records as possible from reclaimed files

 With --jdbc-driver-class-name option, JDBC driver classname

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --jdbc-connection-url option, The connection used for the
 database

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --jdbc-bindings-table-name option, Name of the jdbc bindigns
 table

 With --paging option, The folder used for paging (default from

 broker.xml)

 With --f option, This will allow certain tools like print-data to be
 performed ignoring any running servers. WARNING: Changing data
 concurrently with a running broker may damage your data. Be careful
 with this option.

 With --jdbc-large-message-table-name option, Name of the large
 messages table

 With --safe option, It will print your data structure without
 showing your data

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --jdbc-page-store-table-name option, Name of the page store
 messages table

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --jdbc option, It will activate jdbc

 With --verbose option, Adds more information on the execution

 With --jdbc-message-table-name option, Name of the jdbc messages
 table

 With --jdbc-node-manager-table-name option, Name of the jdbc node
 manager table

 With --output option, Output name for the file

 exp
 Export all message-data using an XML that could be interpreted by
 any system.

 With --jdbc-driver-class-name option, JDBC driver classname

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --jdbc-connection-url option, The connection used for the
 database

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --jdbc-bindings-table-name option, Name of the jdbc bindigns
 table

 With --paging option, The folder used for paging (default from
 broker.xml)

 With --f option, This will allow certain tools like print-data to be
 performed ignoring any running servers. WARNING: Changing data
 concurrently with a running broker may damage your data. Be careful
 with this option.

 With --jdbc-large-message-table-name option, Name of the large
 messages table

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --jdbc-page-store-table-name option, Name of the page store
 messages table

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --jdbc option, It will activate jdbc

 With --verbose option, Adds more information on the execution

 With --jdbc-message-table-name option, Name of the jdbc messages
 table

 With --jdbc-node-manager-table-name option, Name of the jdbc node
 manager table

 With --output option, Output name for the file

 imp
 Import all message-data using an XML that could be interpreted by
 any system.

 With --legacy-prefixes option, Do not remove prefixes from legacy
 imports

 With --password option, User name used to import the data. (default
 null)

 With --transaction option, If this is set to true you will need a
 whole transaction to commit at the end. (default false)

 With --verbose option, Adds more information on the execution

 With --port option, The port used to import the data (default 61616)

 With --user option, User name used to import the data. (default

 null)

 With --sort option, Sort the messages from the input (used for older
 versions that won't sort messages)

 With --input option, The input file name (default=exp.dmp)

 With --host option, The host used to import the data (default
 localhost)

 decode
 Decode a journal's internal format into a new journal set of files

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --file-size option, The journal size (default 10485760)

 With --paging option, The folder used for paging (default from
 broker.xml)

 With --prefix option, The journal prefix (default activemq-data)

 With --suffix option, The journal suffix (default amq)

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --directory option, The journal folder (default journal folder
 from broker.xml)

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --verbose option, Adds more information on the execution

 With --input option, The input file name (default=exp.dmp)

 encode
 Encode a set of journal files into an internal encoded data format

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --file-size option, The journal size (default 10485760)

 With --paging option, The folder used for paging (default from
 broker.xml)

 With --prefix option, The journal prefix (default activemq-data)

 With --suffix option, The journal suffix (default amq)

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --verbose option, Adds more information on the execution

 With --directory option, The journal folder (default the journal
 folder from broker.xml)

 compact
 Compacts the journal of a non running server

 With --journal option, The folder used for messages journal (default
 from broker.xml)

 With --large-messages option, The folder used for large-messages
 (default from broker.xml)

 With --paging option, The folder used for paging (default from
 broker.xml)

 With --broker option, This would override the broker configuration
 from the bootstrap

 With --bindings option, The folder used for bindings (default from
 broker.xml)

 With --verbose option, Adds more information on the execution

Chapter 65. Libaio Native Libraries
Apache ActiveMQ Artemis distributes a native library, used as a bridge for its fast journal, between
Apache ActiveMQ Artemis and Linux libaio.

libaio is a library, developed as part of the Linux kernel project. With libaio we submit writes to
the operating system where they are processed asynchronously. Some time later the OS will call our
code back when they have been processed.

We use this in our high performance journal if configured to do so, please see Persistence.

These are the native libraries distributed by Apache ActiveMQ Artemis:

• libartemis-native-64.so - x86 64 bits

• We distributed a 32-bit version until early 2017. While it’s not available on the distribution any
longer it should still be possible to compile to a 32-bit environment if needed.

When using libaio, Apache ActiveMQ Artemis will always try loading these files as long as they are
on the library path

65.1. Runtime dependencies
If you just want to use the provided native binaries you need to install the required libaio
dependency. You can install libaio using the following steps either as the root user or using sudo:

• On Fedora, CentOS, Rocky Linux, Red Hat Enterprise Linux, etc.:

dnf install libaio

• On Ubuntu, Debian, etc.:

apt install <package-name>

The value for <package-name> will depend on which Linux distribution version you’re using:

Linux Distro Version Package Name

Ubuntu 22.04 (and earlier) libaio1

Ubuntu 24.04 (and later) libaio1t64

Debian 12 (and earlier) libaio1

Debian 13 (and later) libaio1t64

Since the package name in later versions of Ubuntu and Debian is different you’ll also need to
create a symlink on these versions so that the ActiveMQ Artemis Native library can find the
shared library at the expected location, e.g.:

ln -s /usr/lib/x86_64-linux-gnu/libaio.so.1t64 /usr/lib/libaio.so.1

65.2. Compiling the native libraries
In the case that you are using Linux on a platform other than x86_32 or x86_64 (for example
Itanium 64 bits or IBM Power) you may need to compile the native library, since we do not
distribute binaries for those platforms with the release.

65.3. Compilation dependencies


The native layer is only available on Linux. If you are in a platform other than
Linux the native compilation will not work

These are the required linux packages to be installed for the compilation to work:

• gcc - C Compiler

• gcc-c++ or g++ - Extension to gcc with support for C++

• libtool - Tool for link editing native libraries

• libaio - library to disk asynchronous IO kernel functions

• libaio-dev - Compilation support for libaio

• cmake

• A full JDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at a command line:

sudo yum install libtool gcc-c++ gcc libaio libaio-devel cmake

Or on Debian systems:

sudo apt-get install libtool gcc-g++ gcc libaio libaio- cmake


You could find a slight variation of the package names depending on the version
and Linux distribution. (for example gcc-c++ on Fedora versus g++ on Debian
systems)

65.4. Invoking the compilation
In the source distribution or git clone, in the artemis-native directory, execute the shell script
compile-native.sh. This script will invoke the proper commands to perform the native build.

If you want more information refer to the cmake web pages.

https://cmake.org

Chapter 66. Detecting Dead Connections
In this section we will discuss connection time-to-live (TTL) and explain how Apache ActiveMQ
Artemis deals with crashed clients and clients which have exited without cleanly closing their
resources.

66.1. Cleaning up Resources on the Server
Before an Apache ActiveMQ Artemis client application exits it is considered good practice that it
should close its resources in a controlled manner, using a finally block.

Here’s an example of a well behaved core client application closing its session and session factory
in a finally block:

ServerLocator locator = null;
ClientSessionFactory sf = null;
ClientSession session = null;

try {
 locator = ActiveMQClient.createServerLocatorWithoutHA(..);

 sf = locator.createSessionFactory();

 session = sf.createSession(...);

 ... do some stuff with the session...
} finally {
 if (session != null) {
 session.close();
 }

 if (sf != null) {
 sf.close();
 }

 if(locator != null) {
 locator.close();
 }
}

And here’s an example of a well behaved JMS client application:

Connection jmsConnection = null;

try {
 ConnectionFactory jmsConnectionFactory = new ActiveMQConnectionFactory
("tcp://localhost:61616");

 jmsConnection = jmsConnectionFactory.createConnection();

 ... do some stuff with the connection...
} finally {
 if (connection != null) {
 connection.close();
 }
}

Or with using auto-closeable feature from Java, which can save a few lines of code:

try (
 ActiveMQConnectionFactory jmsConnectionFactory = new ActiveMQConnectionFactory
("tcp://localhost:61616");
 Connection jmsConnection = jmsConnectionFactory.createConnection()) {
 ... do some stuff with the connection...
}

Unfortunately users don’t always write well behaved applications, and sometimes clients just crash
so they don’t have a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these
were not removed they would cause a resource leak on the server and over time this result in the
server running out of memory or other resources.

We have to balance the requirement for cleaning up dead client resources with the fact that
sometimes the network between the client and the server can fail and then come back, allowing the
client to reconnect. Apache ActiveMQ Artemis supports client reconnection, so we don’t want to
clean up "dead" server side resources too soon or this will prevent any client from reconnecting, as
it won’t be able to find its old sessions on the server.

Apache ActiveMQ Artemis makes all of this configurable via a connection TTL. Basically, the TTL
determines how long the server will keep a connection alive in the absence of any data arriving
from the client. The client will automatically send "ping" packets periodically to prevent the server
from closing it down. If the server doesn’t receive any packets on a connection for the connection
TTL time, then it will automatically close all the sessions on the server that relate to that
connection.

The connection TTL is configured on the URI using the connectionTtl parameter.

The default value for connection ttl on an "unreliable" connection (e.g. a Netty connection using the
tcp URL scheme) is 60000ms, i.e. 1 minute. The default value for connection ttl on a "reliable"
connection (e.g. an in-vm connection using the vm URL scheme) is -1. A value of -1 for connectionTtl
means the server will never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all
values used by a global value set on the server side. This can be done by specifying the connection-
ttl-override attribute in the server side configuration. The default value for connection-ttl-
override is -1 which means "do not override" (i.e. let clients use their own values).

The logic to check connections for TTL violations runs periodically on the broker. By default, the
checks are done every 2,000 milliseconds. However, this can be changed if necessary by using the
connection-ttl-check-interval attribute.

66.2. Closing Forgotten Resources
As previously discussed, it’s important that all core client sessions and JMS connections are always
closed explicitly in a finally block when you are finished using them.

If you fail to do so, Apache ActiveMQ Artemis will detect this at garbage collection time, and log a
warning (If you are using JMS the warning will involve a JMS connection).

Apache ActiveMQ Artemis will then close the connection / client session for you.

Note that the log will also tell you the exact line of your user code where you created the JMS
connection / client session that you later did not close. This will enable you to pinpoint the error in
your code and correct it appropriately.

66.3. Detecting Failure from the Client
In the previous section we discussed how the client sends pings to the server and how "dead"
connection resources are cleaned up by the server. There’s also another reason for pinging, and
that’s for the client to be able to detect that the server or network has failed.

As long as the client is receiving data from the server it will consider the connection to be still alive.

If the client does not receive any packets for a configurable number of milliseconds then it will
consider the connection failed and will either initiate failover, or call any FailureListener instances
(or ExceptionListener instances if you are using JMS) depending on how it has been configured.

This is controlled by setting the clientFailureCheckPeriod parameter on the URI your client is using
to connect, e.g. tcp://localhost:61616?clientFailureCheckPeriod=30000.

The default value for client failure check period on an "unreliable" connection (e.g. a Netty
connection) is 30000 ms, i.e. 30 seconds. The default value for client failure check period on a
"reliable" connection (e.g. an in-vm connection) is -1. A value of -1 means the client will never fail
the connection on the client side if no data is received from the server. Typically this is much lower
than connection TTL to allow clients to reconnect in case of transitory failure.

66.4. Configuring Asynchronous Connection Execution
Most packets received on the server side are executed on the remoting thread. These packets
represent short-running operations and are always executed on the remoting thread for
performance reasons.

However, by default some kinds of packets are executed using a thread from a thread pool so that
the remoting thread is not tied up for too long. Please note that processing operations
asynchronously on another thread adds a little more latency. These packets are:

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.RollbackMessage

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionCloseMessage

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionCommitMessage

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXACommitMessage

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXAPrepareMessage

• org.apache.activemq.artemis.core.protocol.core.impl.wireformat.SessionXARollbackMessage

To disable asynchronous connection execution, set the parameter async-connection-execution-
enabled in broker.xml to false (default value is true).

Chapter 67. Configuring the Transport
In this chapter we’ll describe the concepts required for understanding Apache ActiveMQ Artemis
transports and where and how they’re configured.

67.1. Acceptors
One of the most important concepts in Apache ActiveMQ Artemis transports is the acceptor. Let’s
dive straight in and take a look at an acceptor defined in xml in the configuration file broker.xml.

<acceptor name="netty">tcp://localhost:61617</acceptor>

Acceptors are always defined inside an acceptors element. There can be one or more acceptors
defined in the acceptors element. There’s no upper limit to the number of acceptors per server.

Each acceptor defines a way in which connections can be made to the Apache ActiveMQ Artemis
server.

In the above example we’re defining an acceptor that uses Netty to listen for connections at port
61617.

The acceptor element contains a URL that defines the kind of Acceptor to create along with its
configuration. The schema part of the URL defines the Acceptor type which can either be tcp or vm
which is Netty or an In VM Acceptor respectively. For Netty the host and the port of the URL define
what host and port the acceptor will bind to. For In VM the Authority part of the URL defines a
unique server id.

The acceptor can also be configured with a set of key=value pairs used to configure the specific
transport, the set of valid key=value pairs depends on the specific transport be used and are passed
straight through to the underlying transport. These are set on the URL as part of the query, like so:

<acceptor name="netty">
tcp://localhost:61617?sslEnabled=true;keyStorePath=/path</acceptor>

67.2. Connectors
Whereas acceptors are used on the server to define how we accept connections, connectors are
used to define how to connect to a server.

Let’s look at a connector defined in our broker.xml file:

<connector name="netty">tcp://localhost:61617</connector>

Connectors can be defined inside a connectors element. There can be one or more connectors
defined in the connectors element. There’s no upper limit to the number of connectors per server.

https://netty.io/

A connector is used when the server acts as a client itself, e.g.:

• When one server is bridged to another

• When a server takes part in a cluster

In these cases the server needs to know how to connect to other servers. That’s defined by
connectors.

67.3. Configuring the Transport Directly from the
Client
How do we configure a core ClientSessionFactory with the information that it needs to connect
with a server?

Connectors are also used indirectly when configuring a core ClientSessionFactory to directly talk to
a server. Although in this case there’s no need to define such a connector in the server side
configuration, instead we just specify the appropriate URI.

Here’s an example of creating a ClientSessionFactory which will connect directly to the acceptor we
defined earlier in this chapter, it uses the standard Netty TCP transport and will try and connect on
port 61617 to localhost (default):

ServerLocator locator = ActiveMQClient.createServerLocator("tcp://localhost:61617");

ClientSessionFactory sessionFactory = locator.createSessionFactory();

ClientSession session = sessionFactory.createSession(...);

Similarly, if you’re using JMS, you can configure the JMS connection factory directly on the client
side:

ConnectionFactory connectionFactory = new ActiveMQConnectionFactory
("tcp://localhost:61617");

Connection jmsConnection = connectionFactory.createConnection();

67.4. Configuring the Netty transport
Out of the box, Apache ActiveMQ Artemis currently uses Netty, a high performance low level
network library.

Our Netty transport can be configured in several different ways; to use straightforward TCP sockets,
SSL, or to tunnel over HTTP or HTTPS..

We believe this caters for the vast majority of transport requirements.

https://netty.io/

67.4.1. Single Port Support

Apache ActiveMQ Artemis supports using a single port for all protocols, Apache ActiveMQ Artemis
will automatically detect which protocol is being used CORE, AMQP, STOMP, MQTT or OPENWIRE
and use the appropriate Apache ActiveMQ Artemis handler. It will also detect whether protocols
such as HTTP or Web Sockets are being used and also use the appropriate decoders. Web Sockets
are supported for AMQP, STOMP, and MQTT.

It is possible to limit which protocols are supported by using the protocols parameter on the
Acceptor like so:

<acceptor name="netty">tcp://localhost:61617?protocols=CORE,AMQP</acceptor>

67.4.2. Configuring Netty TCP

Netty TCP is a simple unencrypted TCP sockets based transport. If you’re running connections
across an untrusted network please bear in mind this transport is unencrypted. You may want to
look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side (i.e. the server does
not initiate any connections to the client). This works well with firewall policies that typically only
allow connections to be initiated in one direction.

All the valid keys for the tcp URL scheme used for Netty are defined in the class
org.apache.activemq.artemis.core.remoting.impl.netty.TransportConstants. Most parameters can be
used either with acceptors or connectors, some only work with acceptors. The following
parameters can be used to configure Netty for simple TCP:


The host and port parameters are only used in the core API, in XML configuration
these are set in the URI host and port.

host

This specifies the host name or IP address to connect to (when configuring a connector) or to
listen on (when configuring an acceptor). The default value for this property is localhost. When
configuring acceptors, multiple hosts or IP addresses can be specified by separating them with
commas. It is also possible to specify 0.0.0.0 to accept connection from all the host’s network
interfaces. It’s not valid to specify multiple addresses when specifying the host for a connector; a
connector makes a connection to one specific address.



Don’t forget to specify a host name or IP address! If you want your server able
to accept connections from other nodes you must specify a hostname or IP
address at which the acceptor will bind and listen for incoming connections.
The default is localhost which of course is not accessible from remote nodes!

port

This specified the port to connect to (when configuring a connector) or to listen on (when
configuring an acceptor). The default value for this property is 61616.

tcpNoDelay

If this is true then Nagle’s algorithm will be disabled. This is a Java (client) socket option. The
default value for this property is true.

tcpSendBufferSize

This parameter determines the size of the TCP send buffer in bytes. The default value for this
property is 32768 bytes (32KiB).

TCP buffer sizes should be tuned according to the bandwidth and latency of your network.
Here’s a good link that explains the theory behind this.

In summary TCP send/receive buffer sizes should be calculated as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip time (RTT) is in seconds. RTT
can be easily measured using the ping utility.

For fast networks you may want to increase the buffer sizes from the defaults.

tcpReceiveBufferSize

This parameter determines the size of the TCP receive buffer in bytes. The default value for this
property is 32768 bytes (32KiB).

writeBufferLowWaterMark

This parameter determines the low water mark of the Netty write buffer. Once the number of
bytes queued in the write buffer exceeded the high water mark and then dropped down below
this value, Netty’s channel will start to be writable again. The default value for this property is
32768 bytes (32KiB).

writeBufferHighWaterMark

This parameter determines the high water mark of the Netty write buffer. If the number of bytes
queued in the write buffer exceeds this value, Netty’s channel will start to be not writable. The
default value for this property is 131072 bytes (128KiB).

batchDelay

Before writing packets to the transport, Apache ActiveMQ Artemis can be configured to batch up
writes for a maximum of batchDelay milliseconds. This can increase overall throughput for very
small messages. It does so at the expense of an increase in average latency for message transfer.
The default value for this property is 0 ms.

directDeliver

When a message arrives on the server and is delivered to waiting consumers, by default, the
delivery is done on the same thread as that on which the message arrived. This gives good
latency in environments with relatively small messages and a small number of consumers, but
at the cost of overall throughput and scalability - especially on multi-core machines. If you want
the lowest latency and a possible reduction in throughput then you can use the default value for
directDeliver (i.e. true). If you are willing to take some small extra hit on latency but want the

https://en.wikipedia.org/wiki/Nagle%27s_algorithm
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
http://www-didc.lbl.gov/TCP-tuning/

highest throughput set directDeliver to false.

nioRemotingThreads

This is deprecated. It is replaced by remotingThreads, if you are using this please update your
configuration.

remotingThreads

Apache ActiveMQ Artemis will, by default, use a number of threads equal to three times the
number of cores (or hyper-threads) as reported by Runtime.getRuntime().availableProcessors()
for processing incoming packets. If you want to override this value, you can set the number of
threads by specifying this parameter. The default value for this parameter is -1 which means use
the value from Runtime.getRuntime().availableProcessors() * 3.

localAddress

When configured a Netty Connector it is possible to specify which local address the client will
use when connecting to the remote address. This is typically used in the Application Server or
when running Embedded to control which address is used for outbound connections. If the
local-address is not set then the connector will use any local address available

localPort

When configured a Netty Connector it is possible to specify which local port the client will use
when connecting to the remote address. This is typically used in the Application Server or when
running Embedded to control which port is used for outbound connections. If the local-port
default is used, which is 0, then the connector will let the system pick up an ephemeral port.
valid ports are 0 to 65535

connectionsAllowed

This is only valid for acceptors. It limits the number of connections which the acceptor will
allow. When this limit is reached a DEBUG level message is issued to the log, and the connection
is refused. The type of client in use will determine what happens when the connection is
refused. In the case of a core client, it will result in a
org.apache.activemq.artemis.api.core.ActiveMQConnectionTimedOutException. Default value is -1
(unlimited)

handshake-timeout

Prevents an unauthorised client opening a large number of connections and just keeping them
open. As connections each require a file handle this consumes resources that are then
unavailable to other clients. Once the connection is authenticated, the usual rules can be
enforced regarding resource consumption. Default value is set to 10 seconds. Each integer is
valid value. When set value to zero or negative integer this feature is turned off. Changing value
needs to restart server to take effect.

autoStart

Determines whether or not an acceptor will start automatically when the broker is started.
Default value is true.

67.4.3. Configuring Netty Native Transport

Netty Native Transport support exists for selected OS platforms. This allows Apache ActiveMQ
Artemis to use native sockets/io instead of Java NIO.

These Native transports add features specific to a particular platform, generate less garbage, and
generally improve performance when compared to Java NIO based transport.

Both Clients and Server can benefit from this.

Current Supported Platforms.

• Linux running 64bit JVM

• MacOS running 64bit JVM

Apache ActiveMQ Artemis will by default enable the corresponding native transport if a supported
platform is detected.

If running on an unsupported platform or any issues loading native libs, Apache ActiveMQ Artemis
will fallback onto Java NIO.

Linux Native Transport

On supported Linux platforms Epoll is used, @see https://en.wikipedia.org/wiki/Epoll.

The following properties are specific to this native transport:

useEpoll

enables the use of epoll if a supported linux platform is running a 64bit JVM is detected. Setting
this to false will force the use of Java NIO instead of epoll. Default is true

MacOS Native Transport

On supported MacOS platforms KQueue is used, @see https://en.wikipedia.org/wiki/Kqueue.

The following properties are specific to this native transport:

useKQueue

enables the use of kqueue if a supported MacOS platform running a 64bit JVM is detected.
Setting this to false will force the use of Java NIO instead of kqueue. Default is true

67.4.4. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting TCP
connections using the Secure Sockets Layer SSL

Please see the examples for a full working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

https://en.wikipedia.org/wiki/Epoll
https://en.wikipedia.org/wiki/Kqueue

sslContext

An optional cache key only evaluated if
org.apache.activemq.artemis.core.remoting.impl.ssl.CachingSSLContextFactory is active, to cache
the initial created SSL context and reuse it. If not specified CachingSSLContextFactory will
automatically calculate a cache key based on the given keystore/truststore parameters. See
Configuring an SSLContextFactory for more details.

sslEnabled

Must be true to enable SSL. Default is false.

sslAutoReload

Must be true to have the broker 'watch' an acceptors keyStorePath and/or trustStorePath and
invoke reload() on update. The watch period is controlled by the configuration reload feature.
Default is false.

keyStorePath

When used on an acceptor this is the path to the SSL key store on the server which holds the
server’s certificates (whether self-signed or signed by an authority).

When used on a connector this is the path to the client-side SSL key store which holds the client
certificates. This is only relevant for a connector if you are using 2-way SSL (i.e. mutual
authentication). Although this value is configured on the server, it is downloaded and used by
the client. If the client needs to use a different path from that set on the server then it can
override the server-side setting by either using the customary "javax.net.ssl.keyStore" system
property or the ActiveMQ-specific "org.apache.activemq.ssl.keyStore" system property. The
ActiveMQ-specific system property is useful if another component on the client is already
making use of the standard Java system property.

keyStorePassword

When used on an acceptor this is the password for the server-side keystore.

