Security
This chapter describes how security works with Apache ActiveMQ Artemis and how you can
configure it. To disable security completely simply set the
security-enabled
property to false in the broker.xml
file.
For performance reasons security is cached and invalidated every so
long. To change this period set the property
security-invalidation-interval
, which is in milliseconds. The default
is 10000
ms.
To assist in security auditing the populate-validated-user
option exists. If this is true
then
the server will add the name of the validated user to the message using the key _AMQ_VALIDATED_USER
.
For JMS and Stomp clients this is mapped to the key JMSXUserID
. For users authenticated based on
their SSL certificate this name is the name to which their certificate's DN maps. If security-enabled
is false
and populate-validated-user
is true
then the server will simply use whatever user name
(if any) the client provides. This option is false
by default.
Role based security for addresses
Apache ActiveMQ Artemis contains a flexible role-based security model for applying security to queues, based on their addresses.
As explained in Using Core, Apache ActiveMQ Artemis core consists mainly of sets of queues bound to addresses. A message is sent to an address and the server looks up the set of queues that are bound to that address, the server then routes the message to those set of queues.
Apache ActiveMQ Artemis allows sets of permissions to be defined against the queues
based on their address. An exact match on the address can be used or a
wildcard match can be used using the wildcard characters '#
' and
'*
'.
Eight different permissions can be given to the set of queues which match the address. Those permissions are:
createAddress
. This permission allows the user to create an address fitting thematch
.deleteAddress
. This permission allows the user to delete an address fitting thematch
.createDurableQueue
. This permission allows the user to create a durable queue under matching addresses.deleteDurableQueue
. This permission allows the user to delete a durable queue under matching addresses.createNonDurableQueue
. This permission allows the user to create a non-durable queue under matching addresses.deleteNonDurableQueue
. This permission allows the user to delete a non-durable queue under matching addresses.send
. This permission allows the user to send a message to matching addresses.consume
. This permission allows the user to consume a message from a queue bound to matching addresses.browse
. This permission allows the user to browse a queue bound to the matching address.manage
. This permission allows the user to invoke management operations by sending management messages to the management address.
For each permission, a list of roles who are granted that permission is specified. If the user has any of those roles, he/she will be granted that permission for that set of addresses.
Let's take a simple example, here's a security block from
broker.xml
file:
<security-setting match="globalqueues.europe.#">
<permission type="createDurableQueue" roles="admin"/>
<permission type="deleteDurableQueue" roles="admin"/>
<permission type="createNonDurableQueue" roles="admin, guest, europe-users"/>
<permission type="deleteNonDurableQueue" roles="admin, guest, europe-users"/>
<permission type="send" roles="admin, europe-users"/>
<permission type="consume" roles="admin, europe-users"/>
</security-setting>
The '#
' character signifies "any sequence of words". Words are
delimited by the '.
' character. For a full description of the wildcard
syntax please see Understanding the Wildcard Syntax.
The above security block applies to any address
that starts with the string "globalqueues.europe.":
Only users who have the admin
role can create or delete durable queues
bound to an address that starts with the string "globalqueues.europe."
Any users with the roles admin
, guest
, or europe-users
can create
or delete temporary queues bound to an address that starts with the
string "globalqueues.europe."
Any users with the roles admin
or europe-users
can send messages to
these addresses or consume messages from queues bound to an address that
starts with the string "globalqueues.europe."
The mapping between a user and what roles they have is handled by the security manager. Apache ActiveMQ Artemis ships with a user manager that reads user credentials from a file on disk, and can also plug into JAAS or JBoss Application Server security.
For more information on configuring the security manager, please see 'Changing the Security Manager'.
There can be zero or more security-setting
elements in each xml file.
Where more than one match applies to a set of addresses the more
specific match takes precedence.
Let's look at an example of that, here's another security-setting
block:
<security-setting match="globalqueues.europe.orders.#">
<permission type="send" roles="europe-users"/>
<permission type="consume" roles="europe-users"/>
</security-setting>
In this security-setting
block the match
'globalqueues.europe.orders.#' is more specific than the previous match
'globalqueues.europe.#'. So any addresses which match
'globalqueues.europe.orders.#' will take their security settings only
from the latter security-setting block.
Note that settings are not inherited from the former block. All the
settings will be taken from the more specific matching block, so for the
address 'globalqueues.europe.orders.plastics' the only permissions that
exist are send
and consume
for the role europe-users. The
permissions createDurableQueue
, deleteDurableQueue
,
createNonDurableQueue
, deleteNonDurableQueue
are not inherited from
the other security-setting block.
By not inheriting permissions, it allows you to effectively deny permissions in more specific security-setting blocks by simply not specifying them. Otherwise it would not be possible to deny permissions in sub-groups of addresses.