When used on a connector this is the password for the client-side keystore. This is only relevant
for a connector if you are using 2-way SSL (i.e. mutual authentication). Although this value can
be configured on the server, it is downloaded and used by the client. If the client needs to use a
different password from that set on the server then it can override the server-side setting by
either using the customary "javax.net.ssl.keyStorePassword" system property or the ActiveMQ-
specific "org.apache.activemq.ssl.keyStorePassword" system property. The ActiveMQ-specific
system property is useful if another component on the client is already making use of the
standard Java system property.

keyStoreType

The type of keystore being used. For example, JKS, JCEKS, PKCS12, PEM etc. This value can also be
set via the "javax.net.ssl.keyStoreType" system property or the ActiveMQ-specific
"org.apache.activemq.ssl.keyStoreType" system property. The ActiveMQ-specific system property
is useful if another component on the client is already making use of the standard Java system
property. Default is JKS.

keyStoreProvider

The provider used for the keystore. For example, SUN, SunJCE, etc. This value can also be set via
the "javax.net.ssl.keyStoreProvider" system property or the ActiveMQ-specific
"org.apache.activemq.ssl.keyStoreProvider" system property. The ActiveMQ-specific system
property is useful if another component on the client is already making use of the standard Java
system property. Default is null.

keyStoreAlias

When used on an acceptor this is the alias to select from the SSL key store (specified via
keyStorePath) to present to the client when it connects.

When used on a connector this is the alias to select from the SSL key store (specified via
keyStorePath) to present to the server when the client connects to it. This is only relevant for a
connector when using 2-way SSL (i.e. mutual authentication).

Default is null.

trustStorePath

When used on an acceptor this is the path to the server-side SSL key store that holds the keys of
all the clients that the server trusts. This is only relevant for an acceptor if you are using 2-way
SSL (i.e. mutual authentication).

When used on a connector this is the path to the client-side SSL key store which holds the public
keys of all the servers that the client trusts. Although this value can be configured on the server,
it is downloaded and used by the client. If the client needs to use a different path from that set
on the server then it can override the server-side setting by either using the customary
"javax.net.ssl.trustStore" system property or the ActiveMQ-specific
"org.apache.activemq.ssl.trustStore" system property. The ActiveMQ-specific system property is
useful if another component on the client is already making use of the standard Java system
property.

trustStorePassword

When used on an acceptor this is the password for the server-side trust store. This is only
relevant for an acceptor if you are using 2-way SSL (i.e. mutual authentication).

When used on a connector this is the password for the client-side truststore. Although this value
can be configured on the server, it is downloaded and used by the client. If the client needs to
use a different password from that set on the server then it can override the server-side setting
by either using the customary "javax.net.ssl.trustStorePassword" system property or the
ActiveMQ-specific "org.apache.activemq.ssl.trustStorePassword" system property. The ActiveMQ-
specific system property is useful if another component on the client is already making use of
the standard Java system property.

trustStoreType

The type of truststore being used. For example, JKS, JCEKS, PKCS12, PEM etc. This value can also be
set via the "javax.net.ssl.trustStoreType" system property or the ActiveMQ-specific
"org.apache.activemq.ssl.trustStoreType" system property. The ActiveMQ-specific system
property is useful if another component on the client is already making use of the standard Java
system property. Default is JKS.

trustStoreProvider

The provider used for the truststore. For example, SUN, SunJCE, etc. This value can also be set via
the "javax.net.ssl.trustStoreProvider" system property or the ActiveMQ-specific
"org.apache.activemq.ssl.trustStoreProvider" system property. The ActiveMQ-specific system
property is useful if another component on the client is already making use of the standard Java
system property. Default is null.

enabledCipherSuites

Whether used on an acceptor or connector this is a comma separated list of cipher suites used for
SSL communication. The default value is null which means the JVM’s default will be used.

enabledProtocols

Whether used on an acceptor or connector this is a comma separated list of protocols used for
SSL communication. The default value is null which means the JVM’s default will be used.

needClientAuth

This property is only for an acceptor. It tells a client connecting to this acceptor that 2-way SSL is
required. Valid values are true or false. Default is false.


This property takes precedence over wantClientAuth and if its value is set to true
then wantClientAuth will be ignored.

wantClientAuth

This property is only for an acceptor. It tells a client connecting to this acceptor that 2-way SSL is
requested but not required. Valid values are true or false. Default is false.


If the property needClientAuth is set to true then that property will take
precedence and this property will be ignored.

verifyHost

When used on a connector the CN or Subject Alternative Name values of the server’s SSL
certificate will be compared with the hostname being connected to in order to verify a match.
This is useful for both 1-way and 2-way SSL.

When used on an acceptor the CN or Subject Alternative Name values of the connecting client’s
SSL certificate will be compared to its hostname to verify a match. This is useful only for 2-way
SSL.

Valid values are true or false. Default is true for connectors, and false for acceptors.

trustAll

When used on a connector the client will trust the provided server certificate implicitly,
regardless of any configured trust store.


This setting is primarily for testing purposes only and should not be used in
production.

Valid values are true or false. Default is false.

forceSSLParameters

When used on a connector any SSL settings that are set as parameters on the connector will be
used instead of JVM system properties including both javax.net.ssl and ActiveMQ system
properties to configure the SSL context for this connector.

Valid values are true or false. Default is false.

useDefaultSslContext

Only valid on a connector. Allows the connector to use the "default" SSL context (via
SSLContext.getDefault()) which can be set programmatically by the client (via
SSLContext.setDefault(SSLContext)). If set to true all other SSL related parameters except for
sslEnabled are ignored.

Valid values are true or false. Default is false.

sslProvider

Used to change the SSL Provider between JDK and OPENSSL. The default is JDK. If used with OPENSSL
you can add netty-tcnative to your classpath to use the native installed openssl. This can be
useful if you want to use special ciphersuite - elliptic curve combinations which are support
through openssl but not through the JDK provider. See https://en.wikipedia.org/wiki/
Comparison_of_TLS_implementations for more information’s.

sniHost

When used on an acceptor the sniHost is a regular expression used to match the server_name
extension on incoming SSL connections. If the name doesn’t match then the connection to the
acceptor will be rejected. A WARN message will be logged if this happens. If the incoming
connection doesn’t include the server_name extension then the connection will be accepted.

When used on a connector the sniHost value is used for the server_name extension on the SSL
connection.

trustManagerFactoryPlugin

This is valid on either an acceptor or connector. It defines the name of the class which
implements org.apache.activemq.artemis.api.core.TrustManagerFactoryPlugin. This is a simple
interface with a single method which returns a javax.net.ssl.TrustManagerFactory. The
TrustManagerFactory will be used when the underlying javax.net.ssl.SSLContext is initialized.
This allows fine-grained customization of who/what the broker & client trusts.

This value takes precedence of all other SSL parameters which apply to the trust manager (i.e.
trustAll, truststoreProvider, truststorePath, truststorePassword, crlPath).

Any plugin specified will need to be placed on the broker’s classpath.

Configuring an SSLContextFactory

If you use JDK as SSL provider (the default), you can configure which SSLContextFactory to use.
Currently the following two implementations are provided:

• org.apache.activemq.artemis.core.remoting.impl.ssl.DefaultSSLContextFactory (registered by

https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
https://tools.ietf.org/html/rfc6066

the default)

• org.apache.activemq.artemis.core.remoting.impl.ssl.CachingSSLContextFactory

You may also create your own implementation of
org.apache.activemq.artemis.spi.core.remoting.ssl.SSLContextFactory.

The implementations are loaded by a java.util.ServiceLoader, thus you need to declare your
implementation in a META-
INF/services/org.apache.activemq.artemis.spi.core.remoting.ssl.SSLContextFactory file. If several
implementations are available, the one with the highest priority will be selected.

So for example, if you want to use
org.apache.activemq.artemis.core.remoting.impl.ssl.CachingSSLContextFactory you need to add a
META-INF/services/org.apache.activemq.artemis.spi.core.remoting.ssl.SSLContextFactory file to
your classpath with the content
org.apache.activemq.artemis.core.remoting.impl.ssl.CachingSSLContextFactory.

A similar mechanism exists for the OPENSSL SSL provider in which case you can configure an
OpenSSLContextFactory. Currently the following two implementations are provided:

• org.apache.activemq.artemis.core.remoting.impl.ssl.DefaultOpenSSLContextFactory (registered
by the default)

• org.apache.activemq.artemis.core.remoting.impl.ssl.CachingOpenSSLContextFactory

You may also create your own implementation of
org.apache.activemq.artemis.spi.core.remoting.ssl.OpenSSLContextFactory.

67.4.5. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls
only allow HTTP traffic to pass.

Please see the examples for a full working example of using Netty HTTP.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

httpEnabled

Activates http on the client. This is not needed on the broker. With single port support Apache
ActiveMQ Artemis will now automatically detect if http is being used and configure itself.

httpClientIdleTime

How long a client can be idle before sending an empty http request to keep the connection alive

httpClientIdleScanPeriod

How often, in milliseconds, to scan for idle clients

httpResponseTime

How long the server can wait before sending an empty http response to keep the connection
alive

httpServerScanPeriod

How often, in milliseconds, to scan for clients needing responses

httpRequiresSessionId

If true the client will wait after the first call to receive a session id. Used the http connector is
connecting to servlet acceptor (not recommended)

67.4.6. Configuring Netty SOCKS Proxy

All these parameters are only applicable to a connector and/or client URL.



Using a loop-back address (e.g. localhost or 127.0.0.1) as the target of the
connector or URL will circumvent the application of these configuration properties.
In other words, no SOCKS proxy support will be configured even if these
properties are set.

socksEnabled

Whether or not to enable SOCKS support on the connector.

socksHost

The name of the SOCKS server to use.

socksPort

The port of the SOCKS server to use.

socksVersion

The version of SOCKS to use. Must be an integer. Default is 5.

socksUsername

The username to use when connecting to the socksHost.

socksPassword

The password to use when connecting to the socksHost. Only applicable if the socksVersion is 5.

socksRemoteDNS

Whether or not to create remote destination socket unresolved and disable DNS resolution.
Default is false.

Chapter 68. Flow Control
Flow control is used to limit the flow of data between a client and server, or a server and another
server in order to prevent the client or server being overwhelmed with data.

68.1. Consumer Flow Control
This controls the flow of data between the server and the client as the client consumes messages.
For performance reasons clients normally buffer messages before delivering to the consumer via
the receive() method or asynchronously via a message listener. If the consumer cannot process
messages as fast as they are being delivered and stored in the internal buffer, then you could end
up with a situation where messages would keep building up possibly causing out of memory on the
client if they cannot be processed in time.

68.1.1. Window-Based Flow Control

By default, Apache ActiveMQ Artemis consumers buffer messages from the server in a client side
buffer before the client consumes them. This improves performance: otherwise every time the
client consumes a message, Apache ActiveMQ Artemis would have to go the server to request the
next message. In turn, this message would then get sent to the client side, if one was available.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, Apache ActiveMQ Artemis pre-fetches messages into a buffer on each consumer.
The total maximum size of messages (in bytes) that will be buffered on each consumer is
determined by the consumerWindowSize parameter.

By default, the consumerWindowSize is set to 1 MiB (1024 * 1024 bytes) unless overridden via (Address
Settings)

The value can be:

• -1 for an unbounded buffer

• 0 to not buffer any messages.

• >0 for a buffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the
messaging use case. As an example, let’s consider the two extremes:

Fast consumers

Fast consumers can process messages as fast as they consume them (or even faster)

To allow fast consumers, set the consumerWindowSize to -1. This will allow unbounded message
buffering on the client side.

Use this setting with caution: it can overflow the client memory if the consumer is not able to
process messages as fast as it receives them.

Slow consumers

Slow consumers takes significant time to process each message and it is desirable to prevent
buffering messages on the client side so that they can be delivered to another consumer instead.

Consider a situation where a queue has 2 consumers; 1 of which is very slow. Messages are
delivered in a round robin fashion to both consumers, the fast consumer processes all of its
messages very quickly until its buffer is empty. At this point there are still messages awaiting to be
processed in the buffer of the slow consumer thus preventing them being processed by the fast
consumer. The fast consumer is therefore sitting idle when it could be processing the other
messages.

To allow slow consumers, set consumerWindowSize on the URI to 0 (for no buffer at all). This will
prevent the slow consumer from buffering any messages on the client side. Messages will remain
on the server side ready to be consumed by other consumers.

Setting this to 0 can give deterministic distribution between multiple consumers on a queue.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between. In
that case, setting the value of consumerWindowSize to optimize performance depends on the
messaging use case and requires benchmarks to find the optimal value, but a value of 1MiB is fine
in most cases.

Please see the examples chapter for an example which shows how to configure ActiveMQ Artemis
to prevent consumer buffering when dealing with slow consumers.

68.1.2. Rate limited flow control

It is also possible to control the rate at which a consumer can consume messages. This is a form of
throttling and can be used to make sure that a consumer never consumes messages at a rate faster
than the rate specified. This is configured using the consumerMaxRate URI parameter.

The rate must be a positive integer to enable this functionality and is the maximum desired
message consumption rate specified in units of messages per second. Setting this to -1 disables rate
limited flow control. The default value is -1.

Please see the examples chapter for a working example of limiting consumer rate.



Rate limited flow control can be used in conjunction with window based flow
control. Rate limited flow control only effects how many messages a client can
consume in a second and not how many messages are in its buffer. So if you had a
slow rate limit and a high window based limit the clients internal buffer would
soon fill up with messages.

68.2. Producer flow control
Apache ActiveMQ Artemis also can limit the amount of data sent from a client to a server to prevent
the server being overwhelmed.

68.2.1. Window based flow control

In a similar way to consumer window based flow control, Apache ActiveMQ Artemis producers, by
default, can only send messages to an address as long as they have sufficient credits to do so. The
amount of credits required to send a message is given by the size of the message.

As producers run low on credits they request more from the server, when the server sends them
more credits they can send more messages.

The amount of credits a producer requests in one go is known as the window size and it is
controlled by the producerWindowSize URI parameter.

The window size therefore determines the amount of bytes that can be in-flight at any one time
before more need to be requested - this prevents the remoting connection from getting overloaded.

Blocking CORE Producers

When using the CORE protocol (used by both the Artemis Core Client and Artemis JMS Client) the
server will always aim give the same number of credits as have been requested. However, it is also
possible to set a maximum size on any address, and the server will never send more credits to any
one producer than what is available according to the address’s upper memory limit. Although a
single producer will be issued more credits than available (at the time of issue) it is possible that
more than 1 producer be associated with the same address and so it is theoretically possible that
more credits are allocated across total producers than what is available. It is therefore possible to
go over the address limit by approximately:

total number of producers on address * producer window size

For example, if I have a queue called "myqueue", I could set the maximum memory size to 10MiB,
and the server will control the number of credits sent to any producers which are sending any
messages to myqueue such that the total messages in the queue never exceeds 10MiB.

When the address gets full, producers will block on the client side until more space frees up on the
address, i.e. until messages are consumed from the queue thus freeing up space for more messages
to be sent.

We call this blocking producer flow control, and it’s an efficient way to prevent the server running
out of memory due to producers sending more messages than can be handled at any time.

It is an alternative approach to paging, which does not block producers but instead pages messages
to storage.

To configure an address with a maximum size and tell the server that you want to block producers
for this address if it becomes full, you need to define an AddressSettings (Configuring Queues Via
Address Settings) block for the address and specify max-size-bytes and address-full-policy

The address block applies to all queues registered to that address. i.e. the total memory for all
queues bound to that address will not exceed max-size-bytes. In the case of JMS topics this means
the total memory of all subscriptions in the topic won’t exceed max-size-bytes.

Here’s an example:

<address-settings>
 <address-setting match="exampleQueue">
 <max-size-bytes>100000</max-size-bytes>
 <address-full-policy>BLOCK</address-full-policy>
 </address-setting>
</address-settings>

The above example would set the max size of the queue "exampleQueue" to be 100000 bytes and
would block any producers sending to that address to prevent that max size being exceeded.

Note the policy must be set to BLOCK to enable blocking producer flow control.



Note that in the default configuration all addresses are set to block producers after
10 MiB of message data is in the address. This means you cannot send more than
10MiB of message data to an address without it being consumed before the
producers will be blocked. If you do not want this behaviour increase the max-
size-bytes parameter or change the address full message policy.



Producer credits are allocated from the broker to the client. Flow control credit
checking (i.e. checking a producer has enough credit) is done on the client side
only. It is possible for the broker to over allocate credits, like in the multiple
producer scenario outlined above. It is also possible for a misbehaving client to
ignore the flow control credits issued by the broker and continue sending with out
sufficient credit.

Blocking AMQP Producers

Apache ActiveMQ Artemis ships with out of the box with 2 protocols that support flow control.
Artemis CORE protocol and AMQP. Both protocols implement flow control slightly differently and
therefore address full BLOCK policy behaves slightly different for clients that use each protocol
respectively.

As explained earlier in this chapter the CORE protocol uses a producer window size flow control
system. Where credits (representing bytes) are allocated to producers, if a producer wants to send a
message it should wait until it has enough byte credits available for it to send. AMQP flow control
credits are not representative of bytes but instead represent the number of messages a producer is
permitted to send (regardless of the message size).

BLOCK for AMQP works mostly in the same way as the producer window size mechanism above.
Artemis will issue 100 credits to a client at a time and refresh them when the clients credits reaches
30. The broker will stop issuing credits once an address is full. However, since AMQP credits
represent whole messages and not bytes, it would be possible in some scenarios for an AMQP client
to significantly exceed an address upper bound should the broker continue accepting messages
until the clients credits are exhausted. For this reason there is an additional parameter available on
address settings that specifies an upper bound on an address size in bytes. Once this upper bound is
reach Artemis will start rejecting AMQP messages. This limit is the max-size-bytes-reject-threshold

and is by default set to -1 (or no limit). This is additional parameter allows a kind of soft and hard
limit, in normal circumstances the broker will utilize the max-size-bytes parameter using flow
control to put back pressure on the client, but will protect the broker by rejecting messages once
the address size is reached.

68.2.2. Rate limited flow control

Apache ActiveMQ Artemis also allows the rate a producer can emit message to be limited, in units
of messages per second. By specifying such a rate, Apache ActiveMQ Artemis will ensure that
producer never produces messages at a rate higher than that specified. This is controlled by the
producerMaxRate URL parameter.

The producerMaxRate must be a positive integer to enable this functionality and is the maximum
desired message production rate specified in units of messages per second. Setting this to -1
disables rate limited flow control. The default value is -1.

Please see the examples chapter for a working example of limiting producer rate.

Chapter 69. Plugin Support
Apache ActiveMQ Artemis is designed to allow extra functionality to be added by creating a plugin.
Multiple plugins can be registered at the same time and they will be chained together and executed
in the order they are registered (i.e. the first plugin registered is always executed first).

Creating a plugin is very simple. It requires:

• Implementing the ActiveMQServerPlugin interface

• Making sure the plugin is on the classpath

• Registering it with the broker either via xml or programmatically.

Only the methods that you want to add behavior for need to be implemented as all of the interface
methods are default methods.

69.1. Registering a Plugin
To register a plugin with by XML you need to add the broker-plugins element at the broker.xml. It is
also possible to pass configuration to a plugin using the property child element(s). These properties
(zero to many) will be read and passed into the plugin’s init(Map<String, String>) operation after
the plugin has been instantiated.

<broker-plugins>
 <broker-plugin class-name="some.plugin.UserPlugin">
 <property key="property1" value="val_1" />
 <property key="property2" value="val_2" />
 </broker-plugin>
</broker-plugins>

69.2. Registering a Plugin Programmatically
For registering a plugin programmatically you need to call the registerBrokerPlugin() method and
pass in a new instance of your plugin. In the example below assuming your plugin is called
UserPlugin, registering it looks like the following:

...

Configuration config = new ConfigurationImpl();
...

config.registerBrokerPlugin(new UserPlugin());

https://github.com/apache/activemq-artemis/blob/main/artemis-server/src/main/java/org/apache/activemq/artemis/core/server/plugin/ActiveMQServerPlugin.java

69.3. Using the LoggingActiveMQServerPlugin
The LoggingActiveMQServerPlugin logs specific broker events.

You can select which events are logged by setting the following configuration properties to true.

Property Trigger Event Default Value

LOG_CONNECTION_EVENTS Connection is created/destroy. false

LOG_SESSION_EVENTS Session is created/closed. false

LOG_CONSUMER_EVENTS Consumer is created/closed false

LOG_DELIVERING_EVENTS Message is delivered to a
consumer and when a message
is acknowledged by a
consumer.

false

LOG_SENDING_EVENTS When a message has been sent
to an address and when a
message has been routed within
the broker.

false

LOG_INTERNAL_EVENTS When a queue
created/destroyed, when a
message is expired, when a
bridge is deployed and when a
critical failure occurs.

false

LOG_ALL_EVENTS Includes all the above events. false

By default the LoggingActiveMQServerPlugin will not log any information. The logging is activated by
setting one (or a selection) of the above configuration properties to true.

To configure the plugin, you can add the following configuration to the broker. In the example
below both LOG_DELIVERING_EVENTS and LOG_SENDING_EVENTS will be logged by the broker.

<broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.LoggingActiveMQServerPlugin"
>
 <property key="LOG_DELIVERING_EVENTS" value="true" />
 <property key="LOG_SENDING_EVENTS" value="true" />
 </broker-plugin>
</broker-plugins>

Most events in the LoggingActiveMQServerPlugin follow a beforeX and afterX notification pattern (e.g
beforeCreateConsumer() and afterCreateConsumer()).

At Log Level INFO, the LoggingActiveMQServerPlugin logs an entry when an afterX notification
occurs. By setting the logger org.apache.activemq.artemis.core.server.plugin.impl to DEBUG, log

entries are generated for both beforeX and afterX notifications. Log level DEBUG will also log more
information for a notification when available.

69.4. Using the NotificationActiveMQServerPlugin
The NotificationActiveMQServerPlugin can be configured to send extra notifications for specific
broker events.

You can select which notifications are sent by setting the following configuration properties to true.

Property Property Description Default Value

SEND_CONNECTION_NOTIFICATIONS Sends a notification when a
Connection is created/destroy.

false

SEND_SESSION_NOTIFICATIONS Sends a notification when a
Session is created/closed.

false

SEND_ADDRESS_NOTIFICATIONS Sends a notification when an
Address is added/removed.

false

SEND_DELIVERED_NOTIFICATIONS Sends a notification when
message is delivered to a
consumer.

false

SEND_EXPIRED_NOTIFICATIONS Sends a notification when
message has been expired by
the broker.

false

By default the NotificationActiveMQServerPlugin will not send any notifications. The plugin is
activated by setting one (or a selection) of the above configuration properties to true.

To configure the plugin, you can add the following configuration to the broker. In the example
below both SEND_CONNECTION_NOTIFICATIONS and SEND_SESSION_NOTIFICATIONS will be sent by the
broker.

<broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.NotificationActiveMQServerPl
ugin">
 <property key="SEND_CONNECTION_NOTIFICATIONS" value="true" />
 <property key="SEND_SESSION_NOTIFICATIONS" value="true" />
 </broker-plugin>
</broker-plugins>

69.5. Using the BrokerMessageAuthorizationPlugin
The BrokerMessageAuthorizationPlugin filters messages sent to consumers based on if they have a
role that matches the value specified in a message property.

You can select which property will be used to specify the required role for consuming a message by
setting the following configuration.

Property Property Description Default Value

ROLE_PROPERTY Property name used to
determine the role required to
consume a message.

requiredRole.

If the message does not have a property matching the configured ROLE_PROPERTY then the message
will be sent to any consumer.

To configure the plugin, you can add the following configuration to the broker. In the example
below ROLE_PROPERTY is set to permissions when that property is present messages will only be sent
to consumers with a role matching its value.

<broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.BrokerMessageAuthorizationPl
ugin">
 <property key="ROLE_PROPERTY" value="permissions" />
 </broker-plugin>
</broker-plugins>

69.6. Using the ConnectionPeriodicExpiryPlugin
The ConnectionPeriodicExpiryPlugin will implement a global expiry (and disconnect) for
connections that live longer than periodSeconds on a matching acceptor basis.

This plugin can be useful when credential rotation or credential validation must be enforced at
regular intervals as authentication will be enforced on reconnect.

The plugin requires the configuration of the acceptorMatchRegex to determine the acceptors to
monitor. It is typical to separate client acceptors and federation or cluster acceptors such that only
client connections will be subject to periodic expiry. The acceptorMatchRegex must be configured to
match the name of the acceptor(s) whose connections will be subject to periodic expiry.

Property Property Description Default Value

acceptorMatchRegex the regular expression used to
match against the names of
acceptors to monitor

periodSeconds the max period, in seconds, that
a connection can last

900 seconds (15 minutes)

Property Property Description Default Value

accuracyWindowSeconds determines how often we check
connections for expiry and also
provides an upper bound on the
random seconds we use to
schedule a disconnect. Using a
random second will potentially
avoid many reconnects
occurring at the exact same
time. It must be positive value >
0

30 seconds

The plugin can be configured via xml in the normal broker-plugin way:

<broker-plugins>
 <broker-plugin class-
name="org.apache.activemq.artemis.core.server.plugin.impl.ConnectionPeriodicExpiryPlug
in">
 <property key="acceptorMatchRegex" value="netty-client-acceptor" />
 </broker-plugin>
</broker-plugins>

Chapter 70. Intercepting Operations
Apache ActiveMQ Artemis supports interceptors to intercept packets entering and exiting the
server. Incoming and outgoing interceptors are be called for any packet entering or exiting the
server respectively. This allows custom code to be executed, e.g. for auditing packets, filtering or
other reasons. Interceptors can change the packets they intercept. This makes interceptors
powerful, but also potentially dangerous.

70.1. Implementing The Interceptors
All interceptors are protocol specific.

An interceptor for the core protocol must implement the interface Interceptor:

package org.apache.activemq.artemis.api.core.interceptor;

public interface Interceptor {
 boolean intercept(Packet packet, RemotingConnection connection) throws
ActiveMQException;
}

For stomp protocol an interceptor must implement the interface StompFrameInterceptor:

package org.apache.activemq.artemis.core.protocol.stomp;

public interface StompFrameInterceptor extends BaseInterceptor<StompFrame> {
 boolean intercept(StompFrame stompFrame, RemotingConnection connection);
}

Likewise for MQTT protocol, an interceptor must implement the interface MQTTInterceptor:

package org.apache.activemq.artemis.core.protocol.mqtt;

public interface MQTTInterceptor extends BaseInterceptor<MqttMessage> {
 boolean intercept(MqttMessage mqttMessage, RemotingConnection connection);
}

The returned boolean value is important:

• if true is returned, the process continues normally

• if false is returned, the process is aborted, no other interceptors will be called and the packet
will not be processed further by the server.

70.2. Configuring The Interceptors
Both incoming and outgoing interceptors are configured in broker.xml:

<remoting-incoming-interceptors>
 <class-name>org.apache.activemq.artemis.jms.example.LoginInterceptor</class-name>
 <class-name>
org.apache.activemq.artemis.jms.example.AdditionalPropertyInterceptor</class-name>
</remoting-incoming-interceptors>

<remoting-outgoing-interceptors>
 <class-name>org.apache.activemq.artemis.jms.example.LogoutInterceptor</class-name>
 <class-name>
org.apache.activemq.artemis.jms.example.AdditionalPropertyInterceptor</class-name>
</remoting-outgoing-interceptors>

See the documentation on adding runtime dependencies to understand how to make your
interceptor available to the broker.

70.3. Interceptors on the Client Side
The interceptors can also be run on the Apache ActiveMQ Artemis client side to intercept packets
either sent by the client to the server or by the server to the client. This is done by adding the
interceptor to the ServerLocator with the addIncomingInterceptor(Interceptor) or
addOutgoingInterceptor(Interceptor) methods.

As noted above, if an interceptor returns false then the sending of the packet is aborted which
means that no other interceptors are be called and the packet is not be processed further by the
client. Typically this process happens transparently to the client (i.e. it has no idea if a packet was
aborted or not). However, in the case of an outgoing packet that is sent in a blocking fashion a
ActiveMQException will be thrown to the caller. The exception is thrown because blocking sends
provide reliability and it is considered an error for them not to succeed. Blocking sends occurs
when, for example, an application invokes setBlockOnNonDurableSend(true) or
setBlockOnDurableSend(true) on its ServerLocator or if an application is using a JMS connection
factory retrieved from JNDI that has either block-on-durable-send or block-on-non-durable-send set
to true. Blocking is also used for packets dealing with transactions (e.g. commit, roll-back, etc.). The
ActiveMQException thrown will contain the name of the interceptor that returned false.

As on the server, the client interceptor classes (and their dependencies) must be added to the
classpath to be properly instantiated and invoked.

70.4. Examples
See the following examples which show how to use interceptors:

• Interceptor

• Interceptor AMQP

• Interceptor Client

• Interceptor MQTT

Chapter 71. Configuration Reload
The system will perform a periodic check on the configuration files, configured by configuration-
file-refresh-period, with the default at 5000, in milliseconds. These checks can be disabled by
specifying -1.

Note that the Log4J2 configuration has its own reload mechanism, configured via its own
log4j2.properties file. See Logging configuration reload for more detail.

Once the configuration file is changed (broker.xml) the following modules will be reloaded
automatically:

• Address Settings

• Security Settings

• Diverts

• Addresses & Queues

• Bridges

• Acceptors

If using modularised broker.xml ensure you also read reloading modular configuration files



Addresses, queues and diverts can be removed automatically when removed from
the configuration:

config-delete-addresses

• OFF (default) - will not remove the address upon config reload. Messages left
in the attached queues will be left intact.

• FORCE - will remove the address and its queues upon config reload. Messages
left in the attached queues will be lost.

config-delete-queues

• OFF (default) - will not remove the queues upon config reload. Messages left
in the queues will be left intact.

• FORCE - will remove the queues. Messages left in the queues will be lost.

config-delete-diverts

• OFF (default) - will not remove the diverts upon config reload.

• FORCE - will remove the diverts upon config reload.

By default, all settings are OFF, so that addresses, queues and diverts aren’t
removed upon configuration reload, reducing the risk of losing messages.

Addresses, queues and diverts no longer present in the configuration file can be
removed manually via the web interface, CLI, or JMX management operations.

71.1. Reloadable Parameters
The broker configuration file has 2 main parts, <core> and <jms>. Some of the parameters in the 2
parts are monitored and, if modified, reloaded into the broker at runtime.


Elements under <jms> are deprecated. Users are encouraged to use <core>
configuration entities.


Most parameters reloaded take effect immediately after reloading. However there
are some that won’t take any effect unless you restarting the broker. Such
parameters are specifically indicated in the following text.

71.1.1. <core>

<security-settings>

• <security-setting> element

Changes to any <security-setting> elements will be reloaded. Each <security-setting> defines
security roles for a matched address.

• The match attribute

This attribute defines the address for which the security-setting is defined. It can take wildcards
such as ‘#’ and ‘*’.

• The <permission> sub-elements

Each <security-setting> can have a list of <permission> elements, each of which defines a specific
permission-roles mapping. Each permission has 2 attributes ‘type’ and ‘roles’. The ‘type’ attribute
defines the type of operation allowed, the ‘roles’ defines which roles are allowed to perform such
operation. Refer to the user’s manual for a list of operations that can be defined.


Once loaded the security-settings will take effect immediately. Any new clients will
subject to the new security settings. Any existing clients will subject to the new
settings as well, as soon as they performs a new security-sensitive operation.

Below lists the effects of adding, deleting and updating of an element/attribute within the
<security-settings> element, whether a change can be done or can’t be done.

Operation Add Delete Update

<security-settings> X* (at most one element
is allowed)

Deleting it means
delete the whole
security settings from
the running broker.

N/A*

Operation Add Delete Update

<security-setting> Adding one element
means adding a new
set of security roles for
an address in the
running broker

Deleting one element
means removing a set
of security roles for an
address in the running
broker

Updating one element
means updating the
security roles for an
address (if match
attribute is not
changed), or means
removing the old match
address settings and
adding a new one (if
match attribute is
changed)

attribute match N/A* X* Changing this value is
same as deleting the
whole <security-
setting> with the old
match value and adding
`</security-setting>

<permission> Adding one means
adding a new
permission definition
to runtime broker

Deleting a permission
from the runtime
broker

Updating a permission-
roles in the runtime
broker

attribute type N/A* X* Changing the type
value means remove
the permission of the
old one and add the
permission of this type
to the running broker.

attribute roles N/A* X* Changing the ‘roles’
value means updating
the permission’s
allowed roles to the
running broker

• N/A means this operation is not applicable.

• X means this operation is not allowed.

<address-settings>

• <address-settings> element

Changes to elements under <address-settings> will be reloaded into runtime broker. It contains a
list of <address-setting> elements.

• <address-setting> element

Each address-setting element has a ‘match’ attribute that defines an address pattern for which this
address-setting is defined. It also has a list of sub-elements used to define the properties of a
matching address.



Parameters reloaded in this category will take effect immediately after reloading.
The effect of deletion of Address’s and Queue’s, not auto created is controlled by
parameter config-delete-addresses and config-delete-queues as described in the
doc.

Below lists the effects of adding, deleting and updating of an element/attribute within the address-
settings element, whether a change can be done or can’t be done.

Operation Add Delete Update

<address-settings> X(at most one element
is allowed)

Deleting it means
delete the whole
address settings from
the running broker

N/A

<address-setting> Adding one element
means adding a set of
address-setting for a
new address in the
running broker

Deleting one means
removing a set of
address-setting for an
address in the running
broker

Updating one element
means updating the
address setting for an
address (if match
attribute is not
changed), or means
removing the old match
address settings and
adding a new one (if
match attribute is
changed)

attribute match N/A X Changing this value is
same as deleting the
whole <address-
setting> with the old
match value and
adding a new one with
the new match value.
</address-setting>

<dead-letter-address> X (no more than one
can be present)

Removing the
configured dead-letter-
address address from
running broker.

The dead letter address
of the matching
address will be updated
after reloading

<expiry-address> X (no more than one
can be present)

Removing the
configured expiry
address from running
broker.

The expiry address of
the matching address
will be updated after
reloading

Operation Add Delete Update

<expiry-delay> X (no more than one
can be present)

The configured expiry-
delay will be removed
from running broker.

The expiry-delay for
the matching address
will be updated after
reloading.

<redelivery-delay> X (no more than one
can be present)

The configured
redelivery-delay will be
removed from running
broker after reloading

The redelivery-delay
for the matchin address
will be updated after
reloading.

<redelivery-delay-
multiplier>

X (no more than one
can be present)

The configured
redelivery-delay-
multiplier will be
removed from running
broker after reloading.

The redelivery-delay-
multiplier will be
updated after
reloading.

<max-redelivery-delay> X (no more than one
can be present)

The configured max-
redelivery-delay will be
removed from running
broker after reloading.

The max-redelivery-
delay will be updated
after reloading.

<max-delivery-
attempts>

X (no more than one
can be present)

The configured max-
delivery-attempts will
be removed from
running broker after
reloading.

The max-delivery-
attempts will be
updated after
reloading.

<max-size-bytes> X (no more than one
can be present)

The configured max-
size-bytes will be
removed from running
broker after reloading.

The max-size-bytes will
be updated after
reloading.

<page-size-bytes> X (no more than one
can be present)

The configured page-
size-bytes will be
removed from running
broker after reloading.

The page-size-bytes will
be updated after
reloading.

<address-full-policy> X (no more than one
can be present)

The configured
address-full-policy will
be removed from
running broker after
reloading.

The address-full-policy
will be updated after
reloading.

<message-counter-
history-day-limit>

X (no more than one
can be present)

The configured
message-counter-
history-day-limit will
be removed from
running broker after
reloading.

The message-counter-
history-day-limit will
be updated after
reloading.

Operation Add Delete Update

<last-value-queue> X (no more than one
can be present)

The configured last-
value-queue will be
removed from running
broker after reloading
(no longer a last value
queue).

The last-value-queue
will be updated after
reloading.

<redistribution-delay> X (no more than one
can be present)

The configured
redistribution-delay
will be removed from
running broker after
reloading.

The redistribution-
delay will be updated
after reloading.

<send-to-dla-on-no-
route>

X (no more than one
can be present)

The configured send-to-
dla-on-no-route will be
removed from running
broker after reloading.

The send-to-dla-on-no-
route will be updated
after reloading.

<slow-consumer-
threshold>

X (no more than one
can be present)

The configured slow-
consumer-threshold
will be removed from
running broker after
reloading.

The slow-consumer-
threshold will be
updated after
reloading.

<slow-consumer-policy> X (no more than one
can be present)

The configured slow-
consumer-policy will
be removed from
running broker after
reloading.

The slow-consumer-
policy will be updated
after reloading.

<slow-consumer-check-
period>

X (no more than one
can be present)

The configured slow-
consumer-check-period
will be removed from
running broker after
reloading. (meaning the
slow consumer checker
thread will be
cancelled)

The slow-consumer-
check-period will be
updated after
reloading.

<auto-create-queues> X (no more than one
can be present)

The configured auto-
create-queues will be
removed from running
broker after reloading.

The auto-create-queues
will be updated after
reloading.

<auto-delete-queues> X (no more than one
can be present)

The configured auto-
delete-queues will be
removed from running
broker after reloading.

The auto-delete-queues
will be updated after
reloading.

Operation Add Delete Update

<config-delete-queues> X (no more than one
can be present)

The configured config-
delete-queues will be
removed from running
broker after reloading.

The config-delete-
queues will be updated
after reloading.

<auto-create-
addresses>

X (no more than one
can be present)

The configured auto-
create-addresses will
be removed from
running broker after
reloading.

The auto-create-
addresses will be
updated after
reloading.

<auto-delete-
addresses>

X (no more than one
can be present)

The configured auto-
delete-addresses will be
removed from running
broker after reloading.

The auto-delete-
addresses will be
updated after
reloading.

<config-delete-
addresses>

X (no more than one
can be present)

The configured config-
delete-addresses will be
removed from running
broker after reloading.

The config-delete-
addresses will be
updated after
reloading.

<management-browse-
page-size>

X (no more than one
can be present)

The configured
management-browse-
page-size will be
removed from running
broker after reloading.

The management-
browse-page-size will
be updated after
reloading.

<default-purge-on-no-
consumers>

X (no more than one
can be present)

The configured default-
purge-on-no-consumers
will be removed from
running broker after
reloading.

The default-purge-on-
no-consumers will be
updated after
reloading.

<default-max-
consumers>

X (no more than one
can be present)

The configured default-
max-consumers will be
removed from running
broker after reloading.

The default-max-
consumers will be
updated after
reloading.

<default-queue-
routing-type>

X (no more than one
can be present)

The configured default-
queue-routing-type will
be removed from
running broker after
reloading.

The default-queue-
routing-type will be
updated after
reloading.

<default-address-
routing-type>

X (no more than one
can be present)

The configured default-
address-routing-type
will be removed from
running broker after
reloading.

The default-address-
routing-type will be
updated after
reloading.

<diverts>

All <divert> elements will be reloaded. Each <divert> element has a ‘name’ and several sub-
elements that defines the properties of a divert.

 Existing diverts get undeployed if you delete their <divert> element.

Below lists the effects of adding, deleting and updating of an element/attribute within the diverts
element, whether a change can be done or can’t be done.

Operation Add Delete Update

<diverts> X (no more than one
can be present)

Deleting it means
delete (undeploy) all
diverts in running
broker.

N/A

<divert> Adding a new divert. It
will be deployed after
reloading

Deleting it means the
divert will be
undeployed after
reloading

No effect on the
deployed divert (unless
restarting broker, in
which case the divert
will be redeployed)

attribute name N/A X A new divert with the
name will be deployed.
(if it is not already
there in broker).
Otherwise no effect.

<transformer-class-
name>

X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker, in
which case the divert
will be deployed
without the
transformer class)

No effect on the
deployed divert.(unless
restarting broker, in
which case the divert
has the transformer
class)

<exclusive> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

<routing-name> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

<address> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

<forwarding-address> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

Operation Add Delete Update

<filter> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

<routing-type> X (no more than one
can be present)

No effect on the
deployed divert.(unless
restarting broker)

No effect on the
deployed divert.(unless
restarting broker)

<addresses>

The <addresses> element contains a list <address> elements. Once changed, all <address> elements in
<addresses> will be reloaded.


Once reloaded, all new addresses (as well as the pre-configured queues) will be
deployed to the running broker and all those that are missing from the
configuration will be undeployed.



Parameters reloaded in this category will take effect immediately after reloading.
The effect of deletion of Address’s and Queue’s, not auto created is controlled by
parameter config-delete-addresses and config-delete-queues as described in this
doc.

Below lists the effects of adding, deleting and updating of an element/attribute within the
<addresses> element, whether a change can be done or can’t be done.

Operation Add Delete Update

<addresses> X(no more than one is
present)

Deleting it means
delete (undeploy) all
diverts in running
broker.

N/A

<address> A new address will be
deployed in the
running broker

The corresponding
address will be
undeployed.

N/A

attribute name N/A X After reloading the
address of the old name
will be undeployed and
the new will be
deployed.

<anycast> X(no more than one is
present)

The anycast routing
type will be
undeployed from this
address, as well as its
containing queues after
reloading

N/A

Operation Add Delete Update

<queue>(under
<anycast>)

An anycast queue will
be deployed after
reloading

The anycast queue will
be undeployed

For updating queues
please see next section
<queue>

<multicast> X(no more than one is
present)

The multicast routing
type will be
undeployed from this
address, as well as its
containing queues after
reloading

N/A

<queue>(under
<multicast>)

A multicast queue will
be deployed after
reloading

The multicast queue
will be undeployed

For updating queues
please see next section
<queue>

<queue>

Changes to any <queue> elements will be reloaded to the running broker.


Once reloaded, all new queues will be deployed to the running broker and all
queues that are missing from the configuration will be undeployed.



Parameters reloaded in this category will take effect immediately after reloading.
The effect of deletion of Address’s and Queue’s, not auto created is controlled by
parameter config-delete-addresses and config-delete-queues as described in this
doc.

Below lists the effects of adding, deleting and updating of an element/attribute within the <queue>
element, and whether a change can be done or can’t be done.

Operation Add Delete Update

<queue> A new queue is
deployed after
reloading

The queue will be
undeployed after
reloading.

N/A

attribute name N/A X A queue with new
name will be deployed
and the queue with old
name will be
updeployed after
reloading (see Note
above).

attribute max-consumers If max-consumers >
current consumers
max-consumers will
update on reload

max-consumers will be
set back to the default
-1

If max-consumers >
current consumers
max-consumers will
update on reload

Operation Add Delete Update

attribute purge-on-no-
consumers

On reload purge-on-no-
consumers will be
updated

Will be set back to the
default false

On reload purge-on-no-
consumers will be
updated

attribute enabled On reload enabled will
be updated

Will be set back to the
default true

On reload enabled will
be updated

attribute exclusive On reload exclusive
will be updated

Will be set back to the
default false

On reload exclusive
will be updated

attribute group-
rebalance

On reload group-
rebalance will be
updated

Will be set back to the
default false

On reload group-
rebalance will be
updated

attribute group-
rebalance-pause-
dispatch

On reload group-
rebalance-pause-
dispatch will be
updated

Will be set back to the
default false

On reload group-
rebalance-pause-
dispatch will be
updated

attribute group-buckets On reload group-
buckets will be updated

Will be set back to the
default -1

On reload group-
buckets will be updated

attribute group-first-
key

On reload group-first-
key will be updated

Will be set back to the
default null

On reload group-first-
key will be updated

attribute last-value On reload last-value
will be updated

Will be set back to the
default false

On reload last-value
will be updated

attribute last-value-
key

On reload last-value-
key will be updated

Will be set back to the
default null

On reload last-value-
key will be updated

attribute non-
destructive

On reload non-
destructive will be
updated

Will be set back to the
default false

On reload non-
destructive will be
updated

attribute consumers-
before-dispatch

On reload consumers-
before-dispatch will be
updated

Will be set back to the
default 0

On reload consumers-
before-dispatch will be
updated

attribute delay-before-
dispatch

On reload delay-before-
dispatch will be
updated

Will be set back to the
default -1

On reload delay-before-
dispatch will be
updated

attribute ring-size On reload ring-size will
be updated

Will be set back to the
default -1

On reload ring-size will
be updated

<filter> The filter will be added
after reloading

The filter will be
removed after
reloading

The filter will be
updated after reloading

<durable> The queue durability
will be set to the given
value after reloading

The queue durability
will be set to the
default true after
reloading

The queue durability
will be set to the new
value after reloading

Operation Add Delete Update

<user> The queue user will be
set to the given value
after reloading

The queue user will be
set to the default null
after reloading

The queue user will be
set to the new value
after reloading

<acceptors>

Adding, updating and removing an <acceptor> is supported, updating or removing an <acceptor>
results in the closure of all connections that were accepted previously. Added or updated acceptors
are automatically started during the configuration reload process unless the auto-start option is set
to false.

71.1.2. <jms> (Deprecated)

71.1.3. <queues> (Deprecated)

71.2. Broker Properties
The location of brokerProperties files will be tracked for reload. Any property values that relfect
reloadable parameters will take effect after the configuration-file-refresh-period.

Chapter 72. Detecting Slow Consumers
In this section we will discuss how Apache ActiveMQ Artemis can be configured to deal with slow
consumers. A slow consumer with a server-side queue (e.g. JMS topic subscriber) can pose a
significant problem for broker performance. If messages build up in the consumer’s server-side
queue then memory will begin filling up and the broker may enter paging mode which would
impact performance negatively. However, criteria can be set so that consumers which don’t
acknowledge messages quickly enough can potentially be disconnected from the broker, which in
the case of a non-durable JMS subscriber, would allow the broker to remove the subscription and
all of its messages freeing up valuable server resources.

72.1. Required Configuration
By default the server will not detect slow consumers. If slow consumer detection is desired then see
address model chapter for more details on the required address settings.

The calculation to determine whether or not a consumer is slow only inspects the number of
messages a particular consumer has acknowledged. It doesn’t take into account whether or not flow
control has been enabled on the consumer, whether or not the consumer is streaming a large
message, etc. Keep this in mind when configuring slow consumer detection.

Please note that slow consumer checks are performed using the scheduled thread pool and that
each queue on the broker with slow consumer detection enabled will cause a new entry in the
internal java.util.concurrent.ScheduledThreadPoolExecutor instance. If there are a high number of
queues and the slow-consumer-check-period is relatively low then there may be delays in executing
some of the checks. However, this will not impact the accuracy of the calculations used by the
detection algorithm. See thread pooling for more details about this pool.

72.2. Example
See the slow consumer example which shows how to detect a slow consumer with Apache
ActiveMQ Artemis.

Chapter 73. Critical Analysis of the broker
There are a few things that can go wrong on a production environment:

• Bugs, for more than we try they still happen! We always try to correct them, but that’s the only
constant in software development.

• IO Errors, disks and hardware can go bad

• Memory issues, the CPU can go crazy by another process

For cases like this, we added a protection to the broker to shut itself down when bad things happen.

This is a feature I hope you won’t need it, think it as a safeguard:

We measure time response in places like:

• Queue delivery (add to the queue)

• Journal storage

• Paging operations

If the response time goes beyond a configured timeout, the broker is considered unstable and an
action will be taken to either shutdown the broker or halt the VM.

You can use these following configuration options on broker.xml to configure how the critical
analysis is performed.

Name Description

critical-analyzer Enable or disable the critical analysis (default
true)

critical-analyzer-timeout Timeout used to do the critical analysis (default
120000 milliseconds)

critical-analyzer-check-period Time used to check the response times (default
half of critical-analyzer-timeout)

critical-analyzer-policy Should the server log, be halted or shutdown
upon failures (default LOG)

The default for critical-analyzer-policy is LOG, however the generated broker.xml will have it set to
HALT. That is because we cannot halt the VM if you are embedding ActiveMQ Artemis into an
application server or on a multi tenant environment.

The broker on the distribution will then have it set to HALT, but if you use it in any other way the
default will be LOG.