Security Setting Plugin
Aside from configuring sets of permissions via XML these permissions can alternatively be
configured via a plugin which implements org.apache.activemq.artemis.core.server.SecuritySettingPlugin
e.g.:
<security-settings>
<security-setting-plugin class-name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">
<setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/>
<setting name="connectionURL" value="ldap://localhost:1024"/>
<setting name="connectionUsername" value="uid=admin,ou=system"/>
<setting name="connectionPassword" value="secret"/>
<setting name="connectionProtocol" value="s"/>
<setting name="authentication" value="simple"/>
</security-setting-plugin>
</security-settings>
Most of this configuration is specific to the plugin implementation. However, there are two configuration details that will be specified for every implementation:
class-name
. This attribute ofsecurity-setting-plugin
indicates the name of the class which implementsorg.apache.activemq.artemis.core.server.SecuritySettingPlugin
.setting
. Each of these elements represents a name/value pair that will be passed to the implementation for configuration purposes.
See the JavaDoc on org.apache.activemq.artemis.core.server.SecuritySettingPlugin
for further details about the interface
and what each method is expected to do.
Available plugins
LegacyLDAPSecuritySettingPlugin
This plugin will read the security information that was previously handled by LDAPAuthorizationMap
and the cachedLDAPAuthorizationMap
in Apache ActiveMQ 5.x
and turn it into Artemis security settings where possible. The security implementations of ActiveMQ 5.x and Artemis don't
match perfectly so some translation must occur to achieve near equivalent functionality.
Here is an example of the plugin's configuration:
<security-setting-plugin class-name="org.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin">
<setting name="initialContextFactory" value="com.sun.jndi.ldap.LdapCtxFactory"/>
<setting name="connectionURL" value="ldap://localhost:1024"/>
<setting name="connectionUsername" value="uid=admin,ou=system"/>
<setting name="connectionPassword" value="secret"/>
<setting name="connectionProtocol" value="s"/>
<setting name="authentication" value="simple"/>
</security-setting-plugin>
class-name
. The implementation isorg.apache.activemq.artemis.core.server.impl.LegacyLDAPSecuritySettingPlugin
.initialContextFactory
. The initial context factory used to connect to LDAP. It must always be set tocom.sun.jndi.ldap.LdapCtxFactory
(i.e. the default value).connectionURL
. Specifies the location of the directory server using an ldap URL,ldap://Host:Port
. You can optionally qualify this URL, by adding a forward slash,/
, followed by the DN of a particular node in the directory tree. For example,ldap://ldapserver:10389/ou=system
. The default isldap://localhost:1024
.connectionUsername
. The DN of the user that opens the connection to the directory server. For example,uid=admin,ou=system
. Directory servers generally require clients to present username/password credentials in order to open a connection.connectionPassword
. The password that matches the DN fromconnectionUsername
. In the directory server, in the DIT, the password is normally stored as auserPassword
attribute in the corresponding directory entry.connectionProtocol
. Currently the only supported value is a blank string. In future, this option will allow you to select the Secure Socket Layer (SSL) for the connection to the directory server. Note: this option must be set explicitly to an empty string, because it has no default value.authentication
. Specifies the authentication method used when binding to the LDAP server. Can take either of the values,simple
(username and password, the default value) ornone
(anonymous). Note: Simple Authentication and Security Layer (SASL) authentication is currently not supported.destinationBase
. Specifies the DN of the node whose children provide the permissions for all destinations. In this case the DN is a literal value (that is, no string substitution is performed on the property value). For example, a typical value of this property isou=destinations,o=ActiveMQ,ou=system
(i.e. the default value).filter
. Specifies an LDAP search filter, which is used when looking up the permissions for any kind of destination. The search filter attempts to match one of the children or descendants of the queue or topic node. The default value is(cn=*)
.roleAttribute
. Specifies an attribute of the node matched byfilter
, whose value is the DN of a role. Default value isuniqueMember
.adminPermissionValue
. Specifies a value that matches theadmin
permission. The default value isadmin
.readPermissionValue
. Specifies a value that matches theread
permission. The default value isread
.writePermissionValue
. Specifies a value that matches thewrite
permission. The default value iswrite
.enableListener
. Whether or not to enable a listener that will automatically receive updates made in the LDAP server and update the broker's authorization configuration in real-time. The default value istrue
.
The name of the queue or topic defined in LDAP will serve as the "match" for the security-setting, the permission value will be mapped from the ActiveMQ 5.x type to the Artemis type, and the role will be mapped as-is.