73.1. What to Expect
• You will see some logs

If you have critical-analyzer-policy=HALT

[Artemis Critical Analyzer] 18:10:00,831 ERROR
[org.apache.activemq.artemis.core.server] AMQ224079: The process for the virtual
machine will be killed, as component
org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850
is not responsive

While if you have critical-analyzer-policy=SHUTDOWN

[Artemis Critical Analyzer] 18:07:53,475 ERROR
[org.apache.activemq.artemis.core.server] AMQ224080: The server process will now be
stopped, as component
org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850
is not responsive

Or if you have critical-analyzer-policy=LOG

[Artemis Critical Analyzer] 18:11:52,145 WARN
[org.apache.activemq.artemis.core.server] AMQ224081: The component
org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850
is not responsive

You will see a simple thread dump of the server

[Artemis Critical Analyzer] 18:10:00,836 WARN
[org.apache.activemq.artemis.core.server] AMQ222199: Thread dump: AMQ119001:
Generating thread dump

===
AMQ119002: Thread Thread[Thread-1 (ActiveMQ-scheduled-threads),5,main] name = Thread-1
(ActiveMQ-scheduled-threads) id = 19 group =
java.lang.ThreadGroup[name=main,maxpri=10]

sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQu
euedSynchronizer.java:2039)
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThread
PoolExecutor.java:1088)
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThread
PoolExecutor.java:809)
java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1067)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1127)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
===

..... blablablablaba

===
AMQ119003: End Thread dump

• The Server will be halted if configured to HALT

• The system will be stopped if SHUTDOWN is used. Notice: If the system is not behaving well, there
is no guarantees the stop will work.

Chapter 74. Resource Manager
Configuration
Apache ActiveMQ Artemis has its own Resource Manager for handling the lifespan of JTA
transactions. When a transaction is started the resource manager is notified and keeps a record of
the transaction and its current state. It is possible in some cases for a transaction to be started but
then forgotten about. Maybe the client died and never came back. If this happens then the
transaction will just sit there indefinitely.

To cope with this Apache ActiveMQ Artemis can, if configured, scan for old transactions and
rollback any it finds. The default for this is 3000000 milliseconds (5 minutes), i.e. any transactions
older than 5 minutes are removed. This timeout can be changed by editing the transaction-timeout
property in broker.xml (value must be in milliseconds). The property transaction-timeout-scan-
period configures how often, in milliseconds, to scan for old transactions.

Please note that Apache ActiveMQ Artemis will not unilaterally rollback any XA transactions in a
prepared state - this must be heuristically rolled back via the management API if you are sure they
will never be resolved by the transaction manager.

Chapter 75. Guarantees of Sends and
Commits

75.1. Transaction Completion
When committing or rolling back a transaction with Apache ActiveMQ Artemis, the request to
commit or rollback is sent to the server, and the call will block on the client side until a response
has been received from the server that the commit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and
depending on the value of the parameter journal-sync-transactional the server will ensure that the
commit or rollback is durably persisted to storage before sending the response back to the client. If
this parameter has the value false then commit or rollback may not actually get persisted to
storage until some time after the response has been sent to the client. In event of server failure this
may mean the commit or rollback never gets persisted to storage. The default value of this
parameter is true so the client can be sure all transaction commits or rollbacks have been persisted
to storage by the time the call to commit or rollback returns.

Setting this parameter to false can improve performance at the expense of some loss of transaction
durability.

This parameter is set in broker.xml

75.2. Non Transactional Message Sends
If you are sending messages to a server using a non transacted session, Apache ActiveMQ Artemis
can be configured to block the call to send until the message has definitely reached the server, and
a response has been sent back to the client. This can be configured individually for durable and
non-durable messages, and is determined by the following two URL parameters:

blockOnDurableSend

If this is set to true then all calls to send for durable messages on non transacted sessions will
block until the message has reached the server, and a response has been sent back. The default
value is true.

blockOnNonDurableSend

If this is set to true then all calls to send for non-durable messages on non transacted sessions
will block until the message has reached the server, and a response has been sent back. The
default value is false.

Setting block on sends to true can reduce performance since each send requires a network round
trip before the next send can be performed. This means the performance of sending messages will
be limited by the network round trip time (RTT) of your network, rather than the bandwidth of
your network. For better performance we recommend either batching many messages sends
together in a transaction since with a transactional session, only the commit / rollback blocks not
every send, or, using Apache ActiveMQ Artemis’s advanced asynchronous send acknowledgements

feature described in Asynchronous Send Acknowledgements.

When the server receives a message sent from a non transactional session, and that message is
durable and the message is routed to at least one durable queue, then the server will persist the
message in permanent storage. If the journal parameter journal-sync-non-transactional is set to
true the server will not send a response back to the client until the message has been persisted and
the server has a guarantee that the data has been persisted to disk. The default value for this
parameter is true.

75.3. Non Transactional Acknowledgements
If you are acknowledging the delivery of a message at the client side using a non transacted session,
Apache ActiveMQ Artemis can be configured to block the call to acknowledge until the
acknowledge has definitely reached the server, and a response has been sent back to the client. This
is configured with the parameter BlockOnAcknowledge. If this is set to true then all calls to
acknowledge on non transacted sessions will block until the acknowledge has reached the server,
and a response has been sent back. You might want to set this to true if you want to implement a
strict at most once delivery policy. The default value is false

75.4. Asynchronous Send Acknowledgements
If you are using a non transacted session but want a guarantee that every message sent to the
server has reached it, then, as discussed in Guarantees of Non Transactional Message Sends, you
can configure Apache ActiveMQ Artemis to block the call to send until the server has received the
message, persisted it and sent back a response. This works well but has a severe performance
penalty - each call to send needs to block for at least the time of a network round trip (RTT) - the
performance of sending is thus limited by the latency of the network, not limited by the network
bandwidth.

Let’s do a little bit of maths to see how severe that is. We’ll consider a standard 1Gib ethernet
network with a network round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if it blocks
on each message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU (Maximum Transmission Unit) size
is used on the network, then a 1GiB network has a theoretical upper limit of (1024 * 1024 * 1024 / 8)
/ 1500 = 89478 messages per second if messages are sent without blocking! These figures aren’t an
exact science but you can clearly see that being limited by network RTT can have serious effect on
performance.

To remedy this, Apache ActiveMQ Artemis provides an advanced new feature called asynchronous
send acknowledgements. With this feature, Apache ActiveMQ Artemis can be configured to send
messages without blocking in one direction and asynchronously getting acknowledgement from the
server that the messages were received in a separate stream. By de-coupling the send from the
acknowledgement of the send, the system is not limited by the network RTT, but is limited by the
network bandwidth. Consequently better throughput can be achieved than is possible using a
blocking approach, while at the same time having absolute guarantees that messages have

successfully reached the server.

The window size for send acknowledgements is determined by the confirmation-window-size
parameter on the connection factory or client session factory. Please see Client Failover for more
info on this.

To use the feature using the core API, you implement the interface
org.apache.activemq.artemis.api.core.client.SendAcknowledgementHandler and set a handler
instance on your ClientSession.

Then, you just send messages as normal using your ClientSession, and as messages reach the
server, the server will send back an acknowledgement of the send asynchronously, and some time
later you are informed at the client side by Apache ActiveMQ Artemis calling your handler’s
sendAcknowledged(ClientMessage message) method, passing in a reference to the message that was
sent.

To enable asynchronous send acknowledgements you must make sure confirmationWindowSize is set
to a positive integer value, e.g. 10MiB

Please see the examples chapter for a full working example.

Chapter 76. Graceful Server Shutdown
In certain circumstances an administrator might not want to disconnect all clients immediately
when stopping the broker. In this situation the broker can be configured to shutdown gracefully
using the graceful-shutdown-enabled boolean configuration parameter.

When the graceful-shutdown-enabled configuration parameter is true and the broker is shutdown it
will first prevent any additional clients from connecting and then it will wait for any existing
connections to be terminated by the client before completing the shutdown process. The default
value is false.

Of course, it’s possible a client could keep a connection to the broker indefinitely effectively
preventing the broker from shutting down gracefully. To deal with this of situation the graceful-
shutdown-timeout configuration parameter is available. This tells the broker (in milliseconds) how
long to wait for all clients to disconnect before forcefully disconnecting the clients and proceeding
with the shutdown process. The default value is -1 which means the broker will wait indefinitely
for clients to disconnect.

Chapter 77. Embedded Web Server
Apache ActiveMQ Artemis embeds the Jetty web server. Its main purpose is to host the
Management Console. However, it can also host other web applications.

77.1. Configuration
The embedded Jetty instance is configured in etc/bootstrap.xml via the web element, e.g.:

<web path="web" rootRedirectLocation="console">
 <binding name="artemis" uri="http://localhost:8161">
 <app name="console" url="console" war="console.war"/>
 </binding>
</web>

77.1.1. Web

The web element has the following attributes:

path

The name of the subdirectory in which to find the web application archives (i.e. WAR files). This
is a subdirectory of the broker’s home or instance directory.

customizer

The name of customizer class to load.

rootRedirectLocation

The location to redirect the requests with the root target.

webContentEnabled

Whether or not the content included in the web folder of the home and the instance directories
is accessible. Default is false.

maxThreads

The maximum number of threads the embedded web server can create to service HTTP
requests. Default is 200.

minThreads

The minimum number of threads the embedded web server will hold to service HTTP requests.
Default is 8 or the value of maxThreads if it is lower.

idleThreadTimeout

The time to wait before terminating an idle thread from the embedded web server. Measured in
milliseconds. Default is 60000.

https://www.eclipse.org/jetty/

scanPeriod

How often to scan for changes of the key and trust store files related to a binding when the
sslAutoReload attribute value of the binding element is true, for further details see Binding.
Measured in seconds. Default is 5.

maxRequestHeaderSize

The maximum allowed size for the HTTP request line and HTTP request headers. Measured in
bytes. Default is 8192.

maxResponseHeaderSize

The maximum allowed size for the HTTP response headers. Measured in bytes. Default is 8192.

77.1.2. Binding

The web element should contain at least one binding element to configure how clients can connect to
the web-server. A binding element has the following attributes:

uri

The protocol to use (i.e. http or https) as well as the host and port on which to listen. This
attribute is required.

clientAuth

Whether or not clients should present an SSL certificate when they connect. Only applicable
when using https.

passwordCodec

The custom coded to use for unmasking the keystorePassword and trustStorePassword.

keyStorePath

The location on disk of the keystore. Only applicable when using https.

keyStorePassword

The password to the keystore. Only applicable when using https. Can be masked using ENC()
syntax or by defining passwordCodec. See more in the password masking chapter.

trustStorePath

The location on disk for the truststore. Only applicable when using https.

trustStorePassword

The password to the truststore. Only applicable when using https. Can be masked using ENC()
syntax or by defining passwordCodec. See more in the password masking chapter.

includedTLSProtocols

A comma seperated list of included TLS protocols, ie "TLSv1,TLSv1.1,TLSv1.2". Only applicable
when using https.

excludedTLSProtocols

A comma seperated list of excluded TLS protocols, ie "TLSv1,TLSv1.1,TLSv1.2". Only applicable

when using https.

includedCipherSuites

A comma seperated list of included cipher suites. Only applicable when using https.

excludedCipherSuites

A comma seperated list of excluded cipher suites. Only applicable when using https.

sniHostCheck

Whether or not the SNI Host name in the client request must match the common name or the
subject alternative names in the server certificate. Default is true. Only applicable when using
https.

sniRequired

Whether or not the client request must include an SNI Host name. Default is false. Only
applicable when using https.

sslAutoReload

Whether or not the key and trust store files must be watched for changes and automatically
reloaded. The watch period is controlled by the scanPeriod attribute of the web element, for
further details see Web. Default is false.

77.1.3. App

Each web application should be defined in an app element inside an binding element. The app
element has the following attributes:

url

The context to use for the web application.

war

The name of the web application archive on disk.

77.2. Request Log
It’s also possible to configure HTTP/S request logging via the request-log element which has the
following attributes:

filename

The full path of the request log. This attribute is required.

append

Whether or not to append to the existing log or truncate it. Boolean flag.

extended

Whether or not to use the extended request log format. Boolean flag. If true will use the format
%{client}a - %u %t "%r" %s %O "%{Referer}i" "%{User-Agent}i". If false will use the format
%{client}a - %u %t "%r" %s %O. Default is false. See the format specification for more details.

https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/CustomRequestLog.html

filenameDateFormat

The log file name date format.

retainDays

The number of days before rotated log files are deleted.

ignorePaths

Request paths that will not be logged. Comma delimited list.

format

Custom format to use. If set this will override extended. See the format specification for more
details.

The following options were previously supported, but they were replaced by the format: logCookie,
logTimeZone, logDateFormat, logLocale, logLatency, logServer, preferProxiedForAddress. All these
options are now deprecated and ignored.

These attributes are essentially passed straight through to the underlying
org.eclipse.jetty.server.CustomRequestLog and org.eclipse.jetty.server.RequestLogWriter
instances. Default values are based on these implementations.

Here is an example configuration:

<web path="web" rootRedirectLocation="console">
 <binding name="artemis" uri="http://localhost:8161">
 <app name="console" url="console" war="console.war"/>
 </binding>
 <request-log filename="${artemis.instance}/log/http-access-yyyy_MM_dd.log"
append="true" extended="true"/>
</web>

77.2.1. System properties

It is possible to use system properties to add or update web configuration items. If you define a
system property starting with "webconfig." it will be parsed at the startup to update the web
configuration.

To enable the client authentication for an existing binding with the name artemis, set the system
property webconfig.bindings.artemis.clientAuth to true, i.e.

java -Dwebconfig.bindings.artemis.clientAuth=true

To add a new binding or app set the new binding or app attributes using their new names, i.e.

java -Dwebconfig.bindings.my-binding.uri=http://localhost:8162
java -Dwebconfig.bindings.my-binding.apps.my-app.uri=my-app

https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/CustomRequestLog.html
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/CustomRequestLog.html
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/RequestLogWriter.html

java -Dwebconfig.bindings.my-binding.apps.my-app.war=my-app.war

To update a binding without a name use its uri and to update an app without a name use its url , i.e.

<web path="web" rootRedirectLocation="console">
 <binding uri="http://localhost:8161">
 <app url="console" war="console.war"/>
...

java -Dwebconfig.bindings."http://localhost:8161".clientAuth=true

java -Dwebconfig.bindings."http://localhost:8161".apps."console".war=my-console.war

77.3. Proxy Forwarding
The proxies and load balancers usually support X-Forwarded headers to send information altered or
lost when a proxy is involved in the path of the request. Jetty supports the
ForwardedRequestCustomizer customizer to handle X-Forwarded headers. Set the customizer attribute
via the web element to enable the ForwardedRequestCustomizer customizer, ie:

<web path="web" rootRedirectLocation="console"
customizer="org.eclipse.jetty.server.ForwardedRequestCustomizer">
 <binding name="artemis" uri="http://localhost:8161">
 <app name="console" url="console" war="console.war"/>
 </binding>
</web>

77.4. Management
The embedded web server can be stopped, started, or restarted via any available management
interface via the stopEmbeddedWebServer, starteEmbeddedWebServer, and restartEmbeddedWebServer
operations on the ActiveMQServerControl respectively.

https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://www.eclipse.org/jetty/javadoc/current/org/eclipse/jetty/server/ForwardedRequestCustomizer.html

Chapter 78. Logging
Apache ActiveMQ Artemis uses the SLF4J logging facade for logging, with the broker assembly
providing Log4J 2 as the logging implementation. When the broker is started by executing the run
command, this is configurable via the log4j2.properties file found in the broker instance etc
directory, which is configured by default to log to both the console and to a file. For the other CLI
commands, this is configurable via the log4j2-utility.properties file found in the broker instance
etc directory, which is configured by default to log only errors to the console (in addition to the
usual command output).

There are a handful of general loggers available:

Logger Description

rootLogger Logs any calls not handled by the Apache
ActiveMQ Artemis loggers

org.apache.activemq.artemis.core.server Logs the core server

org.apache.activemq.artemis.utils Logs utility calls

org.apache.activemq.artemis.journal Logs Journal calls

org.apache.activemq.artemis.jms Logs JMS calls

org.apache.activemq.artemis.integration.bootstr
ap

Logs bootstrap calls

org.apache.activemq.audit.base audit log. Disabled by default

org.apache.activemq.audit.resource resource audit log. Disabled by default

org.apache.activemq.audit.message message audit log. Disabled by default

78.1. Configuring a Specific Level for a Logger
Sometimes it is necessary to get more detailed logs from a particular logger. For example, when
you’re trying to troublshoot an issue. Say you needed to get TRACE logging from the logger org.foo.

Then you need to configure the logging level for the org.foo logger to TRACE, e.g.:

logger.my_logger_ref.name=org.foo
logger.my_logger_ref.level=TRACE

78.2. Configuration Reload
Log4J2 has its own configuration file reloading mechanism, which is itself configured via the same
log4j2.properties configuration file. To enable reload upon configuration updates, set the
monitorInterval config property to the interval in seconds that the file should be monitored for
updates, e.g.

https://www.slf4j.org/
https://logging.apache.org/log4j/2.x/manual/

Monitor config file every 5 seconds for updates
monitorInterval = 5

78.3. Logging in a client application
Firstly, if you want to enable logging on the client side you need to include a logging
implementation in your application which supports the SLF4J facade. Taking Log4J2 as an example
logging implementation, since it used by the broker, when using Maven your client and logging
dependencies might be e.g.:

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-jms-client</artifactId>
 <version>2.43.0</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j2-impl</artifactId>
 <version>2.25.2</version>
</dependency>

The Log4J2 configuration can then be supplied via file called log4j2.properties on the classpath
which will then be picked up automatically.

Alternatively, use of a specific configuration file can be configured via system property
log4j2.configurationFile, e.g.:

-Dlog4j2.configurationFile=file:///path/to/custom-log4j2-config.properties

The following is an example log4j2.properties for a client application, logging at INFO level to the
console and a daily rolling file.

Log4J 2 configuration

Monitor config file every X seconds for updates
monitorInterval = 5

rootLogger.level = INFO
rootLogger.appenderRef.console.ref = console
rootLogger.appenderRef.log_file.ref = log_file

logger.activemq.name=org.apache.activemq
logger.activemq.level=INFO

Console appender
appender.console.type=Console

appender.console.name=console
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d %-5level [%logger] %msg%n

Log file appender
appender.log_file.type = RollingFile
appender.log_file.name = log_file
appender.log_file.fileName = log/application.log
appender.log_file.filePattern = log/application.log.%d{yyyy-MM-dd}
appender.log_file.layout.type = PatternLayout
appender.log_file.layout.pattern = %d %-5level [%logger] %msg%n
appender.log_file.policies.type = Policies
appender.log_file.policies.cron.type = CronTriggeringPolicy
appender.log_file.policies.cron.schedule = 0 0 0 * * ?
appender.log_file.policies.cron.evaluateOnStartup = true

78.4. Configuring Broker Audit Logging
There are 3 audit loggers that can be enabled separately and audit different types of broker events,
these are:

1. base: This is a highly verbose logger that will capture most events that occur on JMX beans.

2. resource: This logs the creation of, updates to, and deletion of resources such as addresses and
queues as well as authentication. The main purpose of this is to track console activity and access
to the broker.

3. message: This logs the production and consumption of messages.


All extra logging will negatively impact performance. Whether or not the
performance impact is "too much" will depend on your use-case.

These three audit loggers are disabled by default in the broker log4j2.properties configuration file:

...
Audit loggers: to enable change levels from OFF to INFO
logger.audit_base.name = org.apache.activemq.audit.base
logger.audit_base.level = OFF
logger.audit_base.appenderRef.audit_log_file.ref = audit_log_file
logger.audit_base.additivity = false

logger.audit_resource.name = org.apache.activemq.audit.resource
logger.audit_resource.level = OFF
logger.audit_resource.appenderRef.audit_log_file.ref = audit_log_file
logger.audit_resource.additivity = false

logger.audit_message.name = org.apache.activemq.audit.message
logger.audit_message.level = OFF
logger.audit_message.appenderRef.audit_log_file.ref = audit_log_file
logger.audit_message.additivity = false

...

To enable the audit log change the level to INFO, like this:

logger.audit_base.level = INFO
...
logger.audit_resource.level = INFO
...
logger.audit_message.level = INFO

The 3 audit loggers can be disable/enabled separately.

Once enabled, all audit records are written into a separate log file (by default audit.log).

78.5. More on Log4J2 configuration:
For more detail on configuring Log4J 2, see its manual.

https://logging.apache.org/log4j/2.x/manual/

Chapter 79. Embedding Apache ActiveMQ
Artemis
Apache ActiveMQ Artemis is designed as set of simple Plain Old Java Objects (POJOs). This means
Apache ActiveMQ Artemis can be instantiated and run in any dependency injection framework
such as Spring or Google Guice. It also means that if you have an application that could use
messaging functionality internally then it can directly instantiate Apache ActiveMQ Artemis clients
and servers in its own application code to perform that functionality. We call this embedding
Apache ActiveMQ Artemis.

Examples of applications that might want to do this include any application that needs very high
performance, transactional, persistent messaging but doesn’t want the hassle of writing it all from
scratch.

Embedding Apache ActiveMQ Artemis can be done in very few easy steps - supply a broker.xml on
the classpath or instantiate the configuration object, instantiate the server, start it, and you have a
Apache ActiveMQ Artemis running in your JVM. It’s as simple and easy as that.

79.1. Embedding with XML configuration
The simplest way to embed Apache ActiveMQ Artemis is to use the embedded wrapper class and
configure Apache ActiveMQ Artemis through broker.xml.

Here’s a simple example broker.xml:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="urn:activemq" xsi:schemaLocation="urn:activemq /schema/artemis-server.xsd">
 <core xmlns="urn:activemq:core">

 <persistence-enabled>false</persistence-enabled>

 <security-enabled>false</security-enabled>

 <acceptors>
 <acceptor name="in-vm">vm://0</acceptor>
 </acceptors>
 </core>
</configuration>

import org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;

...

EmbeddedActiveMQ embedded = new EmbeddedActiveMQ();
embedded.start();

ServerLocator serverLocator = ActiveMQClient.createServerLocator("vm://0");
ClientSessionFactory factory = serverLocator.createSessionFactory();
ClientSession session = factory.createSession();

session.createQueue(QueueConfiguration.of("example"));

ClientProducer producer = session.createProducer("example");
ClientMessage message = session.createMessage(true);
message.getBody().writeString("Hello");
producer.send(message);

session.start();
ClientConsumer consumer = session.createConsumer("example");
ClientMessage msgReceived = consumer.receive();
System.out.println("message = " + msgReceived.getBody().readString());
session.close();

The EmbeddedActiveMQ class has a few additional setter methods that allow you to specify a different
config file name as well as other properties. See the javadocs for this class for more details.

79.2. Embedding with programmatic configuration
You can follow this step-by-step guide to programmatically embed a broker instance.

Create the Configuration object. This contains configuration information for an Apache ActiveMQ
Artemis instance. The setter methods of this class allow you to programmatically set configuration
options as described in the Server Configuration section.

The acceptors are configured through Configuration. Just add the acceptor URL the same way you
would through the main configuration file.

import org.apache.activemq.artemis.core.config.Configuration;
import org.apache.activemq.artemis.core.config.impl.ConfigurationImpl;

...

Configuration config = new ConfigurationImpl();

config.addAcceptorConfiguration("in-vm", "vm://0");
config.addAcceptorConfiguration("tcp", "tcp://127.0.0.1:61616");

You need to instantiate an instance of
org.apache.activemq.artemis.api.core.server.embedded.EmbeddedActiveMQ and add the configuration
object to it.

import org.apache.activemq.artemis.api.core.server.ActiveMQ;
import org.apache.activemq.artemis.core.server.embedded.EmbeddedActiveMQ;

...