ActiveMQ 5.x only has 3 permission types - read
, write
, and admin
. These permission types are described on their
website. However, as described previously, ActiveMQ Artemis has 9 permission
types - createAddress
, deleteAddress
, createDurableQueue
, deleteDurableQueue
, createNonDurableQueue
,
deleteNonDurableQueue
, send
, consume
, browse
, and manage
. Here's how the old types are mapped to the new types:
read
-consume
,browse
write
-send
admin
-createAddress
,deleteAddress
,createDurableQueue
,deleteDurableQueue
,createNonDurableQueue
,deleteNonDurableQueue
As mentioned, there are a few places where a translation was performed to achieve some equivalence.:
This mapping doesn't include the Artemis
manage
permission type since there is no type analogous for that in ActiveMQ 5.x.The
admin
permission in ActiveMQ 5.x relates to whether or not the broker will auto-create a destination if it doesn't exist and the user sends a message to it. Artemis automatically allows the automatic creation of a destination if the user has permission to send message to it. Therefore, the plugin will map theadmin
permission to the 4 aforementioned permissions in Artemis.
Secure Sockets Layer (SSL) Transport
When messaging clients are connected to servers, or servers are connected to other servers (e.g. via bridges) over an untrusted network then Apache ActiveMQ Artemis allows that traffic to be encrypted using the Secure Sockets Layer (SSL) transport.
For more information on configuring the SSL transport, please see Configuring the Transport.
User credentials
Apache ActiveMQ Artemis ships with two security manager implementations:
The legacy, deprecated
ActiveMQSecurityManager
that reads user credentials, i.e. user names, passwords and role information from properties files on the classpath calledartemis-users.properties
andartemis-roles.properties
.The flexible, pluggable
ActiveMQJAASSecurityManager
which supports any standard JAAS login module. Artemis ships with several login modules which will be discussed further down. This is the default security manager.
JAAS Security Manager
When using the Java Authentication and Authorization Service (JAAS) much of the configuration depends on which login
module is used. However, there are a few commonalities for every case.
The first place to look is in bootstrap.xml
. Here is an example using the PropertiesLogin
JAAS login
module which reads user, password, and role information from properties files:
<jaas-security domain="PropertiesLogin"/>
No matter what login module you're using, you'll need to specify it here in bootstrap.xml
. The domain
attribute
here refers to the relevant login module entry in login.config
. For example:
PropertiesLogin {
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required
debug=true
org.apache.activemq.jaas.properties.user="artemis-users.properties"
org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};
The login.config
file is a standard JAAS configuration file. You can read more about this file on
Oracle's website.
In short, the file defines:
an alias for an entry (e.g.
PropertiesLogin
)the implementation class for the login module (e.g.
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule
)a flag which indicates whether the success of the login module is
required
,requisite
,sufficient
, oroptional
(see more details on these flags in the JavaDoca list of configuration options specific to the login module implementation
By default, the location and name of login.config
is specified on the Artemis command-line which is set by
etc/artemis.profile
on linux and etc\artemis.profile.cmd
on Windows.
Dual Authentication
The JAAS Security Manager also supports another configuration parameter - certificate-domain
. This is useful when you
want to authenticate clients connecting with SSL connections based on their SSL certificates (e.g. using the CertificateLoginModule
discussed below) but you still want to authenticate clients connecting with non-SSL connections with, e.g., username and
password. Here's an example of what would go in bootstrap.xml
:
<jaas-security domain="PropertiesLogin" certificate-domain="CertLogin"/>
And here's the corresponding login.config
:
PropertiesLogin {
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule required
debug=false
org.apache.activemq.jaas.properties.user="artemis-users.properties"
org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};
CertLogin {
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule required
debug=true
org.apache.activemq.jaas.textfiledn.user="cert-users.properties"
org.apache.activemq.jaas.textfiledn.role="cert-roles.properties";
};
When the broker is configured this way then any client connecting with SSL and a client certificate will be authenticated
using CertLogin
and any client connecting without SSL will be authenticated using PropertiesLogin
.
JAAS Login Modules
GuestLoginModule
Allows users without credentials (and, depending on how it is configured, possibly also users with invalid credentials)
to access the broker. Normally, the guest login module is chained with another login module, such as a properties login
module. It is implemented by org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule
.
org.apache.activemq.jaas.guest.user
- the user name to assign; default is "guest"org.apache.activemq.jaas.guest.role
- the role name to assign; default is "guests"credentialsInvalidate
- boolean flag; iftrue
, reject login requests that include a password (i.e. guest login succeeds only when the user does not provide a password); default isfalse
debug
- boolean flag; iftrue
, enable debugging; this is used only for testing or debugging; normally, it should be set tofalse
, or omitted; default isfalse
There are two basic use cases for the guest login module, as follows:
Guests with no credentials or invalid credentials.