EmbeddedActiveMQ server = new EmbeddedActiveMQ();
server.setConfiguration(config);

server.start();

You also have the option of instantiating ActiveMQServerImpl directly:

ActiveMQServer server = new ActiveMQServerImpl(config);
server.start();

Chapter 80. Artemis on Apache Karaf
Apache ActiveMQ Artemis is OSGi ready. Below you can find instruction on how to install and
configure broker on Apache Karaf OSGi container.

80.1. Installation
Apache ActiveMQ Artemis provides features that makes it easy to install the broker on Apache
Karaf (4.x or later). First you need to define the feature URL, like

karaf@root()> feature:repo-add mvn:org.apache.activemq/artemis-features/1.3.0-
SNAPSHOT/xml/features

This will add Artemis related features

karaf@root()> feature:list | grep artemis
artemis | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | Full ActiveMQ Artemis broker with default configuration
netty-core | 4.0.32.Final | | Uninstalled | artemis-
1.3.0-SNAPSHOT | Netty libraries
artemis-core | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | ActiveMQ Artemis broker libraries
artemis-amqp | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | ActiveMQ Artemis AMQP protocol libraries
artemis-stomp | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | ActiveMQ Artemis Stomp protocol libraries
artemis-mqtt | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | ActiveMQ Artemis MQTT protocol libraries
artemis-hornetq | 1.3.0.SNAPSHOT | | Uninstalled | artemis-
1.3.0-SNAPSHOT | ActiveMQ Artemis HornetQ protocol libraries

Feature named artemis contains full broker installation, so running

feature:install artemis

will install and run the broker.

80.2. Configuration
The broker is installed as org.apache.activemq.artemis OSGi component, so it’s configured through
${KARAF_BASE}/etc/org.apache.activemq.artemis.cfg file. An example of the file looks like

config=file:etc/artemis.xml
name=local
domain=karaf

rolePrincipalClass=org.apache.karaf.jaas.boot.principal.RolePrincipal

Name Description Default value

config Location of the configuration
file

${KARAF_BASE}/etc/artemis.xm
l

name Name of the broker local

domain JAAS domain to use for security karaf

rolePrincipalClass Class name used for role
authorization purposes

org.apache.karaf.jaas.boot.princ
ipal.RolePrincipal

The default broker configuration file is located in ${KARAF_BASE}/etc/artemis.xml

Chapter 81. Apache Tomcat Support

81.1. Resource Context Client Configuration
Apache ActiveMQ Artemis provides support for configuring the client in the context.xml of the
Tomcat container.

This is very similar to the way this is done in ActiveMQ Classic so anyone migrating should find this
familiar. Please note though the connection url and properties that can be set for ActiveMQ Artemis
are different please see Migration Documentation

81.1.1. Example of Connection Factory

<Context>
 ...
 <Resource name="jms/ConnectionFactory" auth="Container"
type="org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory"
description="JMS Connection Factory"
 factory="org.apache.activemq.artemis.jndi.JNDIReferenceFactory"
brokerURL="tcp://localhost:61616" />
 ...
</Context>

81.1.2. Example of Destination (Queue and Topic)

<Context>
 ...
 <Resource name="jms/ExampleQueue" auth="Container"
type="org.apache.activemq.artemis.jms.client.ActiveMQQueue" description="JMS Queue"
 factory="org.apache.activemq.artemis.jndi.JNDIReferenceFactory"
address="ExampleQueue" />
 ...
 <Resource name="jms/ExampleTopic" auth="Container"
type="org.apache.activemq.artemis.jms.client.ActiveMQTopic" description="JMS Topic"
 factory="org.apache.activemq.artemis.jndi.JNDIReferenceFactory"
address="ExampleTopic" />
 ...
</Context>

81.2. Example Tomcat App
A sample Tomcat app with the container context configured as an example can be seen here:

/examples/features/sub-modules/tomcat

https://activemq.apache.org/artemis/migration/

Chapter 82. CDI Integration
Apache ActiveMQ Artemis provides a simple CDI integration. It can either use an embedded broker
or connect to a remote broker.

82.1. Configuring a connection
Configuration is provided by implementing the ArtemisClientConfiguration interface.

public interface ArtemisClientConfiguration {
 String getHost();

 Integer getPort();

 String getUsername();

 String getPassword();

 String getUrl();

 String getConnectorFactory();

 boolean startEmbeddedBroker();

 boolean isHa();

 boolean hasAuthentication();
}

There’s a default configuration out of the box, if none is specified. This will generate an embedded
broker.

Chapter 83. Properties for Copied Messages
There are several operations within the broker that result in copying a message. These include:

• Diverting a message from one address to another.

• Moving an expired message from a queue to the configured expiry-address

• Moving a message which has exceeded its max-delivery-attempts from a queue to the configured
dead-letter-address

• Using the management API to administratively move messages from one queue to another

When this happens the body and properties of the original message are copied to a new message.
However, the copying process removes some potentially important pieces of data so those are
preserved in the following special message properties:

_AMQ_ORIG_ADDRESS

a String property containing the original address of the message

_AMQ_ORIG_QUEUE

a String property containing the original queue of the message

_AMQ_ORIG_MESSAGE_ID

a String property containing the original message ID of the message

It’s possible for the aforementioned operations to be combined. For example, a message may be
diverted from one address to another where it lands in a queue and a consumer tries & fails to
consume it such that the message is then sent to a dead-letter address. Or a message may be
administratively moved from one queue to another where it then expires.

In cases like these the ORIG properties will contain the information from the last (i.e. most recent)
operation.

Chapter 84. Maven Plugins
Since Artemis 1.1.0 Artemis provides the possibility of using Maven Plugins to manage the life cycle
of servers.

84.1. When to use it
These Maven plugins were initially created to manage server instances across our examples. They
can create a server, start, and do any CLI operation over servers.

You could for example use these maven plugins on your testsuite or deployment automation.

84.2. Goals
There are three goals that you can use

create

This will create a server accordingly to your arguments. You can do some extra tricks here such
as installing extra libraries for external modules.

cli

This will perform any CLI operation. This is basically a maven expression of the CLI classes

runClient

This is a simple wrapper around classes implementing a static main call. Notice that this won’t
spawn a new VM or new Thread.

84.3. Declaration
On your pom, use the plugins section:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

84.4. create goal
I won’t detail every operation of the create plugin here, but I will try to describe the main
parameters:

Name Description

configuration A place that will hold any file to replace on the
configuration. For instance if you are providing
your own broker.xml. Default is
"${basedir}/target/classes/activemq/server0"

home The location where you downloaded and
installed artemis. Default is
"${activemq.basedir}"

alternateHome This is used case you have two possible locations
for your home (e.g. one under compile and one
under production

instance Where the server is going to be installed. Default
is "${basedir}/target/server0"

liblist[] A list of libraries to be installed under ./lib. ex:
"org.jgroups:jgroups:3.6.0.Final"

Example:

<execution>
 <id>create</id>
 <goals>
 <goal>create</goal>
 </goals>
 <configuration>
 <ignore>${noServer}</ignore>
 </configuration>
</execution>

84.5. cli goal
Some properties for the CLI

Name Description

configuration A place that will hold any file to replace on the
configuration. For instance if you are providing
your own broker.xml. Default is
"${basedir}/target/classes/activemq/server0"

home The location where you downloaded and
installed artemis. Default is
"${activemq.basedir}"

alternateHome This is used case you have two possible locations
for your home (e.g. one under compile and one
under production

Name Description

instance Where the server is going to be installed. Default
is "${basedir}/target/server0"

Similarly to the create plugin, the artemis exampels are using the cli plugin. Look at them for
concrete examples.

Example:

<execution>
 <id>start</id>
 <goals>
 <goal>cli</goal>
 </goals>
 <configuration>
 <spawn>true</spawn>
 <ignore>${noServer}</ignore>
 <testURI>tcp://localhost:61616</testURI>
 <args>
 <param>run</param>
 </args>
 </configuration>
</execution>

84.5.1. runClient goal

This is a simple solution for running classes implementing the main method.

Name Description

clientClass A class implement a static void main(String
arg[])

args A string array of arguments passed to the
method

Example:

<execution>
 <id>runClient</id>
 <goals>
 <goal>runClient</goal>
 </goals>
 <configuration>
 <clientClass>org.apache.activemq.artemis.jms.example.QueueExample</clientClass>
 </configuration>
</execution>

84.5.2. Complete example

The following example is a copy of the /examples/features/standard/queue example. You may refer
to it directly under the examples directory tree.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.apache.activemq.examples.broker</groupId>
 <artifactId>jms-examples</artifactId>
 <version>1.1.0</version>
 </parent>

 <artifactId>queue</artifactId>
 <packaging>jar</packaging>
 <name>ActiveMQ Artemis JMS Queue Example</name>

 <properties>
 <activemq.basedir>${project.basedir}/../../../..</activemq.basedir>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-jms-client</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>create</id>
 <goals>
 <goal>create</goal>
 </goals>
 <configuration>
 <ignore>${noServer}</ignore>
 </configuration>
 </execution>
 <execution>
 <id>start</id>

 <goals>
 <goal>cli</goal>
 </goals>
 <configuration>
 <spawn>true</spawn>
 <ignore>${noServer}</ignore>
 <testURI>tcp://localhost:61616</testURI>
 <args>
 <param>run</param>
 </args>
 </configuration>
 </execution>
 <execution>
 <id>runClient</id>
 <goals>
 <goal>runClient</goal>
 </goals>
 <configuration>
 <clientClass>
org.apache.activemq.artemis.jms.example.QueueExample</clientClass>
 </configuration>
 </execution>
 <execution>
 <id>stop</id>
 <goals>
 <goal>stop</goal>
 </goals>
 <configuration>
 <ignore>${noServer}</ignore>
 </configuration>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.apache.activemq.examples.broker</groupId>
 <artifactId>queue</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>

</project>

Chapter 85. Unit Testing
Artemis resources can be run inside JUnit Tests by using provided Rules (for JUnit 4) or Extensions
(for JUnit 5). This can make it easier to embed messaging functionality in your tests.

These are provided by the packages artemis-junit (JUnit 4) and artemis-junit-5 (JUnit 5).

85.1. Examples

85.1.1. JUnit 4

Add Maven dependency

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-junit</artifactId>
 <!-- replace this for the version you are using -→
 <version>2.43.0</version>
 <scope>test</scope>
</dependency>

Declare a rule on your JUnit Test

import org.apache.activemq.artemis.junit.EmbeddedActiveMQResource;
import org.junit.Rule;
import org.junit.Test;

public class MyTest {

 @Rule
 public EmbeddedActiveMQResource server = new EmbeddedActiveMQResource();

 @Test
 public void myTest() {
 // test something, eg. create a queue
 server.createQueue("test.adress", "test.queue");
 }
}

85.1.2. JUnit 5

Add Maven dependency

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>artemis-junit-5</artifactId>

 <!-- replace this for the version you are using -→
 <version>2.43.0</version>
 <scope>test</scope>
</dependency>

Declare a rule on your JUnit Test

import org.apache.activemq.artemis.junit.EmbeddedActiveMQExtension;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.RegisterExtension;

public class MyTest {

 @RegisterExtension
 public EmbeddedActiveMQExtension server = new EmbeddedActiveMQExtension();

 @Test
 public void myTest() {
 // test something, eg. create a queue
 server.createQueue("test.adress", "test.queue");
 }
}

85.2. Ordering rules / extensions
This is actually a JUnit feature, but this could be helpful on pre-determining the order on which
rules are executed.

85.2.1. JUnit 4

import org.junit.Rule;
import org.junit.rules.RuleChain;

public EmbeddedActiveMQResource server = new EmbeddedActiveMQResource();
public ActiveMQDynamicProducerResource producer = new ActiveMQDynamicProducerResource
(server.getVmURL());

@Rule
public RuleChain ruleChain = RuleChain.outerRule(server).around(producer);

85.2.2. JUnit 5

import org.junit.jupiter.api.Order;
import org.junit.jupiter.api.extension.RegisterExtension;

@RegisterExtension

@Order(1)
public EmbeddedActiveMQExtension producer = new EmbeddedActiveMQExtension();

@RegisterExtension
@Order(2)
public ActiveMQDynamicProducerExtension producer = new
ActiveMQDynamicProducerExtension(server.getVmURL());

85.3. Available Rules / Extensions

JUnit 4 Rule JUnit 5 Extension Description

EmbeddedActiveMQResource EmbeddedActiveMQExtension Run a Server, without the JMS
manager

EmbeddedJMSResource
(deprecated)

no equivalent Run a Server, including the JMS
Manager

ActiveMQConsumerResource ActiveMQConsumerExtension Automate the creation of a
consumer

ActiveMQDynamicProducerRes
ource

ActiveMQDynamicProducerExt
ension

Automate the creation of a
producer

ActiveMQProducerResource ActiveMQProducerExtension Automate the creation of a
producer

Chapter 86. JCA Resource Adapter
For using Apache ActiveMQ Artemis in a Java EE or Jakarta EE environment, you can use the JCA
Resource Adapter.

A JCA-based JMS connection factory has 2 big advantages over a plain JMS connection factory:

• Pooled - Generally speaking, when a connection is "created" from a JCA-based JMS connection
factory the underlying physical connection is taken out of a pool and when the connection is
"closed" the underlying physical connection is returned to the pool. This eliminates the
performance penalty of actually creating and destroying the physical connection which allows
clients to be written in ways that would normally be considered an anti-pattern (e.g. "creating"
and "closing" a connection for every sent message).

• Automatic enlistment into JTA transactions - Most of the time applications which consume
JMS messages in a Java/Jakarta EE context do so via an MDB. By default, the consumption of the
message in an MDB (i.e. the execution of onMessage) happens within a JTA transaction. If a JCA-
based JMS connection factory is used in the course of the MDB’s processing (e.g. to send a
message) then the JCA logic will automatically enlist the session into the JTA transaction so that
the consumption of the message and the sending of the message are an atomic operation
(assuming that the JCA-based connection factory is XA capable). This is also true for operations
involving other transactional resources (e.g. a database).

86.1. Versions
Pick the right version of the resource adapter depending on your environment.

artemis-ra-rar

Java EE JCA JMS

8 1.7 2.0

artemis-jakarta-ra-rar

Jakarta EE JCA JMS

>= 9 2.0 3.0

86.2. Building the RA
To use the RA you have to build it. The simplest way to do this is with the examples.

cd examples/features/sub-modules/{artemis-jakarta-ra-rar,artemis-ra-rar}
mvn clean install
cd target
mv artemis*.rar artemis.rar

Follow the manual of your application server to install the artemis.rar JCA RA archive.

86.3. Configuration
The configuration is split into two parts. First the config to send messages to a destination
(outbound), and second the config to get messages consumed from a destination (inbound). Each
can be configured separately or both can use the ResourceAdapter settings.

Here are a few options listed. If you want an overview of all configuration options, consider
https://github.com/apache/activemq-artemis/blob/{{ config.version }}/artemis-
ra/src/main/java/org/apache/activemq/artemis/ra/ConnectionFactoryProperties.java[ConnectionFact
oryProperties] as a base and additionally the specific classes for your object.

Consider also the rar.xml file for options and explanations in your artemis.rar. There you can set
the default options for your ResourceAdapter. With the configuration of the ResourceAdapter in
your application server, you are overriding rar.xml defaults. With the configuration of the
ConnectionFactory or the ActivationSpec, you can override the ResourceAdapter config.

86.3.1. ResourceAdapter

Config options https://github.com/apache/activemq-artemis/blob/{{ config.version }}/artemis-
ra/src/main/java/org/apache/activemq/artemis/ra/ActiveMQRAProperties.java[ActiveMQRAProperti
es]

connectionParameters

key value pairs, like host=localhost;port=61616,host=anotherHost;port=61617

userName

userName

password

password

clientID

clientID

86.3.2. ConnectionFactory

Config options for the outbound ManagedConnectionFactory: https://github.com/apache/activemq-
artemis/blob/{{ config.version }}/artemis-
ra/src/main/java/org/apache/activemq/artemis/ra/ActiveMQRAMCFProperties.java[ActiveMQRAMCF
Properties] The connection for the ManagedConnectionFactory is specified by the RA.

Config options for the inbound ConnectionFactory https://github.com/apache/activemq-artemis/blob/
{{ config.version }}/artemis-jms-
client/src/main/java/org/apache/activemq/artemis/jms/client/ActiveMQConnectionFactory.java[Acti
veMQConnectionFactory]

brokerUrl

url to broker

https://github.com/apache/activemq-artemis/blob/{{
https://github.com/apache/activemq-artemis/blob/{{
https://github.com/apache/activemq-artemis/blob/{{
https://github.com/apache/activemq-artemis/blob/{{
https://github.com/apache/activemq-artemis/blob/{{
https://github.com/apache/activemq-artemis/blob/{{

cacheDestinations

by the jms session

ConnectionManager

You can’t configure any properties.

86.3.3. ActivationSpec

Config options https://github.com/apache/activemq-artemis/blob/{{ config.version }}/artemis-
ra/src/main/java/org/apache/activemq/artemis/ra/inflow/ActiveMQActivationSpec.java[ActiveMQAct
ivationSpec]

In the activation spec you can configure all the things you need to get messages consumed from
ActiveMQ Artemis.

useJndi

true if you want lookup destinations via jndi.

connectionFactoryLookup

the jndiName of the connectionFactory, used by this activation spec. You can reference an
existing ManagedConnectionFactory or specify another.

jndiParams

for the InitialContext. key value pairs, like a=b;c=d;e=f

destination

name or JNDI reference of the JMS destination

destinationType

[javax|jakarta].jms.Queue or [javax|jakarta].jms.Topic

messageSelector

JMS selector to filter messages to your MDB

maxSession

to consume messages in parallel from the broker

Only for topic message consumption

subscriptionDurability

Durable / NonDurable

subscriptionName

Artemis holds all messages for this name if you use durable subscriptions

https://github.com/apache/activemq-artemis/blob/{{

86.4. Logging
With the package org.apache.activemq.artemis.ra you catch all ResourceAdapter logging
statements.

Chapter 87. Configuration Reference
This section is a quick index for looking up configuration. Click on the element name to go to the
specific chapter.

87.1. Broker Configuration

87.1.1. broker.xml

This is the main core server configuration file which contains the core element. The core element
contains the main server configuration.

Modularising broker.xml

XML XInclude support is provided in broker.xml so that you can break your configuration out into
separate files.

To do this ensure the following is defined at the root configuration element.

xmlns:xi="http://www.w3.org/2001/XInclude"

You can now define include tag’s where you want to bring in xml configuration from another file:

<xi:include href="my-address-settings.xml"/>

You should ensure xml elements in separated files should be namespaced correctly for example if
address-settings element was separated, it should have the element namespace defined:

 <address-settings xmlns="urn:activemq:core">

An example can of this feature can be seen in the test suites:

./artemis-server/src/test/resources/ConfigurationTest-xinclude-config.xml


if you use xmllint to validate the XML against the schema you should enable
xinclude flag when running.

--xinclude

For further information on XInclude see: https://www.w3.org/TR/xinclude/

To disable XML external entity processing use the system property artemis.disableXxe, e.g.:

https://www.w3.org/TR/xinclude/

-Dartemis.disableXxe=true

Reloading modular configuration files

Certain changes in broker.xml can be picked up at runtime as discussed in the Configuration Reload
chapter. Changes made directly to files which are included in broker.xml via xi:include will not be
automatically reloaded. For example, if broker.xml is including my-address-settings.xml and my-
address-settings.xml is modified those changes won’t be reloaded automatically. To force a reload
in this situation there are 2 main options:

1. Use the reloadConfiguration management operation on the ActiveMQServerControl.

2. Update the timestamp on broker.xml using something like the touch command. The next time
the broker inspects broker.xml for automatic reload it will see the updated timestamp and
trigger a reload of broker.xml and all its included files.

87.1.2. System properties

It is possible to use System properties to replace some of the configuration properties. If you define
a System property starting with "brokerconfig." that will be passed along to Bean Utils and the
configuration would be replaced.

To define global-max-size=1000000 using a system property you would have to define this property,
for example through java arguments:

java -Dbrokerconfig.globalMaxSize=1000000

You can also change the prefix through the broker.xml by setting:

<system-property-prefix>yourprefix</system-property-prefix>

This is to help you customize artemis on embedded systems.

87.1.3. Broker properties

Broker properties extends the use of properties to allow updates and additions to the broker
configuration after any xml has been parsed. In the absence of any broker.xml, the hard coded
defaults can be modified. Internally, any xml configuration is applied to a java bean style
configuration object. Typically, there are setters for each of the xml attributes. However, for
properties, the naming convention changes from 'a-b' to 'aB' to reflect the camelCase java naming
convention.

Collections need some special treatment to allow additions and reference. We utilise the name
attribute of configuration entities to find existing entries and when populating new entities, we set
the name to match the requested key. Removal of configuration from named collections is
supported by setting a key value to "-". The remove match value can be configured with a property
key "remove.value". For example, a properties file containing the following keys and values:

https://en.wikipedia.org/wiki/Touch_%28Unix%29

securityEnabled=false
acceptorConfigurations.tcp.factoryClassName=org.apache.activemq.artemis.core.remoting.
impl.netty.NettyAcceptorFactory
acceptorConfigurations.tcp.params.host=localhost
acceptorConfigurations.tcp.params.port=61616

would:

1. disable RBAC security checks

2. add or modify an acceptor named "tcp" that will use Netty

3. set the acceptor named "tcp" 'HOST' parameter to localhost

4. set the acceptor named "tcp" 'PORT' parameter to 61616

Usage

The artemis run command script supports --properties <properties file url>, where a properties
file can be configured.

There is a related server management operation exportConfigAsProperties that will export the
current configuration as broker properties. Use this to get a better understanding of how properties
apply to the broker configuration and how they map from xml.

Attribute Names with Dots

Dots are significant in property keys because they identify the nesting level. If attribute names
contain dots those need to be quoted. The quote string is specified via the property key.surround
and has a default value of the double quote character: ".

An address setting, where the address contains dots, would be a typical example where quoting is
required:

addressSettings."Address.Name.With.Dots".expiryAddress=expiredMessages

Error reporting

The free form text format of a java properties file and the inexact mapping from xml attribute to
key=value can make it tricky to correctly configure broker properties. Properties that don’t match
or fail to apply are tracked through the status attribute of the broker, visible through the server
management operation getStatus.

More detailed information can also be obtained through debug logging of the
org.apache.activemq.artemis.core.config.impl.ConfigurationImpl class.



The configuration properties are very low level, lower level than xml, which
makes them very powerful. Any accessible attribute of the internal
org.apache.activemq.artemis.core.config.impl.ConfigurationImpl objects can be
modified. With great power one must take great care!

87.2. The core configuration
This describes the root of the XML configuration. You will see here also multiple sub-types listed.
For example on the main config you will have bridges and at the list of bridge type we will describe
the properties for that configuration.

Regarding default Values

The documentation often refers to the default values. This is the value of a configuration
attribute if it is not set (e.g. programmatically, via XML, etc.).

This is worth noting because a broker.xml is generated automatically when a broker instance
is created and this out-of-the-box broker.xml may have configuration values which may differ
from and override the default values identified here. This is relatively rare, but it normally
happens when we’ve discovered that a default is not actually suitable for most use-cases.

Changing the actual default value cannot be done in a minor release as dictated by semantic
versioning so we have to wait for a major release to make such changes. However, in the
mean-time we can address unsuitable defaults by modifying the generated broker.xml which
maintains backwards compatibility for existing broker instances while giving new
deployments an updated configuration.

In general, it’s recommended that you consult your specific configuration to know which
values will actually be used when the broker is running.

Name Description Default

acceptors a list of remoting acceptors n/a

acceptors.acceptor Each acceptor is composed for
just an URL

n/a

addresses a list of addresses n/a

address-settings a list of address-setting n/a

allow-failback Should stop backup on primary
restart.

true

amqp-use-core-subscription-
naming

If true uses CORE queue naming
convention for AMQP.

false

async-connection-execution-
enabled

If False delivery would be
always asynchronous.

true

bindings-directory The folder in use for the
bindings folder

data/bindings

bridges a list of core bridges n/a

ha-policy the HA policy of this server none

broadcast-groups a list of broadcast-group n/a

https://semver.org/
https://semver.org/

Name Description Default

broker-connections a list of amqp-connection n/a

broker-plugins a list of broker-plugins n/a

configuration-file-refresh-
period

The frequency in milliseconds
the configuration file is checked
for changes

5000

check-for-active-server Used by a primary server to
verify if there are other nodes
with the same ID on the
topology

n/a

cluster-connections a list of cluster-connection n/a

cluster-password Cluster password. It applies to
all cluster configurations.

n/a

cluster-user Cluster username. It applies to
all cluster configurations.

n/a

connection-ttl-override if set, this will override how
long (in ms) to keep a
connection alive without
receiving a ping. -1 disables this
setting.