Guests with no credentials only.
The following snippet shows how to configure a JAAS login entry for the use case where users with no credentials or invalid credentials are logged in as guests. In this example, the guest login module is used in combination with the properties login module.
activemq-domain {
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule sufficient
debug=true
org.apache.activemq.jaas.properties.user="artemis-users.properties"
org.apache.activemq.jaas.properties.role="artemis-roles.properties";
org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
debug=true
org.apache.activemq.jaas.guest.user="anyone"
org.apache.activemq.jaas.guest.role="restricted";
};
Depending on the user login data, authentication proceeds as follows:
User logs in with a valid password — the properties login module successfully authenticates the user and returns immediately. The guest login module is not invoked.
User logs in with an invalid password — the properties login module fails to authenticate the user, and authentication proceeds to the guest login module. The guest login module successfully authenticates the user and returns the guest principal.
User logs in with a blank password — the properties login module fails to authenticate the user, and authentication proceeds to the guest login module. The guest login module successfully authenticates the user and returns the guest principal.
The following snipped shows how to configure a JAAS login entry for the use case where only those users with no credentials are logged in as guests. To support this use case, you must set the credentialsInvalidate option to true in the configuration of the guest login module. You should also note that, compared with the preceding example, the order of the login modules is reversed and the flag attached to the properties login module is changed to requisite.
activemq-guest-when-no-creds-only-domain {
org.apache.activemq.artemis.spi.core.security.jaas.GuestLoginModule sufficient
debug=true
credentialsInvalidate=true
org.apache.activemq.jaas.guest.user="guest"
org.apache.activemq.jaas.guest.role="guests";
org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule requisite
debug=true
org.apache.activemq.jaas.properties.user="artemis-users.properties"
org.apache.activemq.jaas.properties.role="artemis-roles.properties";
};
Depending on the user login data, authentication proceeds as follows:
User logs in with a valid password — the guest login module fails to authenticate the user (because the user has presented a password while the credentialsInvalidate option is enabled) and authentication proceeds to the properties login module. The properties login module successfully authenticates the user and returns.
User logs in with an invalid password — the guest login module fails to authenticate the user and authentication proceeds to the properties login module. The properties login module also fails to authenticate the user. The nett result is authentication failure.
User logs in with a blank password — the guest login module successfully authenticates the user and returns immediately. The properties login module is not invoked.
PropertiesLoginModule
The JAAS properties login module provides a simple store of authentication data, where the relevant user data is stored
in a pair of flat files. This is convenient for demonstrations and testing, but for an enterprise system, the integration
with LDAP is preferable. It is implemented by org.apache.activemq.artemis.spi.core.security.jaas.PropertiesLoginModule
.
org.apache.activemq.jaas.properties.user
- the path to the file which contains user and password propertiesorg.apache.activemq.jaas.properties.role
- the path to the file which contains user and role propertiesreload
- boolean flag; whether or not to reload the properties files when a modification occurs; default isfalse
debug
- boolean flag; iftrue
, enable debugging; this is used only for testing or debugging; normally, it should be set tofalse
, or omitted; default isfalse
In the context of the properties login module, the artemis-users.properties
file consists of a list of properties of the
form, UserName=Password
. For example, to define the users system
, user
, and guest
, you could create a file like
the following:
system=manager
user=password
guest=password
Passwords in artemis-users.properties
can be hashed. Such passwords should follow the syntax ENC(<hash>)
. Hashed
passwords can easily be added to artemis-users.properties
using the user
CLI command, e.g.:
./artemis user add --username guest --password guest --role admin
This will use the default org.apache.activemq.artemis.utils.DefaultSensitiveStringCodec
to perform a "one-way" hash of
the password and alter both the artemis-users.properties
and artemis-roles.properties
files with the specified values.
The artemis-roles.properties
file consists of a list of properties of the form, Role=UserList
, where UserList is a
comma-separated list of users. For example, to define the roles admins
, users
, and guests
, you could create a file
like the following:
admins=system
users=system,user
guests=guest
LDAPLoginModule
The LDAP login module enables you to perform authentication and authorization by checking the incoming credentials against
user data stored in a central X.500 directory server. For systems that already have an X.500 directory server in place,
this means that you can rapidly integrate ActiveMQ Artemis with the existing security database and user accounts can be
managed using the X.500 system. It is implemented by org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule
.