-1

connection-ttl-check-interval how often (in ms) to check
connections for ttl violation.

2000

connectors.connector The URL for the connector. This
is a list

n/a

create-bindings-dir true means that the server will
create the bindings directory on
start up.

true

create-journal-dir true means that the journal
directory will be created.

true

discovery-groups a list of discovery-group n/a

disk-scan-period The interval where the disk is
scanned for percentual usage.

5000

diverts a list of diverts to use n/a

global-max-size The amount in bytes before all
addresses are considered full.

Half of the JVM’s -Xmx

global-max-messages Number of messages before all
addresses will enter into their
Full Policy configured. It works
in conjunction with global-max-
size, being watever value hits
its maximum first.

-1

Name Description Default

graceful-shutdown-enabled true means that graceful
shutdown is enabled.

false

graceful-shutdown-timeout Timeout on waiting for clients
to disconnect before server
shutdown.

-1

grouping-handler a message grouping handler n/a

id-cache-size The duplicate detection circular
cache size.

20000

jmx-domain the JMX domain used to
registered MBeans in the
MBeanServer.

org.apache.activemq

jmx-use-broker-name whether or not to use the
broker name in the JMX
properties.

true

jmx-management-enabled true means that the
management API is available
via JMX.

true

journal-buffer-size The size of the internal buffer
on the journal in KB.

490KB

journal-buffer-timeout The Flush timeout for the
journal buffer

500000 for ASYNCIO; 3333333
for NIO

journal-compact-min-files The minimal number of data
files before we can start
compacting. Setting this to 0
means compacting is disabled.

10

journal-compact-percentage The percentage of live data on
which we consider compacting
the journal.

30

journal-directory the directory to store the
journal files in.

data/journal

node-manager-lock-directory the directory to store the node
manager lock file.

same of journal-directory

journal-file-size the size (in bytes) of each
journal file.

10MB

journal-lock-acquisition-
timeout

how long (in ms) to wait to
acquire a file lock on the
journal.

-1

Name Description Default

journal-max-io the maximum number of write
requests that can be in the
ASYNCIO queue at any one
time.

4096 for ASYNCIO; 1 for NIO;
ignored for MAPPED

journal-file-open-timeout the length of time in seconds to
wait when opening a new
journal file before timing out
and failing.

5

journal-min-files how many journal files to pre-
create.

2

journal-pool-files The upper threshold of the
journal file pool, -1 means no
Limit. The system will create as
many files as needed however
when reclaiming files it will
shrink back to the journal-pool-
files

-1

journal-sync-non-transactional if true wait for non transaction
data to be synced to the journal
before returning response to
client.

true

journal-sync-transactional if true wait for transaction data
to be synchronized to the
journal before returning
response to client.

true

journal-type the type of journal to use. ASYNCIO

journal-retention-directory where to keep retained data
including attributes for how
long to keep it (unit & period)
and how much to keep
(storage-limit)

n/a

journal-datasync It will use msync/fsync on
journal operations.

true

journal-device-block-size The size in bytes used by the
storage device. This is usually
translated as fstat/st_blksize,
and this is a way to bypass the
value returned as st_blksize.

4096

log-journal-write-rate Whether to log messages about
the journal write rate.

false

large-messages-directory the directory to store large
messages.

data/largemessages

data-retention.pdf#data-retention

Name Description Default

large-message-sync should sync large messages
before closing the file

true

log-delegate-factory-class-name deprecated the name of the
factory class to use for log
delegation.

n/a

management-address the name of the management
address to send management
messages to.

activemq.management

management-notification-
address

the name of the address that
consumers bind to receive
management notifications.

activemq.notifications

mask-password This option controls whether
passwords in server
configuration need be masked.
If set to "true" the passwords
are masked.

false

max-saved-replicated-journals-
size

This specifies how many
replication backup directories
will be kept when server starts
as replica. -1 Means no Limit; 0
don’t keep a copy at all.

2

max-disk-usage The max percentage of data we
should use from disks. The
broker will block while the disk
is full. Disable by setting -1.

90

min-disk-free Min free bytes on disk below
which the system blocks or fails
clients. Supports byte notation
like "K", "MB", "GB", etc. Will
override max-disk-usage if both
are set. Disable by setting -1.

-1

memory-measure-interval frequency to sample JVM
memory in ms (or -1 to disable
memory sampling).

-1

memory-warning-threshold Percentage of available
memory which will trigger a
warning log.

25

message-counter-enabled true means that message
counters are enabled.

false

message-counter-max-day-
history

how many days to keep
message counter history.

10

Name Description Default

message-counter-sample-period the sample period (in ms) to use
for message counters.

10000

message-expiry-scan-period how often (in ms) to scan for
expired messages.

30000

message-expiry-thread-priority deprecated the priority of the
thread expiring messages.

3

metrics-plugin a plugin to export metrics n/a

address-queue-scan-period how often (in ms) to scan for
addresses & queues that should
be removed.

30000

name node name; used in topology
notifications if set.

n/a

password-codec the name of the class (and
optional configuration
properties) used to decode
masked passwords. Only valid
when mask-password is true.

n/a

page-max-concurrent-io The max number of concurrent
reads allowed on paging.

5

page-sync-timeout The time in nanoseconds a page
will be synced.

3333333 for ASYNCIO; journal-
buffer-timeout for NIO

read-whole-page If true the whole page would be
read, otherwise just seek and
read while getting message.

false

paging-directory the directory to store paged
messages in.

data/paging

persist-delivery-count-before-
delivery

True means that the delivery
count is persisted before
delivery. False means that this
only happens after a message
has been cancelled.

false

max-redelivery-records Maximum number of records
the system will store for
redeliveries. In most cases this
should be set to '1'.

10

persistence-enabled true means that the server will
use the file based journal for
persistence.

true

persist-id-cache true means that ID’s are
persisted to the journal.

true

Name Description Default

queues deprecated use addresses n/a

remoting-incoming-interceptors a list of <class-name/> elements
with the names of classes to use
for intercepting incoming
remoting packets

n/a

remoting-outgoing-interceptors a list of <class-name/> elements
with the names of classes to use
for intercepting outgoing
remoting packets

n/a

resolveProtocols Use ServiceLoader to load
protocol modules.

true

resource-limit-settings a list of resource-limits n/a

scheduled-thread-pool-max-size Maximum number of threads to
use for the scheduled thread
pool.

5

security-enabled true means that security is
enabled.

true

security-invalidation-interval how long (in ms) to wait before
invalidating the security cache.

10000

authentication-cache-size how large to make the
authentication cache

1000

authorization-cache-size how large to make the
authorization cache

1000

system-property-prefix Prefix for replacing
configuration settings using
Bean Utils.

n/a

internal-naming-prefix the prefix used when naming
the internal queues and
addresses required for
implementing certain
behaviours.

$.activemq.internal

populate-validated-user whether or not to add the name
of the validated user to the
messages that user sends.

false

reject-empty-validated-user true means that the server will
not allow any message that
doesn’t have a validated user, in
JMS this is JMSXUserID

false

security-settings a list of security-setting. n/a

https://docs.oracle.com/javase/tutorial/ext/basics/spi.html

Name Description Default

thread-pool-max-size Maximum number of threads to
use for the thread pool. -1
means 'no limits'.

30

transaction-timeout how long (in ms) before a
transaction can be removed
from the resource manager
after create time.

300000

transaction-timeout-scan-period how often (in ms) to scan for
timeout transactions.

1000

wild-card-routing-enabled true means that the server
supports wild card routing.

true

network-check-NIC the NIC (Network Interface
Controller) to be used on
InetAddress.isReachable.

n/a

network-check-URL-list the list of http URIs to be used to
validate the network.

n/a

network-check-list the list of pings to be used on
ping or
InetAddress.isReachable.

n/a

network-check-period a frequency in milliseconds to
how often we should check if
the network is still up.

10000

network-check-timeout a timeout used in milliseconds
to be used on the ping.

1000

network-check-ping-command the command used to oping
IPV4 addresses.

n/a

network-check-ping6-command the command used to oping
IPV6 addresses.

n/a

critical-analyzer enable or disable the critical
analysis.

true

critical-analyzer-timeout timeout used to do the critical
analysis.

120000 ms

critical-analyzer-check-period time used to check the response
times.

0.5 * critical-analyzer-timeout

critical-analyzer-policy should the server log, be halted
or shutdown upon failures.

LOG

Name Description Default

resolve-protocols if true then the broker will
make use of any protocol
managers that are in available
on the classpath, otherwise only
the core protocol will be
available, unless in embedded
mode where users can inject
their own protocol managers.

true

resource-limit-settings a list of resource-limit. n/a

server-dump-interval interval to log server specific
information (e.g. memory usage
etc).

-1

store the store type used by the
server.

n/a

wildcard-addresses parameters to configure
wildcard address matching
format.

n/a

view-permission-method-
match-pattern

parameter to configure the
regular expression pattern to
match management or JMX
operations that require the
'view' permission in your
security-settings.

^(get|is|count|list|browse|que
ry).*$

management-message-rbac parameter to enable security-
settings RBAC on management
messages sent to the
management address.

false

management-rbac-prefix parameter to configure the
prefix for security-settings
match addresses to control
RBAC on JMX MBean operations
and optionally on management
messages

mops (shorthand for
management operations)

uuid-namespace the namespace to use for
looking up address & security
settings for resources named
with a UUID

n/a

mqtt-session-scan-interval how often (in ms) to scan for
expired MQTT sessions

5000

mqtt-session-state-persistence-
timeout

how long (in ms) to wait to
persist MQTT session state

5000

federations a list of federation elements n/a

Name Description Default

connection-routers a list of connection-router
elements

n/a

mirror-ack-manager-queue-
attempts

The number of times a mirror
target would retry an
acknowledgement on the queue
before scanning page files for
the message.

5

mirror-ack-manager-page-
attempts

The number of times a mirror
target would retry an
acknowledgement on paging.

2

mirror-ack-manager-retry-delay Period in milliseconds for
which retries are going to be
exercised.

100

mirror-page-transaction Should Mirror use Page
Transactions When target
destinations is paging? When a
target queue on the mirror is
paged, the mirror will not
record a page transaction for
every message. The default is
false, and the overhead of
paged messages will be smaller,
but there is a possibility of
eventual duplicates in case of
interrupted communication
between the mirror source and
target. If you set this to true
there will be a record stored on
the journal for the page-
transaction additionally to the
record in the page store.

false

suppress-session-notifications Whether to suppress
SESSION_CREATED and
SESSION_CLOSED notifications. Set
to true to reduce notification
overhead. However, these are
required to enforce unique
client ID utilization in a cluster
for MQTT clients.

false

Name Description Default

literal-match-markers The characters that mark a
"literal" match. A literal match
means the setting(s) will only
apply to the exact match
regardless of wildcards. If this
setting is not omitted then it
must be two characters - the
start marker and the end
marker.

n/a

87.3. address-setting type

Name Description Default

match The filter to apply to the setting n/a

dead-letter-address Dead letter address n/a

auto-create-dead-letter-
resources

Whether or not to auto-create
dead-letter address and/or
queue

false

dead-letter-queue-prefix Prefix to use for auto-created
dead-letter queues

DLQ.

dead-letter-queue-suffix Suffix to use for auto-created
dead-letter queues

`` (empty)

expiry-address Expired messages address n/a

expiry-delay Expiration time override; -1
don’t override

-1

redelivery-delay Time to wait before
redelivering a message

0

redelivery-delay-multiplier Multiplier to apply to the
redelivery-delay

1.0

redelivery-collision-avoidance-
factor

an additional factor used to
calculate an adjustment to the
redelivery-delay (up or down)

0.0

max-redelivery-delay Max value for the redelivery-
delay

10 * redelivery-delay

max-delivery-attempts Number of retries before dead
letter address

10

max-size-bytes Max size a queue can be before
invoking address-full-policy

-1

Name Description Default

max-size-bytes-reject-threshold Used with BLOCK, the max size
an address can reach before
messages are rejected; works in
combination with max-size-
bytes for AMQP clients only.

-1

page-size-bytes Size of each file on page 10485760

address-full-policy What to do when a queue
reaches max-size-bytes

PAGE

message-counter-history-day-
limit

Days to keep message counter
data

0

last-value-queue deprecated Queue is a last
value queue; see default-last-
value-queue instead

false

default-last-value-queue last-value value if none is set
on the queue

false

default-last-value-key last-value-key value if none is
set on the queue

null

default-exclusive-queue exclusive value if none is set on
the queue

false

default-non-destructive non-destructive value if none is
set on the queue

false

default-consumers-before-
dispatch

consumers-before-dispatch
value if none is set on the queue

0

default-delay-before-dispatch delay-before-dispatch value if
none is set on the queue

-1

redistribution-delay Timeout before redistributing
values after no consumers

-1

send-to-dla-on-no-route Forward messages to DLA when
no queues subscribing

false

slow-consumer-threshold Min rate of msgs/sec consumed
before a consumer is
considered "slow"

-1

slow-consumer-policy What to do when "slow"
consumer is detected

NOTIFY

slow-consumer-check-period How often to check for "slow"
consumers

5

auto-create-jms-queues deprecated Create JMS queues
automatically; see auto-create-
queues & auto-create-addresses

true

Name Description Default

auto-delete-jms-queues deprecated Delete JMS queues
automatically; see auto-create-
queues & auto-create-addresses

true

auto-create-jms-topics deprecated Create JMS topics
automatically; see auto-create-
queues & auto-create-addresses

true

auto-delete-jms-topics deprecated Delete JMS topics
automatically; see auto-create-
queues & auto-create-addresses

true

auto-create-queues Create queues automatically true

auto-delete-queues Delete auto-created queues
automatically

true

auto-delete-created-queues Delete created queues
automatically

false

auto-delete-queues-delay Delay for deleting auto-created
queues

0

auto-delete-queues-message-
count

Message count the queue must
be at or below before it can be
auto deleted

0

config-delete-queues How to deal with queues
deleted from XML at runtime

OFF

auto-create-addresses Create addresses automatically true

auto-delete-addresses Delete auto-created addresses
automatically

true

auto-delete-addresses-delay Delay for deleting auto-created
addresses

0

config-delete-addresses How to deal with addresses
deleted from XML at runtime

OFF

config-delete-diverts How to deal with diverts
deleted from XML at runtime

OFF

management-browse-page-size Number of messages a
management resource can
browse

200

initial-queue-buffer-size The number of elements in the
intermediate message buffer
allocated for each queue

8192

default-purge-on-no-consumers purge-on-no-consumers value if
none is set on the queue

false

Name Description Default

default-max-consumers max-consumers value if none is
set on the queue

-1

default-queue-routing-type Routing type for auto-created
queues if the type can’t be
otherwise determined

MULTICAST

default-address-routing-type Routing type for auto-created
addresses if the type can’t be
otherwise determined

MULTICAST

default-ring-size The ring-size applied to queues
without an explicit ring-size
configured

-1

retroactive-message-count the number of messages to
preserve for future queues
created on the matching
address

0

id-cache-size The duplicate detection circular
cache size

Inherits from global id-cache-
size

87.4. bridge type

Name Description Default

name unique name n/a

queue-name name of queue that this bridge
consumes from

n/a

forwarding-address address to forward to. If
omitted original address is used

n/a

ha whether this bridge supports
fail-over

false

filter optional core filter expression n/a

transformer-class-name optional name of transformer
class

n/a

min-large-message-size Limit before message is
considered large.

100KB

check-period How often to check for TTL
violation. -1 means disabled.

30000

connection-ttl TTL for the Bridge. This should
be greater than the ping period.

60000

retry-interval period (in ms) between
successive retries.

2000

https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Time_to_live

Name Description Default

retry-interval-multiplier multiplier to apply to successive
retry intervals.

1

max-retry-interval Limit to the retry-interval
growth.

2000

reconnect-attempts maximum number of retry
attempts.

-1 (no limit)

use-duplicate-detection forward duplicate detection
headers?

true

confirmation-window-size number of bytes before
confirmations are sent.

1MB

producer-window-size Producer flow control size on
the bridge.

-1 (disabled)

user Username for the bridge, the
default is the cluster username.

n/a

password Password for the bridge, default
is the cluster password.

n/a

reconnect-attempts-same-node Number of retries before trying
another node.

10

routing-type how to set the routing-type on
the bridged message

PASS

concurrency Concurrency of the bridge 1

87.5. broadcast-group type

Name Type

name unique name

local-bind-address Local bind address that the datagram socket is
bound to.

local-bind-port Local port to which the datagram socket is
bound to.

group-address Multicast address to which the data will be
broadcast.

group-port UDP port number used for broadcasting.

broadcast-period Period in milliseconds between consecutive
broadcasts. Default=2000.

jgroups-file Name of JGroups configuration file.

jgroups-channel Name of JGroups Channel.

connector-ref The connector to broadcast.

87.6. cluster-connection type

Name Description Default

name unique name n/a

address name of the address this cluster
connection applies to

n/a

connector-ref Name of the connector
reference to use.

n/a

check-period The period (in milliseconds)
used to check if the cluster
connection has failed to receive
pings from another server

30000

connection-ttl Timeout for TTL. 60000

min-large-message-size Messages larger than this are
considered large-messages.

100KB

call-timeout Time(ms) before giving up on
blocked calls.

30000

retry-interval period (in ms) between
successive retries.

500

retry-interval-multiplier multiplier to apply to the retry-
interval.

1

max-retry-interval Maximum value for retry-
interval.

2000

reconnect-attempts How many attempts should be
made to reconnect after failure.

-1

use-duplicate-detection should duplicate detection
headers be inserted in
forwarded messages?

true

message-load-balancing how should messages be load
balanced?

OFF

max-hops maximum number of hops
cluster topology is propagated.

1

confirmation-window-size The size (in bytes) of the
window used for confirming
data from the server connected
to.

1048576

producer-window-size Flow Control for the Cluster
connection bridge.

-1 (disabled)

Name Description Default

call-failover-timeout How long to wait for a reply if
in the middle of a fail-over. -1
means wait forever.

-1

notification-interval how often the cluster
connection will notify the
cluster of its existence right
after joining the cluster.

1000

notification-attempts how many times this cluster
connection will notify the
cluster of its existence right
after joining the cluster

2

87.7. discovery-group type

Name Description

name unique name

group-address Multicast IP address of the group to listen on

group-port UDP port number of the multi cast group

jgroups-file Name of a JGroups configuration file. If
specified, the server uses JGroups for discovery.

jgroups-channel Name of a JGroups Channel. If specified, the
server uses the named channel for discovery.

refresh-timeout Period the discovery group waits after receiving
the last broadcast from a particular server
before removing that servers connector pair
entry from its list. Default=10000

local-bind-address local bind address that the datagram socket is
bound to

local-bind-port local port to which the datagram socket is bound
to. Default=-1

initial-wait-timeout time to wait for an initial broadcast to give us at
least one node in the cluster. Default=10000

87.8. divert type

Name Description

name unique name

transformer-class-name an optional class name of a transformer

exclusive whether this is an exclusive divert. Default=false

Name Description

routing-name the routing name for the divert

address the address this divert will divert from

forwarding-address the forwarding address for the divert

filter optional core filter expression

routing-type how to set the routing-type on the diverted
message. Default=STRIP

87.9. address type

Name Description

name unique name n/a

anycast list of anycast queues

multicast list of multicast queues

87.10. queue type

Name Description Default

name unique name n/a

filter optional core filter expression n/a

durable whether the queue is durable
(persistent).

true

user the name of the user to
associate with the creation of
the queue

n/a

max-consumers the max number of consumers
allowed on this queue

-1 (no max)

purge-on-no-consumers whether or not to delete all
messages and prevent routing
when no consumers are
connected

false

exclusive only deliver messages to one of
the connected consumers

false

last-value use last-value semantics false

ring-size the size this queue should
maintain according to ring
semantics

based on default-ring-size
address-setting

consumers-before-dispatch number of consumers required
before dispatching messages

0

Name Description Default

delay-before-dispatch milliseconds to wait for
consumers-before-dispatch to be
met before dispatching
messages anyway

-1 (wait forever)

87.11. security-setting type

Name Description

match address expression

permission

permission.type the type of permission

permission.roles a comma-separated list of roles to apply the
permission to

role-mapping A simple role mapping that can be used to map
roles from external authentication providers
(i.e. LDAP) to internal roles

role-mapping.from The external role which should be mapped

role-mapping.to The internal role which should be assigned to
the authenticated user

87.12. broker-plugin type

Name Description

property properties to configure a plugin

class-name the name of the broker plugin class to
instantiate

87.13. metrics-plugin type

Name Description

property properties to configure a plugin

class-name the name of the metrics plugin class to
instantiate

87.14. resource-limit type

Name Description Default

match the name of the user to whom
the limits should be applied

n/a

max-connections how many connections are
allowed by the matched user

-1 (no max)

max-queues how many queues can be
created by the matched user

-1 (no max)

87.15. grouping-handler type

Name Description Default

name A unique name n/a

type LOCAL or REMOTE n/a

address A reference to a cluster-
connection address

n/a

timeout How long to wait for a decision 5000

group-timeout How long a group binding will
be used.

-1 (disabled)

reaper-period How often the reaper will be
run to check for timed out
group bindings. Only valid for
LOCAL handlers.

30000

87.16. amqp-connection type

Name Description Default

uri AMQP broker connection URI
(required)

n/a

name A unique name n/a

user Broker authentication user
(optional)

n/a

password Broker authentication
password (optional)

n/a

reconnect-attempts How many attempts should be
made to reconnect after failure.

-1 (infinite)

auto-start Broker connection starts
automatically with broker

true

Chapter 88. Examples
The Apache ActiveMQ Artemis Examples repository contains over 90 examples demonstrating
many of the client and broker features.

The examples can be found at: https://github.com/apache/activemq-artemis-examples

The individual examples are available under the examples directory, and are grouped within the
following sub tree:

• features - Examples containing broker specific features.

◦ clustered - examples showing load balancing and distribution capabilities.

◦ ha - examples showing failover and reconnection capabilities.

◦ perf - examples allowing you to run a few performance tests on the server

◦ standard - examples demonstrating various broker features.

◦ sub-modules - examples of integrated external modules.

• protocols - Protocol specific examples

◦ amqp

◦ mqtt

◦ openwire

◦ stomp

88.1. Running the Examples
First, run mvn clean package in the repository root to prepare a broker distribution in the artemis-
distribution/target directory for use by the examples.

To run any example, simply cd into the appropriate example directory and type mvn verify or mvn
install (For details please read the readme.md in each example directory).

You can use the profile -Pexamples to run multiple examples under any example tree.

For each example, you will have a created server under ./target/server0 (some examples use more
than one server).

You have the option to prevent the example from starting the server (e.g. if you want to start the
server manually) by simply specifying the -PnoServer profile, e.g.:

running an example without running the server
mvn verify -PnoServer

Also under ./target there will be a script repeating the commands to create each server. Here is the
create-server0.sh generated by the Queue example. This is useful to see exactly what command(s)
are required to configure the server(s).

https://github.com/apache/activemq-artemis-examples

These are the commands used to create server0
/myInstallDirectory/apache-artemis/bin/artemis create --allow-anonymous --silent
--force --no-web --user guest --password guest --role guest --port-offset 0 --data
./data --allow-anonymous --no-autotune --verbose /myInstallDirectory/apache-artemis-
1.1.0/examples/features/standard/queue/target/server0

Several examples use UDP clustering which may not work in your environment by default. On
linux the command would be:

route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

This command should be run as root. This will redirect any traffic directed to 224.0.0.0 to the
loopback interface. On Mac OS X, the command is slightly different:

sudo route add 224.0.0.0 127.0.0.1 -netmask 240.0.0.0

All the examples use the Maven plugin, which can be useful for running your test servers as well.