initialContextFactory
- must always be set tocom.sun.jndi.ldap.LdapCtxFactory
connectionURL
- specify the location of the directory server using an ldap URL, ldap://Host:Port. You can optionally qualify this URL, by adding a forward slash,/
, followed by the DN of a particular node in the directory tree. For example, ldap://ldapserver:10389/ou=system.authentication
- specifies the authentication method used when binding to the LDAP server. Can take either of the values,simple
(username and password),GSSAPI
(Kerberos SASL) ornone
(anonymous).connectionUsername
- the DN of the user that opens the connection to the directory server. For example,uid=admin,ou=system
. Directory servers generally require clients to present username/password credentials in order to open a connection.connectionPassword
- the password that matches the DN fromconnectionUsername
. In the directory server, in the DIT, the password is normally stored as auserPassword
attribute in the corresponding directory entry.saslLoginConfigScope
- the scope in JAAS configuration (login.config) to use to obtain Kerberos initiator credentials when theauthentication
method is SASLGSSAPI
. The default value isbroker-sasl-gssapi
.connectionProtocol
- currently, the only supported value is a blank string. In future, this option will allow you to select the Secure Socket Layer (SSL) for the connection to the directory server. This option must be set explicitly to an empty string, because it has no default value.userBase
- selects a particular subtree of the DIT to search for user entries. The subtree is specified by a DN, which specifes the base node of the subtree. For example, by setting this option toou=User,ou=ActiveMQ,ou=system
, the search for user entries is restricted to the subtree beneath theou=User,ou=ActiveMQ,ou=system
node.userSearchMatching
- specifies an LDAP search filter, which is applied to the subtree selected byuserBase
. Before passing to the LDAP search operation, the string value you provide here is subjected to string substitution, as implemented by thejava.text.MessageFormat
class. Essentially, this means that the special string,{0}
, is substituted by the username, as extracted from the incoming client credentials.After substitution, the string is interpreted as an LDAP search filter, where the LDAP search filter syntax is defined by the IETF standard, RFC 2254. A short introduction to the search filter syntax is available from Oracle's JNDI tutorial, Search Filters.
For example, if this option is set to
(uid={0})
and the received username isjdoe
, the search filter becomes(uid=jdoe)
after string substitution. If the resulting search filter is applied to the subtree selected by the user base,ou=User,ou=ActiveMQ,ou=system
, it would match the entry,uid=jdoe,ou=User,ou=ActiveMQ,ou=system
(and possibly more deeply nested entries, depending on the specified search depth—see theuserSearchSubtree
option).userSearchSubtree
- specify the search depth for user entries, relative to the node specified byuserBase
. This option is a boolean.false
indicates it will try to match one of the child entries of theuserBase
node (maps tojavax.naming.directory.SearchControls.ONELEVEL_SCOPE
).true
indicates it will try to match any entry belonging to the subtree of theuserBase
node (maps tojavax.naming.directory.SearchControls.SUBTREE_SCOPE
).userRoleName
- specifies the name of the multi-valued attribute of the user entry that contains a list of role names for the user (where the role names are interpreted as group names by the broker's authorization plug-in). If you omit this option, no role names are extracted from the user entry.roleBase
- if you want to store role data directly in the directory server, you can use a combination of role options (roleBase
,roleSearchMatching
,roleSearchSubtree
, androleName
) as an alternative to (or in addition to) specifying theuserRoleName
option. This option selects a particular subtree of the DIT to search for role/group entries. The subtree is specified by a DN, which specifes the base node of the subtree. For example, by setting this option toou=Group,ou=ActiveMQ,ou=system
, the search for role/group entries is restricted to the subtree beneath theou=Group,ou=ActiveMQ,ou=system
node.roleName
- specifies the attribute type of the role entry that contains the name of the role/group (e.g. C, O, OU, etc.). If you omit this option the full DN of the role is used.roleSearchMatching
- specifies an LDAP search filter, which is applied to the subtree selected byroleBase
. This works in a similar manner to theuserSearchMatching
option, except that it supports two substitution strings, as follows:{0}
- substitutes the full DN of the matched user entry (that is, the result of the user search). For example, for the user,jdoe
, the substituted string could beuid=jdoe,ou=User,ou=ActiveMQ,ou=system
.{1}
- substitutes the received username. For example,jdoe
.
For example, if this option is set to
(member=uid={1})
and the received username isjdoe
, the search filter becomes(member=uid=jdoe)
after string substitution (assuming ApacheDS search filter syntax). If the resulting search filter is applied to the subtree selected by the role base,ou=Group,ou=ActiveMQ,ou=system
, it matches all role entries that have amember
attribute equal touid=jdoe
(the value of amember
attribute is a DN).This option must always be set to enable role searching because it has no default value. Leaving it unset disables role searching and the role information must come from
userRoleName
.If you use OpenLDAP, the syntax of the search filter is
(member:=uid=jdoe)
.roleSearchSubtree
- specify the search depth for role entries, relative to the node specified byroleBase
. This option can take boolean values, as follows:false
(default) - try to match one of the child entries of the roleBase node (maps tojavax.naming.directory.SearchControls.ONELEVEL_SCOPE
).true
— try to match any entry belonging to the subtree of the roleBase node (maps tojavax.naming.directory.SearchControls.SUBTREE_SCOPE
).
authenticateUser
- boolean flag to disable authentication. Useful as an optimisation when this module is used just for role mapping of a Subject's existing authenticated principals; default isfalse
.referral
- specify how to handle referrals; valid values:ignore
,follow
,throw
; default isignore
.debug
- boolean flag; iftrue
, enable debugging; this is used only for testing or debugging; normally, it should be set tofalse
, or omitted; default isfalse
Add user entries under the node specified by the userBase
option. When creating a new user entry in the directory,
choose an object class that supports the userPassword
attribute (for example, the person
or inetOrgPerson
object
classes are typically suitable). After creating the user entry, add the userPassword
attribute, to hold the user's
password.
If you want to store role data in dedicated role entries (where each node represents a particular role), create a role
entry as follows. Create a new child of the roleBase
node, where the objectClass
of the child is groupOfNames
. Set
the cn
(or whatever attribute type is specified by roleName
) of the new child node equal to the name of the
role/group. Define a member
attribute for each member of the role/group, setting the member
value to the DN of the
corresponding user (where the DN is specified either fully, uid=jdoe,ou=User,ou=ActiveMQ,ou=system
, or partially,
uid=jdoe
).
If you want to add roles to user entries, you would need to customize the directory schema, by adding a suitable attribute type to the user entry's object class. The chosen attribute type must be capable of handling multiple values.
CertificateLoginModule
The JAAS certificate authentication login module must be used in combination with SSL and the clients must be configured with their own certificate. In this scenario, authentication is actually performed during the SSL/TLS handshake, not directly by the JAAS certificate authentication plug-in. The role of the plug-in is as follows:
To further constrain the set of acceptable users, because only the user DNs explicitly listed in the relevant properties file are eligible to be authenticated.
To associate a list of groups with the received user identity, facilitating integration with the authorization feature.
To require the presence of an incoming certificate (by default, the SSL/TLS layer is configured to treat the presence of a client certificate as optional).
The JAAS certificate login module stores a collection of certificate DNs in a pair of flat files. The files associate a username and a list of group IDs with each DN.
The certificate login module is implemented by the following class:
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
The following CertLogin
login entry shows how to configure certificate login module in the login.config file:
CertLogin {
org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
debug=true
org.apache.activemq.jaas.textfiledn.user="users.properties"
org.apache.activemq.jaas.textfiledn.role="roles.properties";
};
In the preceding example, the JAAS realm is configured to use a single org.apache.activemq.artemis.spi.core.security.jaas.TextFileCertificateLoginModule
login module. The options supported by this login module are as follows:
debug
- boolean flag; if true, enable debugging; this is used only for testing or debugging; normally, it should be set tofalse
, or omitted; default isfalse
org.apache.activemq.jaas.textfiledn.user
- specifies the location of the user properties file (relative to the directory containing the login configuration file).org.apache.activemq.jaas.textfiledn.role
- specifies the location of the role properties file (relative to the directory containing the login configuration file).reload
- boolean flag; whether or not to reload the properties files when a modification occurs; default isfalse
In the context of the certificate login module, the users.properties
file consists of a list of properties of the form,
UserName=StringifiedSubjectDN
. For example, to define the users, system, user, and guest, you could create a file like
the following:
system=CN=system,O=Progress,C=US
user=CN=humble user,O=Progress,C=US
guest=CN=anon,O=Progress,C=DE
Each username is mapped to a subject DN, encoded as a string (where the string encoding is specified by RFC 2253). For
example, the system username is mapped to the CN=system,O=Progress,C=US
subject DN. When performing authentication,
the plug-in extracts the subject DN from the received certificate, converts it to the standard string format, and
compares it with the subject DNs in the users.properties
file by testing for string equality. Consequently, you must
be careful to ensure that the subject DNs appearing in the users.properties
file are an exact match for the subject
DNs extracted from the user certificates.
Note: Technically, there is some residual ambiguity in the DN string format. For example, the domainComponent
attribute
could be represented in a string either as the string, DC
, or as the OID, 0.9.2342.19200300.100.1.25
. Normally, you do
not need to worry about this ambiguity. But it could potentially be a problem, if you changed the underlying
implementation of the Java security layer.