This is the common output when running an example. On this case taken from the Queue example:

[INFO] -------------< org.apache.activemq.examples.broker:queue >--------------
[INFO] Building ActiveMQ Artemis JMS Queue Example 2.32.0
[INFO] from pom.xml
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- enforcer:3.3.0:enforce (enforce-maven-version) @ queue ---
[INFO] Rule 0: org.apache.maven.enforcer.rules.version.RequireMavenVersion passed
[INFO]
[INFO] --- enforcer:3.3.0:enforce (enforce-java-version) @ queue ---
[INFO] Rule 0: org.apache.maven.enforcer.rules.version.RequireJavaVersion passed
[INFO]
[INFO] --- remote-resources:3.1.0:process (process-resource-bundles) @ queue ---
[INFO] Preparing remote bundle org.apache.apache.resources:apache-jar-resource-
bundle:1.5
[INFO] Copying 3 resources from 1 bundle.
[INFO]
[INFO] --- resources:3.3.1:resources (default-resources) @ queue ---
[INFO] Copying 1 resource from src/main/resources to target/classes
[INFO] Copying 3 resources from target/maven-shared-archive-resources to
target/classes
[INFO]
[INFO] --- compiler:3.11.0:compile (default-compile) @ queue ---
[INFO] Changes detected - recompiling the module! :source
[INFO] Compiling 1 source file with javac [debug target 11] to target/classes
[INFO]
[INFO] --- resources:3.3.1:testResources (default-testResources) @ queue ---
[INFO] skip non existing resourceDirectory /home/user/activemq-artemis-

examples/examples/features/standard/queue/src/test/resources
[INFO] Copying 3 resources from target/maven-shared-archive-resources to target/test-
classes
[INFO]
[INFO] --- compiler:3.11.0:testCompile (default-testCompile) @ queue ---
[INFO] No sources to compile
[INFO]
[INFO] --- surefire:2.22.2:test (default-test) @ queue ---
[INFO]
[INFO] --- jar:3.3.0:jar (default-jar) @ queue ---
[INFO] Building jar: /home/user/activemq-artemis-
examples/examples/features/standard/queue/target/queue-2.32.0.jar
[INFO]
[INFO] --- site:3.12.1:attach-descriptor (attach-descriptor) @ queue ---
[INFO] Skipping because packaging 'jar' is not pom.
[INFO]
[INFO] --- source:3.3.0:jar-no-fork (attach-sources) @ queue ---
[INFO] Building jar: /home/user/activemq-artemis-
examples/examples/features/standard/queue/target/queue-2.32.0-sources.jar
[INFO]
[INFO] --- artemis:2.32.0:create (create) @ queue ---
[INFO]
[INFO] --- artemis:2.32.0:cli (start) @ queue ---
[INFO] awaiting server to start
server-out: _ _ _
server-out: / \ ____| |_ ___ __ __(_) _____
server-out: / _ \| _ \ __|/ _ \ \/ | |/ __/
server-out: / ___ \ | \/ |_/ __/ |\/| | |___ \
server-out: /_/ _\| ______|_| |_|_|/___ /
server-out: Apache ActiveMQ Artemis 2.32.0
server-out:
server-out:
[INFO] awaiting server to start
server-out:2023-12-14 14:33:06,314 INFO
[org.apache.activemq.artemis.integration.bootstrap] AMQ101000: Starting ActiveMQ
Artemis Server version 2.32.0
server-out:2023-12-14 14:33:06,339 INFO [org.apache.activemq.artemis.core.server]
AMQ221000: primary Message Broker is starting with configuration Broker Configuration
(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,lar
geMessagesDirectory=./data/large-messages,pagingDirectory=./data/paging)
server-out:2023-12-14 14:33:06,354 INFO [org.apache.activemq.artemis.core.server]
AMQ221012: Using AIO Journal
server-out:2023-12-14 14:33:06,380 INFO [org.apache.activemq.artemis.core.server]
AMQ221057: Global Max Size is being adjusted to 1/2 of the JVM max size (-Xmx). being
defined as 1073741824
server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server]
AMQ221043: Protocol module found: [artemis-server]. Adding protocol support for: CORE
server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server]
AMQ221043: Protocol module found: [artemis-amqp-protocol]. Adding protocol support
for: AMQP
server-out:2023-12-14 14:33:06,391 INFO [org.apache.activemq.artemis.core.server]

AMQ221043: Protocol module found: [artemis-hornetq-protocol]. Adding protocol support
for: HORNETQ
server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server]
AMQ221043: Protocol module found: [artemis-mqtt-protocol]. Adding protocol support
for: MQTT
server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server]
AMQ221043: Protocol module found: [artemis-openwire-protocol]. Adding protocol support
for: OPENWIRE
server-out:2023-12-14 14:33:06,392 INFO [org.apache.activemq.artemis.core.server]
AMQ221043: Protocol module found: [artemis-stomp-protocol]. Adding protocol support
for: STOMP
server-out:2023-12-14 14:33:06,411 INFO [org.apache.activemq.artemis.core.server]
AMQ221034: Waiting indefinitely to obtain primary lock
server-out:2023-12-14 14:33:06,411 INFO [org.apache.activemq.artemis.core.server]
AMQ221035: Primary Server Obtained primary lock
server-out:2023-12-14 14:33:06,450 INFO [org.apache.activemq.artemis.core.server]
AMQ221080: Deploying address DLQ supporting [ANYCAST]
server-out:2023-12-14 14:33:06,454 INFO [org.apache.activemq.artemis.core.server]
AMQ221003: Deploying ANYCAST queue DLQ on address DLQ
server-out:2023-12-14 14:33:06,476 INFO [org.apache.activemq.artemis.core.server]
AMQ221080: Deploying address ExpiryQueue supporting [ANYCAST]
server-out:2023-12-14 14:33:06,476 INFO [org.apache.activemq.artemis.core.server]
AMQ221003: Deploying ANYCAST queue ExpiryQueue on address ExpiryQueue
server-out:2023-12-14 14:33:06,681 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started EPOLL Acceptor at 0.0.0.0:61616 for protocols
[CORE,MQTT,AMQP,STOMP,HORNETQ,OPENWIRE]
server-out:2023-12-14 14:33:06,683 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started EPOLL Acceptor at 0.0.0.0:5445 for protocols [HORNETQ,STOMP]
server-out:2023-12-14 14:33:06,685 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started EPOLL Acceptor at 0.0.0.0:5672 for protocols [AMQP]
server-out:2023-12-14 14:33:06,687 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started EPOLL Acceptor at 0.0.0.0:1883 for protocols [MQTT]
server-out:2023-12-14 14:33:06,689 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started EPOLL Acceptor at 0.0.0.0:61613 for protocols [STOMP]
server-out:2023-12-14 14:33:06,690 INFO [org.apache.activemq.artemis.core.server]
AMQ221007: Server is now live
server-out:2023-12-14 14:33:06,690 INFO [org.apache.activemq.artemis.core.server]
AMQ221001: Apache ActiveMQ Artemis Message Broker version 2.32.0 [0.0.0.0, nodeID
=b20d82dd-9a8d-11ee-a56d-000c2997e711]
[INFO] Server started
[INFO]
[INFO] --- artemis:2.32.0:runClient (runClient) @ queue ---
Sent message: This is a text message
Received message: This is a text message
[INFO]
[INFO] --- artemis:2.32.0:stop (stop) @ queue ---
server-out:2023-12-14 14:33:08,295 INFO [org.apache.activemq.artemis.core.server]
AMQ221002: Apache ActiveMQ Artemis Message Broker version 2.32.0 [b20d82dd-9a8d-11ee-
a56d-000c2997e711] stopped, uptime 1.969 seconds
server-out:Server stopped!
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 4.845 s
[INFO] Finished at: 2023-12-14T14:33:08Z
[INFO] --

This list includes a preview of some examples that exist for Artemis in the Examples Repository, see
the repository for more.

88.2. Application-Layer Failover
Apache ActiveMQ Artemis also supports Application-Layer failover, useful in the case that
replication is not enabled on the server side.

With Application-Layer failover, it’s up to the application to register a JMS ExceptionListener with
Apache ActiveMQ Artemis which will be called by Apache ActiveMQ Artemis in the event that
connection failure is detected.

The code in the ExceptionListener then recreates the JMS connection, session, etc on another node
and the application can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer
failover differs from automatic failover in that some client side coding is required in order to
implement this. Also, with Application-layer failover, since the old session object dies and a new
one is created, any uncommitted work in the old session will be lost, and any unacknowledged
messages might be redelivered.

88.3. Core Bridge Example
The bridge example demonstrates a core bridge deployed on one server, which consumes messages
from a local queue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two Apache ActiveMQ Artemis servers
which are remotely separated. Core bridges are resilient and will cope with temporary connection
failure allowing them to be an ideal choice for forwarding over unreliable connections, e.g. a WAN.

88.4. Browser
The browser example shows you how to use a JMS QueueBrowser with Apache ActiveMQ Artemis.

Queues are a standard part of JMS, please consult the JMS 2.0 specification for full details.

A QueueBrowser is used to look at messages on the queue without removing them. It can scan the
entire content of a queue or only messages matching a message selector.

https://github.com/apache/activemq-artemis-examples

88.5. Camel
The camel example demonstrates how to build and deploy a Camel route to the broker using a web
application archive (i.e. war file).

88.6. Client Kickoff
The client-kickoff example shows how to terminate client connections given an IP address using
the JMX management API.

88.7. Client side failover listener
The client-side-failoverlistener example shows how to register a listener to monitor failover
events

88.8. Client-Side Load-Balancing
The client-side-load-balancing example demonstrates how sessions created from a single JMS
Connection can be created to different nodes of the cluster. In other words it demonstrates how
Apache ActiveMQ Artemis does client-side load-balancing of sessions across the cluster.

88.9. Clustered Durable Subscription
This example demonstrates a clustered JMS durable subscription

88.10. Clustered Grouping
This is similar to the message grouping example except that it demonstrates it working over a
cluster. Messages sent to different nodes with the same group id will be sent to the same node and
the same consumer.

88.11. Clustered Queue
The clustered-queue example demonstrates a queue deployed on two different nodes. The two
nodes are configured to form a cluster. We then create a consumer for the queue on each node, and
we create a producer on only one of the nodes. We then send some messages via the producer, and
we verify that both consumers receive the sent messages in a round-robin fashion.

88.12. Clustering with JGroups
The clustered-jgroups example demonstrates how to form a two node cluster using JGroups as its
underlying topology discovery technique, rather than the default UDP broadcasting. We then create
a consumer for the queue on each node, and we create a producer on only one of the nodes. We
then send some messages via the producer, and we verify that both consumers receive the sent
messages in a round-robin fashion.

88.13. Clustered Standalone
The clustered-standalone example demonstrates how to configure and starts 3 cluster nodes on the
same machine to form a cluster. A subscriber for a JMS topic is created on each node, and we create
a producer on only one of the nodes. We then send some messages via the producer, and we verify
that the 3 subscribers receive all the sent messages.

88.14. Clustered Static Discovery
This example demonstrates how to configure a cluster using a list of connectors rather than UDP
for discovery

88.15. Clustered Static Cluster One Way
This example demonstrates how to set up a cluster where cluster connections are one way, i.e.
server A -> Server B -> Server C

88.16. Clustered Topic
The clustered-topic example demonstrates a JMS topic deployed on two different nodes. The two
nodes are configured to form a cluster. We then create a subscriber on the topic on each node, and
we create a producer on only one of the nodes. We then send some messages via the producer, and
we verify that both subscribers receive all the sent messages.

88.17. Message Consumer Rate Limiting
With Apache ActiveMQ Artemis you can specify a maximum consume rate at which a JMS
MessageConsumer will consume messages. This can be specified when creating or deploying the
connection factory.

If this value is specified then Apache ActiveMQ Artemis will ensure that messages are never
consumed at a rate higher than the specified rate. This is a form of consumer throttling.

88.18. Dead Letter
The dead-letter example shows you how to define and deal with dead letter messages. Messages
can be delivered unsuccessfully (e.g. if the transacted session used to consume them is rolled back).

Such a message goes back to the JMS destination ready to be redelivered. However, this means it is
possible for a message to be delivered again and again without any success and remain in the
destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful
delivery attempts, the message is removed from the destination and put instead in a dead letter
destination where they can be consumed for further investigation.

88.19. Delayed Redelivery
The delayed-redelivery example demonstrates how Apache ActiveMQ Artemis can be configured to
provide a delayed redelivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a
delayed redelivery, the system can get into a "thrashing" state, with delivery being attempted, the
client rolling back, and delivery being re-attempted in quick succession, using up valuable CPU and
network resources.

88.20. Divert
Apache ActiveMQ Artemis diverts allow messages to be transparently "diverted" or copied from one
address to another with just some simple configuration defined on the server side.

88.21. Durable Subscription
The durable-subscription example shows you how to use a durable subscription with Apache
ActiveMQ Artemis. Durable subscriptions are a standard part of JMS, please consult the JMS 1.1
specification for full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages
contained in them persist longer than the lifetime of the subscriber - i.e. they will accumulate
messages sent to the topic even if there is no active subscriber on them. They will also survive
server restarts or crashes. Note that for the messages to be persisted, the messages sent to them
must be marked as durable messages.

88.22. Embedded
The embedded example shows how to embed a broker within your own code using POJO
instantiation and no config files.

88.23. Embedded Simple
The embedded-simple example shows how to embed a broker within your own code using regular
Apache ActiveMQ Artemis XML files.

88.24. Exclusive Queue
The exlusive-queue example shows you how to use exclusive queues, that route all messages to only
one consumer at a time.

88.25. Message Expiration
The expiry example shows you how to define and deal with message expiration. Messages can be
retained in the messaging system for a limited period of time before being removed. JMS

specification states that clients should not receive messages that have been expired (but it does not
guarantee this will not happen).

Apache ActiveMQ Artemis can assign an expiry address to a given queue so that when messages are
expired, they are removed from the queue and sent to the expiry address. These "expired"
messages can later be consumed from the expiry address for further inspection.

88.26. Apache ActiveMQ Artemis Resource Adapter
example
This examples shows how to build the activemq resource adapters a rar for deployment in other
Application Server’s

88.27. HTTP Transport
The http-transport example shows you how to configure Apache ActiveMQ Artemis to use the HTTP
protocol as its transport layer.

88.28. Instantiate JMS Objects Directly
Usually, JMS Objects such as ConnectionFactory, Queue and Topic instances are looked up from JNDI
before being used by the client code. This objects are called "administered objects" in JMS
terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue
Apache ActiveMQ Artemis also supports the direct instantiation of these administered objects on
the client side so you don’t have to use JNDI for JMS.

88.29. Interceptor
Apache ActiveMQ Artemis allows an application to use an interceptor to hook into the messaging
system. Interceptors allow you to handle various message events in Apache ActiveMQ Artemis.

88.30. Interceptor AMQP
Similar to the Interceptor example, but using AMQP interceptors.

88.31. Interceptor Client
Similar to the Interceptor example, but using interceptors on the client rather than the broker.

88.32. Interceptor MQTT
Similar to the Interceptor example, but using MQTT interceptors.

88.33. JAAS
The jaas example shows you how to configure Apache ActiveMQ Artemis to use JAAS for security.
Apache ActiveMQ Artemis can leverage JAAS to delegate user authentication and authorization to
existing security infrastructure.

88.34. JMS Auto Closable
The jms-auto-closeable example shows how JMS resources, such as connections, sessions and
consumers, in JMS 2 can be automatically closed on error.

88.35. JMS Completion Listener
The jms-completion-listener example shows how to send a message asynchronously to Apache
ActiveMQ Artemis and use a CompletionListener to be notified of the Broker receiving it.

88.36. JMS Bridge
The jms-bridge example shows how to setup a bridge between two standalone Apache ActiveMQ
Artemis servers.

88.37. JMS Context
The jms-context example shows how to send and receive a message to/from an address/queue using
Apache ActiveMQ Artemis by using a JMS Context.

A JMSContext is part of JMS 2.0 and combines the JMS Connection and Session Objects into a simple
Interface.

88.38. JMS Shared Consumer
The jms-shared-consumer example shows you how can use shared consumers to share a subscription
on a topic. In JMS 1.1 this was not allowed and so caused a scalability issue. In JMS 2 this restriction
has been lifted so you can share the load across different threads and connections.

88.39. JMX Management
The jmx example shows how to manage Apache ActiveMQ Artemis using JMX.

88.40. Large Message
The large-message example shows you how to send and receive very large messages with Apache
ActiveMQ Artemis. Apache ActiveMQ Artemis supports the sending and receiving of huge messages,
much larger than can fit in available RAM on the client or server. Effectively the only limit to
message size is the amount of disk space you have on the server.

Large messages are persisted on the server so they can survive a server restart. In other words
Apache ActiveMQ Artemis doesn’t just do a simple socket stream from the sender to the consumer.

88.41. Last-Value Queue
The last-value-queue example shows you how to define and deal with last-value queues. Last-value
queues are special queues which discard any messages when a newer message with the same value
for a well-defined last-value property is put in the queue. In other words, a last-value queue only
retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the
latest price for a particular stock.

88.42. Management
The management example shows how to manage Apache ActiveMQ Artemis using JMS Messages to
invoke management operations on the server.

88.43. Management Notification
The management-notification example shows how to receive management notifications from
Apache ActiveMQ Artemis using JMS messages. Apache ActiveMQ Artemis servers emit
management notifications when events of interest occur (consumers are created or closed,
addresses are created or deleted, security authentication fails, etc.).

88.44. Message Counter
The message-counters example shows you how to use message counters to obtain message
information for a queue.

88.45. Message Group
The message-group example shows you how to configure and use message groups with Apache
ActiveMQ Artemis. Message groups allow you to pin messages so they are only consumed by a
single consumer. Message groups are sets of messages that has the following characteristics:

• Messages in a message group share the same group id, i.e. they have same JMSXGroupID string
property values

• The consumer that receives the first message of a group will receive all the messages that
belongs to the group

88.46. Message Group
The message-group2 example shows you how to configure and use message groups with Apache
ActiveMQ Artemis via a connection factory.

88.47. Message Priority
Message Priority can be used to influence the delivery order for messages.

It can be retrieved by the message’s standard header field 'JMSPriority' as defined in JMS
specification version 1.1.

The value is of type integer, ranging from 0 (the lowest) to 9 (the highest). When messages are being
delivered, their priorities will effect their order of delivery. Messages of higher priorities will likely
be delivered before those of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations.
Please consult the JMS 1.1 specification for full details.

88.48. Multiple Failover
This example demonstrates how to set up a primary server with multiple backups

88.49. Multiple Failover Failback
This example demonstrates how to set up a primary server with multiple backups but forcing
failover back to the original primary server

88.50. No Consumer Buffering
By default, Apache ActiveMQ Artemis consumers buffer messages from the server in a client side
buffer before you actually receive them on the client side. This improves performance since
otherwise every time you called receive() or had processed the last message in a MessageListener
onMessage() method, the Apache ActiveMQ Artemis client would have to go the server to request the
next message, which would then get sent to the client side, if one was available.

This would involve a network round trip for every message and reduce performance. Therefore, by
default, Apache ActiveMQ Artemis pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and Apache ActiveMQ Artemis allows it to be switched off.
This example demonstrates that.

88.51. Non-Transaction Failover With Server Data
Replication
The non-transaction-failover example demonstrates two servers coupled as a live-backup pair for
high availability (HA), and a client using a non-transacted JMS session failing over from primary to
backup when the primary server is crashed.

Apache ActiveMQ Artemis implements failover of client connections between primary and backup
servers. This is implemented by the replication of state between primary and backup nodes. When
replication is configured and a primary node crashes, the client connections can carry on and

continue to send and consume messages. When non-transacted sessions are used, once and only
once message delivery is not guaranteed and it is possible that some messages will be lost or
delivered twice.

88.52. OpenWire
The Openwire example shows how to configure an Apache ActiveMQ Artemis server to communicate
with an Apache ActiveMQ Artemis JMS client that uses open-wire protocol.

You will find the queue example for open wire, and the chat example. The virtual-topic-mapping
examples shows how to map the ActiveMQ Classic Virtual Topic naming convention to work with
the Artemis Address model.

88.53. Paging
The paging example shows how Apache ActiveMQ Artemis can support huge queues even when the
server is running in limited RAM. It does this by transparently paging messages to disk, and
depaging them when they are required.

88.54. Pre-Acknowledge
Standard JMS supports three acknowledgement modes: AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and
DUPS_OK_ACKNOWLEDGE. For a full description on these modes please consult the JMS specification, or
any JMS tutorial.

All of these standard modes involve sending acknowledgements from the client to the server.
However in some cases, you really don’t mind losing messages in event of failure, so it would make
sense to acknowledge the message on the server before delivering it to the client. This example
demonstrates how Apache ActiveMQ Artemis allows this with an extra acknowledgement mode.

88.55. Message Producer Rate Limiting
The producer-rte-limit example demonstrates how, with Apache ActiveMQ Artemis, you can
specify a maximum send rate at which a JMS message producer will send messages.

88.56. Queue
A simple example demonstrating a queue.

88.57. Message Redistribution
The queue-message-redistribution example demonstrates message redistribution between queues
with the same name deployed in different nodes of a cluster.

88.58. Queue Requestor
A simple example demonstrating a JMS queue requestor.

88.59. Queue with Message Selector
The queue-selector example shows you how to selectively consume messages using message
selectors with queue consumers.

88.60. Reattach Node example
The Reattach Node example shows how a client can try to reconnect to the same server instead of
failing the connection immediately and notifying any user ExceptionListener objects. Apache
ActiveMQ Artemis can be configured to automatically retry the connection, and reattach to the
server when it becomes available again across the network.

88.61. Replicated Failback example
An example showing how failback works when using replication. In this example a primary server
will replicate all its Journal to a backup server as it updates it. When the primary server crashes the
backup takes over from the primary server and the client reconnects and carries on from where it
left off.

88.62. Replicated Failback static example
An example showing how failback works when using replication, but this time with static
connectors

88.63. Replicated multiple failover example
An example showing how to configure multiple backups when using replication

88.64. Replicated Failover transaction example
An example showing how failover works with a transaction when using replication

88.65. Request-Reply example
A simple example showing the JMS request-response pattern.

88.66. Scheduled Message
The scheduled-message example shows you how to send a scheduled message to an address/queue
with Apache ActiveMQ Artemis. Scheduled messages won’t get delivered until a specified time in
the future.

88.67. Security
The security example shows you how configure and use role based security with Apache ActiveMQ
Artemis.

88.68. Security LDAP
The security-ldap example shows you how configure and use role based security with Apache
ActiveMQ Artemis & an embedded instance of the Apache DS LDAP server.

88.69. Security keycloak
The security-keycloak example shows you how to delegate security with Apache ActiveMQ Artemis
& an external Keycloak. Using OAuth of the web console and direct access for JMS clients.

88.70. Send Acknowledgements
The send-acknowledgements example shows you how to use Apache ActiveMQ Artemis’s advanced
asynchronous send acknowledgements feature to obtain acknowledgement from the server that
sends have been received and processed in a separate stream to the sent messages.

88.71. Slow Consumer
The slow-consumer example shows you how to detect slow consumers and configure a slow
consumer policy in Apache ActiveMQ Artemis’s

88.72. Spring Integration
This example shows how to use embedded JMS using Apache ActiveMQ Artemis’s Spring
integration.

88.73. SSL Transport
The ssl-enabled shows you how to configure SSL with Apache ActiveMQ Artemis to send and
receive message.

88.74. Static Message Selector
The static-selector example shows you how to configure an Apache ActiveMQ Artemis core queue
with static message selectors (filters).

88.75. Static Message Selector Using JMS
The static-selector-jms example shows you how to configure an Apache ActiveMQ Artemis queue
with static message selectors (filters) using JMS.