The easiest way to obtain the subject DNs from the user certificates is by invoking the keytool
utility to print the
certificate contents. To print the contents of a certificate in a keystore, perform the following steps:
Export the certificate from the keystore file into a temporary file. For example, to export the certificate with alias
broker-localhost
from thebroker.ks
keystore file, enter the following command:keytool -export -file broker.export -alias broker-localhost -keystore broker.ks -storepass password
After running this command, the exported certificate is in the file,
broker.export
.Print out the contents of the exported certificate. For example, to print out the contents of
broker.export
, enter the following command:keytool -printcert -file broker.export
Which should produce output similar to that shown here:
Owner: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown Issuer: CN=localhost, OU=broker, O=Unknown, L=Unknown, ST=Unknown, C=Unknown Serial number: 4537c82e Valid from: Thu Oct 19 19:47:10 BST 2006 until: Wed Jan 17 18:47:10 GMT 2007 Certificate fingerprints:
MD5: 3F:6C:0C:89:A8:80:29:CC:F5:2D:DA:5C:D7:3F:AB:37 SHA1: F0:79:0D:04:38:5A:46:CE:86:E1:8A:20:1F:7B:AB:3A:46:E4:34:5C
The string following
Owner:
gives the subject DN. The format used to enter the subject DN depends on your platform. TheOwner:
string above could be represented as eitherCN=localhost,\ OU=broker,\ O=Unknown,\ L=Unknown,\ ST=Unknown,\ C=Unknown
orCN=localhost,OU=broker,O=Unknown,L=Unknown,ST=Unknown,C=Unknown
.
The roles.properties
file consists of a list of properties of the form, Role=UserList
, where UserList
is a
comma-separated list of users. For example, to define the roles admins
, users
, and guests
, you could create a file
like the following:
admins=system
users=system,user
guests=guest
The simplest way to make the login configuration available to JAAS is to add the directory containing the file,
login.config
, to your CLASSPATH.
Kerberos Authentication
You must have the Kerberos infrastructure set up in your deployment environment before the server can accept Kerberos credentials. The server can acquire its Kerberos acceptor credentials by using JAAS and a Kerberos login module. The JDK provides the Krb5LoginModule which executes the necessary Kerberos protocol steps to authenticate and obtain Kerberos credentials.
GSSAPI SASL Mechanism
Using SASL over AMQP, Kerberos authentication is supported using the GSSAPI
SASL mechanism.
With SASL doing Kerberos authentication, TLS can be used to provide integrity and confidentially to the communications
channel in the normal way.
The GSSAPI
SASL mechanism must be enabled on the AMQP acceptor in broker.xml
by adding it to the saslMechanisms
list url parameter:
saslMechanisms="GSSAPI<,PLAIN, etc>
.
<acceptor name="amqp">tcp://0.0.0.0:5672?protocols=AMQP;saslMechanisms=GSSAPI</acceptor>
The GSSAPI mechanism implementation on the server will use a JAAS configuration scope named amqp-sasl-gssapi
to
obtain it's Kerberos acceptor credentials. An alternative configuration scope can be specified on the AMQP acceptor
using the url parameter: saslLoginConfigScope=<some other scope>
.
An example configuration scope for login.config
that will pick up a Kerberos keyTab for the Kerberos acceptor Principal
amqp/localhost
is as follows:
amqp-sasl-gssapi {
com.sun.security.auth.module.Krb5LoginModule required
isInitiator=false
storeKey=true
useKeyTab=true
principal="amqp/localhost"
debug=true;
};
Role Mapping
On the server, the Kerberos authenticated Peer Principal can be added to the Subject's principal set as an Apache ActiveMQ Artemis UserPrincipal
using the Apache ActiveMQ Artemis Krb5LoginModule
login module. The PropertiesLoginModule or
LDAPLoginModule can then be used to map
the authenticated Kerberos Peer Principal to an Apache ActiveMQ Artemis Role. Note
that the Kerberos Peer Principal does not exist as an Apache ActiveMQ Artemis user, only as a role member.
org.apache.activemq.artemis.spi.core.security.jaas.Krb5LoginModule required
;
org.apache.activemq.artemis.spi.core.security.jaas.LDAPLoginModule optional
initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
connectionURL="ldap://localhost:1024"
authentication=GSSAPI
saslLoginConfigScope=broker-sasl-gssapi
connectionProtocol=s
userBase="ou=users,dc=example,dc=com"
userSearchMatching="(krb5PrincipalName={0})"
userSearchSubtree=true
authenticateUser=false
roleBase="ou=system"
roleName=cn
roleSearchMatching="(member={0})"
roleSearchSubtree=false
;
TLS Kerberos Cipher Suites
The legacy rfc2712 defines TLS Kerberos cipher suites that can be used by TLS to negotiate Kerberos authentication. The cypher suites offered by rfc2712 are dated and insecure and rfc2712 has been superseded by SASL GSSAPI. However, for clients that don't support SASL (core client), using TLS can provide Kerberos authentication over an unsecure channel.