88.76. Stomp
The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and
receive Stomp messages.

88.77. Stomp1.1
The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and
receive Stomp messages via a Stomp 1.1 connection.

88.78. Stomp1.2
The stomp example shows you how to configure an Apache ActiveMQ Artemis server to send and
receive Stomp messages via a Stomp 1.2 connection.

88.79. Stomp Over Web Sockets
The stomp-websockets example shows you how to configure an Apache ActiveMQ Artemis server to
send and receive Stomp messages directly from Web browsers (provided they support Web
Sockets).

88.80. Symmetric Cluster
The symmetric-cluster example demonstrates a symmetric cluster set-up with Apache ActiveMQ
Artemis.

Apache ActiveMQ Artemis has extremely flexible clustering which allows you to set-up servers in
many different topologies. The most common topology that you’ll perhaps be familiar with if you
are used to application server clustering is a symmetric cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as
every other node, and every node is connected to every other node in the cluster.

88.81. Temporary Queue
A simple example demonstrating how to use a JMS temporary queue.

88.82. Topic
A simple example demonstrating a JMS topic.

88.83. Topic Hierarchy
Apache ActiveMQ Artemis supports topic hierarchies. With a topic hierarchy you can register a
subscriber with a wild-card and that subscriber will receive any messages sent to an address that
matches the wild card.

88.84. Topic Selector 1
The topic-selector-example1 example shows you how to send message to a JMS Topic, and
subscribe them using selectors with Apache ActiveMQ Artemis.

88.85. Topic Selector 2
The topic-selector-example2 example shows you how to selectively consume messages using
message selectors with topic consumers.

88.86. Transaction Failover
The transaction-failover example demonstrates two servers coupled as a live-backup pair for high
availability (HA), and a client using a transacted JMS session failing over from primary to backup
when the primary server is crashed.

Apache ActiveMQ Artemis implements failover of client connections between primary and backup
servers. This is implemented by the sharing of a journal between the servers. When a primary node
crashes, the client connections can carry and continue to send and consume messages. When
transacted sessions are used, once and only once message delivery is guaranteed.

88.87. Failover Without Transactions
The stop-server-failover example demonstrates failover of the JMS connection from one node to
another when the primary server crashes using a JMS non-transacted session.

88.88. Transactional Session
The transactional example shows you how to use a transactional Session with Apache ActiveMQ
Artemis.

88.89. XA Heuristic
The xa-heuristic example shows you how to make an XA heuristic decision through Apache
ActiveMQ Artemis Management Interface. A heuristic decision is a unilateral decision to commit or
rollback an XA transaction branch after it has been prepared.

88.90. XA Receive
The xa-receive example shows you how message receiving behaves in an XA transaction in Apache
ActiveMQ Artemis.

88.91. XA Send
The xa-send example shows you how message sending behaves in an XA transaction in Apache

ActiveMQ Artemis.

Chapter 89. Legal Notice
Licensed to the Apache Software Foundation (ASF) under one or more contributor license
agreements. See the NOTICE file distributed with this work for additional information regarding
copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

http://www.apache.org/licenses/LICENSE-2.0

	Untitled
	Table of Contents
	Chapter 1. General Project Information
	Chapter 2. Why use Apache ActiveMQ Artemis?
	Chapter 3. Messaging Concepts
	3.1. General Concepts
	3.2. Messaging styles
	3.3. Delivery guarantees
	3.4. Transactions
	3.5. Durability
	3.6. Messaging APIs
	3.7. High Availability
	3.8. Clusters
	3.9. Bridges and routing

	Chapter 4. Core Architecture
	4.1. Standalone Broker
	4.2. Embedded Broker
	4.3. Integrated with a Java/Jakarta EE application server

	Chapter 5. Protocols and Interoperability
	5.1. Supported Protocols
	5.2. Configuring Acceptors

	Chapter 6. AMQP
	6.1. Examples
	6.2. Message Conversions
	6.3. Intercepting and changing messages
	6.4. AMQP and security
	6.5. AMQP and destinations
	6.6. AMQP and Multicast Addresses (Topics)
	6.7. AMQP and Coordinations - Handling Transactions
	6.8. AMQP scheduling message delivery
	6.9. DLQ and Expiry transfer
	6.10. Filtering on Message Annotations
	6.11. Configuring AMQP Idle Timeout
	6.12. Web Sockets

	Chapter 7. STOMP
	7.1. Limitations
	7.2. Mapping STOMP destinations to addresses and queues
	7.3. Logging
	7.4. Routing Semantics
	7.5. STOMP heart-beating and connection-ttl
	7.6. Selector/Filter expressions
	7.7. STOMP and JMS interoperability
	7.8. Durable Subscriptions
	7.9. Handling of Large Messages with STOMP
	7.10. Web Sockets
	7.11. Flow Control

	Chapter 8. MQTT
	8.1. MQTT Quality of Service
	8.2. MQTT Retain Messages
	8.3. Will Messages
	8.4. Debug Logging
	8.5. Persistent Subscriptions
	8.6. Custom Client ID Handling
	8.7. Wildcard subscriptions
	8.8. Web Sockets
	8.9. Link Stealing
	8.10. Automatic Subscription Clean-up
	8.11. Flow Control
	8.12. Topic Alias Maximum
	8.13. Maximum Packet Size
	8.14. Server Keep Alive
	8.15. Enhanced Authentication
	8.16. Publish Authorization Failures

	Chapter 9. OpenWire
	9.1. Connection Monitoring
	9.2. Disable/Enable Advisories
	9.3. OpenWire Destination Cache
	9.4. Virtual Topic Consumer Destination Translation
	9.5. Logging

	Chapter 10. Using Core
	10.1. Core Messaging Concepts
	10.2. Core API
	10.3. A simple example of using Core

	Chapter 11. Core Client Failover
	11.1. Reconnect to the same server
	11.2. Reconnect to the backup server
	11.3. Reconnect to other active servers
	11.4. Session reconnection
	11.5. Failing over on the initial connection
	11.6. Reconnection and failover attributes
	11.7. ExceptionListeners and SessionFailureListeners

	Chapter 12. Mapping JMS Concepts to the Core API
	12.1. JMS Topic
	12.2. JMS Queue

	Chapter 13. Using JMS or Jakarta Messaging
	13.1. A simple ordering system
	13.2. JNDI
	13.3. Directly instantiating JMS Resources without using JNDI
	13.4. Setting The Client ID
	13.5. Setting The Batch Size for DUPS_OK
	13.6. Setting The Transaction Batch Size
	13.7. Setting The Destination Cache

	Chapter 14. Extra Acknowledge Modes
	14.1. Using PRE_ACKNOWLEDGE
	14.2. Individual Acknowledge
	14.3. Example

	Chapter 15. PROXY Protocol
	15.1. Configuration
	15.2. Management

	Chapter 16. Versions
	16.1. 2.43.0
	16.2. 2.42.0
	16.3. 2.41.0
	16.4. 2.40.0
	16.5. 2.39.0
	16.6. 2.38.0
	16.7. 2.37.0
	16.8. 2.36.0
	16.9. 2.35.0
	16.10. 2.34.0
	16.11. 2.33.0
	16.12. 2.32.0
	16.13. 2.31.2
	16.14. 2.31.1
	16.15. 2.31.0
	16.16. 2.30.0
	16.17. 2.29.0
	16.18. 2.28.0
	16.19. 2.27.1
	16.20. 2.27.0
	16.21. 2.26.0
	16.22. 2.25.0
	16.23. 2.24.0
	16.24. 2.23.1
	16.25. 2.23.0
	16.26. 2.22.0
	16.27. 2.21.0
	16.28. 2.20.0
	16.29. 2.19.0
	16.30. 2.18.0
	16.31. 2.17.0
	16.32. 2.16.0
	16.33. 2.15.0
	16.34. 2.14.0
	16.35. 2.13.0
	16.36. 2.12.0
	16.37. 2.11.0
	16.38. 2.10.0
	16.39. 2.9.0
	16.40. 2.8.1
	16.41. 2.8.0
	16.42. 2.7.0
	16.43. 2.6.4
	16.44. 2.6.3
	16.45. 2.6.2
	16.46. 2.6.1
	16.47. 2.6.0
	16.48. 2.5.0
	16.49. 2.4.0
	16.50. 2.3.0
	16.51. 2.2.0
	16.52. 2.0.0
	16.53. 1.5.6
	16.54. 1.5.5
	16.55. 1.5.4
	16.56. 1.5.3
	16.57. 1.5.2
	16.58. 1.5.1
	16.59. 1.5.0
	16.60. 1.4.0
	16.61. 1.3.0
	16.62. 1.2.0
	16.63. 1.1.0
	16.64. 1.0.0

	Chapter 17. Upgrading the Broker
	17.1. General Upgrade Procedure
	17.2. Upgrading tool

	Chapter 18. Docker
	18.1. Official Images
	18.2. Build your own Image

	Chapter 19. Using the Server
	19.1. Installation
	19.2. Creating a Broker Instance
	19.3. Starting and Stopping a Broker Instance
	19.4. Configuration Files
	19.5. Other Use-Cases

	Chapter 20. Command Line Interface
	20.1. Getting Help
	20.2. Bash and Zsh auto complete
	20.3. Input required
	20.4. Artemis Shell

	Chapter 21. The Client Classpath
	21.1. Maven dependencies
	21.2. Individual client dependencies
	21.3. Repackaged '-all' clients

	Chapter 22. Address Model
	22.1. Address
	22.2. Queue
	22.3. Routing Type
	22.4. Automatic Configuration
	22.5. Basic Manual Configuration
	22.6. Advanced Manual Configuration
	22.7. How to filter messages
	22.8. Alternate Ways to Determine Routing Type

	Chapter 23. Address Settings
	23.1. Literal Matches

	Chapter 24. Wildcard Syntax
	24.1. Matching Any Word
	24.2. Matching a Single Word
	24.3. Customizing the Syntax

	Chapter 25. Routing Messages With Wild Cards
	Chapter 26. Diverting and Splitting Message Flows
	26.1. Exclusive Divert
	26.2. Non-exclusive Divert
	26.3. Composite Divert

	Chapter 27. Transformers
	27.1. Configuration

	Chapter 28. Filter Expressions
	28.1. XPath

	Chapter 29. Management
	29.1. The Management API
	29.2. Management Via JMX
	29.3. Using Management Message API
	29.4. Management Notifications
	29.5. Message Counters

	Chapter 30. Management Console
	30.1. Login
	30.2. Security
	30.3. Console
	30.4. Artemis Tab
	30.5. Artemis JMX Tab
	30.6. Status Logging

	Chapter 31. Metrics
	31.1. Exported Metrics
	31.2. Configuration

	Chapter 32. Core Bridges
	32.1. Configuring Core Bridges

	Chapter 33. Clusters
	33.1. Overview
	33.2. Performance Considerations
	33.3. Server discovery
	33.4. Server-Side Message Load Balancing
	33.5. Client-Side Load balancing
	33.6. Specifying Members of a Cluster Explicitly
	33.7. Message Redistribution
	33.8. Cluster topologies

	Chapter 34. High Availability and Failover
	34.1. Terminology
	34.2. HA Policies
	34.3. Failing Back to Primary Server
	34.4. Scaling Down
	34.5. Client Failover

	Chapter 35. Network Isolation (Split Brain)
	35.1. Pluggable Lock Manager
	35.2. Quorum Voting
	35.3. Pinging the network

	Chapter 36. Restart Sequence
	36.1. Restarting 1 broker at a time
	36.2. Completely shutting down the brokers and starting
	36.3. Split-brain situation

	Chapter 37. Activation Sequence Tools
	37.1. ZooKeeper cluster disaster

	Chapter 38. Broker Connections
	38.1. AMQP Server Connections
	38.2. AMQP Server Connection Operations
	38.3. Reconnecting and Failover
	38.4. Mirroring
	38.5. Dual Mirror (Disaster Recovery)
	38.6. Senders and Receivers
	38.7. Peers
	38.8. Address Consideration
	38.9. Federation
	38.10. Bridges

	Chapter 39. Federation
	39.1. Benefits
	39.2. Address Federation
	39.3. Queue Federation
	39.4. WAN Full Mesh
	39.5. Configuring Federation

	Chapter 40. Address Federation
	40.1. Topology Patterns
	40.2. Configuring Address Federation
	40.3. Configuring Downstream Federation

	Chapter 41. Queue Federation
	41.1. Use Cases
	41.2. Configuring Queue Federation
	41.3. Configuring Downstream Federation

	Chapter 42. Connection Routers
	42.1. Target Broker
	42.2. Keys
	42.3. Pools
	42.4. Policies
	42.5. Cache
	42.6. Defining connection routers
	42.7. Key values
	42.8. Connection Router Workflow
	42.9. Data gravity
	42.10. Redirection

	Chapter 43. The JMS Bridge
	43.1. JMS Bridge Parameters
	43.2. Source and Target Connection Factories
	43.3. Source and Target Destination Factories
	43.4. Quality Of Service

	Chapter 44. Authentication & Authorization
	44.1. Basic Configuration
	44.2. Caching Security Operations
	44.3. Tracking the Validated User
	44.4. Role based security for addresses
	44.5. Security Setting Plugin
	44.6. Secure Sockets Layer (SSL) Transport
	44.7. User credentials
	44.8. Mapping external roles
	44.9. SASL
	44.10. Changing the username/password for clustering
	44.11. Securing the console
	44.12. Controlling JMS ObjectMessage deserialization
	44.13. Masking Passwords
	44.14. Custom Security Manager
	44.15. Per-Acceptor Security Domains
	44.16. UUID Resources

	Chapter 45. Masking Passwords
	45.1. Generating a Masked Password
	45.2. Masking Configuration
	45.3. Choosing a codec for password masking

	Chapter 46. Resource Limits
	46.1. Configuring Limits Via Resource Limit Settings

	Chapter 47. Performance Tuning
	47.1. Tuning persistence
	47.2. Tuning JMS
	47.3. Other Tunings
	47.4. Tuning Transport Settings
	47.5. Tuning the VM
	47.6. Avoiding Anti-Patterns
	47.7. Troubleshooting

	Chapter 48. Performance Tools
	48.1. Case 1: Single producer Single consumer over a queue
	48.2. Case 2: Target Rate Single producer Single consumer over a queue
	48.3. Case 3: Target Rate load on 10 durable topics, each with 3 producers and 2 unshared consumers

	Chapter 49. Thread management
	49.1. Server-Side Thread Management
	49.2. Client-Side Thread Management

	Chapter 50. Scheduled Messages
	50.1. Scheduled Delivery Property
	50.2. Example

	Chapter 51. Last-Value Queues
	51.1. Configuration
	51.2. Last-Value Property
	51.3. Forcing all consumers to be non-destructive
	51.4. Clustering
	51.5. Example

	Chapter 52. Non-Destructive Queues
	52.1. Limiting the Size of the Queue

	Chapter 53. Ring Queue
	53.1. Configuration
	53.2. Messages in Delivery & Rollbacks
	53.3. Scheduled Messages
	53.4. Paging

	Chapter 54. Retroactive Addresses
	54.1. Internal Retroactive Resources
	54.2. Configuration

	Chapter 55. Exclusive Queues
	55.1. Configuring Exclusive Queues
	55.2. Example

	Chapter 56. Message Grouping
	56.1. Using Core API
	56.2. Using JMS
	56.3. Closing a Message Group
	56.4. Notifying Consumer of Group Ownership change
	56.5. Rebalancing Message Groups
	56.6. Group Buckets
	56.7. Example
	56.8. Clustered Grouping

	Chapter 57. Consumer Priority
	57.1. Core
	57.2. OpenWire
	57.3. AMQP

	Chapter 58. Message Expiry
	58.1. Core API
	58.2. JMS API
	58.3. Expired Message Properties
	58.4. Configuring Expiry Addresses
	58.5. Dropping Expired Messages
	58.6. Configuring Expiry Delay
	58.7. Expiring Expired Messages
	58.8. Configuring Automatic Creation of Expiry Resources
	58.9. Configuring The Expiry Reaper Thread
	58.10. Example

	Chapter 59. Large Messages
	59.1. Configuring the server
	59.2. Configuring the Core Client
	59.3. Compressed Large Messages on Core Protocol
	59.4. Streaming large messages from Core Protocol
	59.5. Configuring AMQP Acceptor
	59.6. Large message example

	Chapter 60. Paging
	60.1. Page Files
	60.2. Paging Mode
	60.3. Global Max Size
	60.4. Global Max Messages
	60.5. Dropping messages
	60.6. Dropping messages and throwing an exception to producers
	60.7. Blocking producers
	60.8. Caution with Addresses with Multiple Multicast Queues
	60.9. Monitoring Disk
	60.10. Page Sync Timeout
	60.11. Memory usage from Paged Messages.
	60.12. Page Limits and Page Full Policy
	60.13. Example

	Chapter 61. Duplicate Message Detection
	61.1. Using Duplicate Detection for Message Sending
	61.2. Duplicate Detection Semantics
	61.3. Configuring the Duplicate ID Cache
	61.4. Duplicate Detection and Bridges
	61.5. Duplicate Detection and Cluster Connections
	61.6. Performance Considerations

	Chapter 62. Message Redelivery and Undelivered Messages
	62.1. Delayed Redelivery
	62.2. Dead Letter Addresses
	62.3. Delivery Count Persistence

	Chapter 63. Persistence
	63.1. File Journal (Default)
	63.2. JDBC Persistence
	63.3. Zero Persistence

	Chapter 64. Data Tools
	Chapter 65. Libaio Native Libraries
	65.1. Runtime dependencies
	65.2. Compiling the native libraries
	65.3. Compilation dependencies
	65.4. Invoking the compilation

	Chapter 66. Detecting Dead Connections
	66.1. Cleaning up Resources on the Server
	66.2. Closing Forgotten Resources
	66.3. Detecting Failure from the Client
	66.4. Configuring Asynchronous Connection Execution

	Chapter 67. Configuring the Transport
	67.1. Acceptors
	67.2. Connectors
	67.3. Configuring the Transport Directly from the Client
	67.4. Configuring the Netty transport

	Chapter 68. Flow Control
	68.1. Consumer Flow Control
	68.2. Producer flow control

	Chapter 69. Plugin Support
	69.1. Registering a Plugin
	69.2. Registering a Plugin Programmatically
	69.3. Using the LoggingActiveMQServerPlugin
	69.4. Using the NotificationActiveMQServerPlugin
	69.5. Using the BrokerMessageAuthorizationPlugin
	69.6. Using the ConnectionPeriodicExpiryPlugin

	Chapter 70. Intercepting Operations
	70.1. Implementing The Interceptors
	70.2. Configuring The Interceptors
	70.3. Interceptors on the Client Side
	70.4. Examples

	Chapter 71. Configuration Reload
	71.1. Reloadable Parameters
	71.2. Broker Properties

	Chapter 72. Detecting Slow Consumers
	72.1. Required Configuration
	72.2. Example

	Chapter 73. Critical Analysis of the broker
	73.1. What to Expect

	Chapter 74. Resource Manager Configuration
	Chapter 75. Guarantees of Sends and Commits
	75.1. Transaction Completion
	75.2. Non Transactional Message Sends
	75.3. Non Transactional Acknowledgements
	75.4. Asynchronous Send Acknowledgements

	Chapter 76. Graceful Server Shutdown
	Chapter 77. Embedded Web Server
	77.1. Configuration
	77.2. Request Log
	77.3. Proxy Forwarding
	77.4. Management

	Chapter 78. Logging
	78.1. Configuring a Specific Level for a Logger
	78.2. Configuration Reload
	78.3. Logging in a client application
	78.4. Configuring Broker Audit Logging
	78.5. More on Log4J2 configuration:

	Chapter 79. Embedding Apache ActiveMQ Artemis
	79.1. Embedding with XML configuration
	79.2. Embedding with programmatic configuration

	Chapter 80. Artemis on Apache Karaf
	80.1. Installation
	80.2. Configuration

	Chapter 81. Apache Tomcat Support
	81.1. Resource Context Client Configuration
	81.2. Example Tomcat App

	Chapter 82. CDI Integration
	82.1. Configuring a connection

	Chapter 83. Properties for Copied Messages
	Chapter 84. Maven Plugins
	84.1. When to use it
	84.2. Goals
	84.3. Declaration
	84.4. create goal
	84.5. cli goal

	Chapter 85. Unit Testing
	85.1. Examples
	85.2. Ordering rules / extensions
	85.3. Available Rules / Extensions

	Chapter 86. JCA Resource Adapter
	86.1. Versions
	86.2. Building the RA
	86.3. Configuration
	86.4. Logging

	Chapter 87. Configuration Reference
	87.1. Broker Configuration
	87.2. The core configuration
	87.3. address-setting type
	87.4. bridge type
	87.5. broadcast-group type
	87.6. cluster-connection type
	87.7. discovery-group type
	87.8. divert type
	87.9. address type
	87.10. queue type
	87.11. security-setting type
	87.12. broker-plugin type
	87.13. metrics-plugin type
	87.14. resource-limit type
	87.15. grouping-handler type
	87.16. amqp-connection type

	Chapter 88. Examples
	88.1. Running the Examples
	88.2. Application-Layer Failover
	88.3. Core Bridge Example
	88.4. Browser
	88.5. Camel
	88.6. Client Kickoff
	88.7. Client side failover listener
	88.8. Client-Side Load-Balancing
	88.9. Clustered Durable Subscription
	88.10. Clustered Grouping
	88.11. Clustered Queue
	88.12. Clustering with JGroups
	88.13. Clustered Standalone
	88.14. Clustered Static Discovery
	88.15. Clustered Static Cluster One Way
	88.16. Clustered Topic
	88.17. Message Consumer Rate Limiting
	88.18. Dead Letter
	88.19. Delayed Redelivery
	88.20. Divert
	88.21. Durable Subscription
	88.22. Embedded
	88.23. Embedded Simple
	88.24. Exclusive Queue
	88.25. Message Expiration
	88.26. Apache ActiveMQ Artemis Resource Adapter example
	88.27. HTTP Transport
	88.28. Instantiate JMS Objects Directly
	88.29. Interceptor
	88.30. Interceptor AMQP
	88.31. Interceptor Client
	88.32. Interceptor MQTT
	88.33. JAAS
	88.34. JMS Auto Closable
	88.35. JMS Completion Listener
	88.36. JMS Bridge
	88.37. JMS Context
	88.38. JMS Shared Consumer
	88.39. JMX Management
	88.40. Large Message
	88.41. Last-Value Queue
	88.42. Management
	88.43. Management Notification
	88.44. Message Counter
	88.45. Message Group
	88.46. Message Group
	88.47. Message Priority
	88.48. Multiple Failover
	88.49. Multiple Failover Failback
	88.50. No Consumer Buffering
	88.51. Non-Transaction Failover With Server Data Replication
	88.52. OpenWire
	88.53. Paging
	88.54. Pre-Acknowledge
	88.55. Message Producer Rate Limiting
	88.56. Queue
	88.57. Message Redistribution
	88.58. Queue Requestor
	88.59. Queue with Message Selector
	88.60. Reattach Node example
	88.61. Replicated Failback example
	88.62. Replicated Failback static example
	88.63. Replicated multiple failover example
	88.64. Replicated Failover transaction example
	88.65. Request-Reply example
	88.66. Scheduled Message
	88.67. Security
	88.68. Security LDAP
	88.69. Security keycloak
	88.70. Send Acknowledgements
	88.71. Slow Consumer
	88.72. Spring Integration
	88.73. SSL Transport
	88.74. Static Message Selector
	88.75. Static Message Selector Using JMS
	88.76. Stomp
	88.77. Stomp1.1
	88.78. Stomp1.2
	88.79. Stomp Over Web Sockets
	88.80. Symmetric Cluster
	88.81. Temporary Queue
	88.82. Topic
	88.83. Topic Hierarchy
	88.84. Topic Selector 1
	88.85. Topic Selector 2
	88.86. Transaction Failover
	88.87. Failover Without Transactions
	88.88. Transactional Session
	88.89. XA Heuristic
	88.90. XA Receive
	88.91. XA Send

	Chapter 89. Legal Notice