Changing the username/password for clustering
In order for cluster connections to work correctly, each node in the cluster must make connections to the other nodes. The username/password they use for this should always be changed from the installation default to prevent a security risk.
Please see Management for instructions on how to do this.
Securing the console
Artemis comes with a web console that allows user to browse Artemis documentation via an embedded server. By default the
web access is plain HTTP. It is configured in bootstrap.xml
:
<web bind="http://localhost:8161" path="web">
<app url="console" war="console.war"/>
</web>
Alternatively you can edit the above configuration to enable secure access using HTTPS protocol. e.g.:
<web bind="https://localhost:8443"
path="web"
keyStorePath="${artemis.instance}/etc/keystore.jks"
keyStorePassword="password">
<app url="jolokia" war="jolokia-war-1.3.5.war"/>
</web>
As shown in the example, to enable https the first thing to do is config the bind
to be an https
url. In addition,
You will have to configure a few extra properties desribed as below.
keyStorePath
- The path of the key store file.keyStorePassword
- The key store's password.clientAuth
- The boolean flag indicates whether or not client authentication is required. Default isfalse
.trustStorePath
- The path of the trust store file. This is needed only ifclientAuth
istrue
.trustStorePassword
- The trust store's password.
Controlling JMS ObjectMessage deserialization
Artemis provides a simple class filtering mechanism with which a user can specify which packages are to be trusted and which are not. Objects whose classes are from trusted packages can be deserialized without problem, whereas those from 'not trusted' packages will be denied deserialization.
Artemis keeps a black list
to keep track of packages that are not trusted and a white list
for trusted packages. By default both lists are empty, meaning any serializable object is
allowed to be deserialized. If an object whose class matches one of the packages in black list,
it is not allowed to be deserialized. If it matches one in the white list
the object can be deserialized. If a package appears in both black list and white list,
the one in black list takes precedence. If a class neither matches with black list
nor with the white list
, the class deserialization will be denied
unless the white list is empty (meaning the user doesn't specify the white list at all).
A class is considered as a 'match' if
- its full name exactly matches one of the entries in the list.
- its package matches one of the entries in the list or is a sub-package of one of the entries.
For example, if a class full name is "org.apache.pkg1.Class1", some matching entries could be:
org.apache.pkg1.Class1
- exact match.org.apache.pkg1
- exact package match.org.apache
-- sub package match.
A *
means 'match-all' in a black or white list.
Config via Connection Factories
To specify the white and black lists one can use the URL parameters
deserializationBlackList
and deserializationWhiteList
. For example,
using JMS:
ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory("vm://0?deserializationBlackList=org.apache.pkg1,org.some.pkg2");
The above statement creates a factory that has a black list contains two forbidden packages, "org.apache.pkg1" and "org.some.pkg2", separated by a comma.
Config via system properties
There are two system properties available for specifying black list and white list:
org.apache.activemq.artemis.jms.deserialization.whitelist
- comma separated list of entries for the white list.org.apache.activemq.artemis.jms.deserialization.blacklist
- comma separated list of entries for the black list.
Once defined, all JMS object message deserialization in the VM is subject to checks against the two lists. However if you create a ConnectionFactory and set a new set of black/white lists on it, the new values will override the system properties.
Config for resource adapters
Message beans using a JMS resource adapter to receive messages can also control their object deserialization via properly configuring relevant properties for their resource adapters. There are two properties that you can configure with connection factories in a resource adapter:
deserializationBlackList
- comma separated values for black listdeserializationWhiteList
- comma separated values for white list
These properties, once specified, are eventually set on the corresponding internal factories.
Config for REST interface
Apache Artemis REST interface (Rest) allows interactions between jms client and rest clients. It uses JMS ObjectMessage to wrap the actual user data between the 2 types of clients and deserialization is needed during this process. If you want to control the deserialization for REST, you need to set the black/white lists for it separately as Apache Artemis REST Interface is deployed as a web application. You need to put the black/white lists in its web.xml, as context parameters, as follows
<web-app>
<context-param>
<param-name>org.apache.activemq.artemis.jms.deserialization.whitelist</param-name>
<param-value>some.allowed.class</param-value>
</context-param>
<context-param>
<param-name>org.apache.activemq.artemis.jms.deserialization.blacklist</param-name>
<param-value>some.forbidden.class</param-value>
</context-param>
...
</web-app>
The param-value for each list is a comma separated string value representing the list.
Masking Passwords
For details about masking passwords in broker.xml please see the Masking Passwords chapter.